Spaces:
Sleeping
Sleeping
jmfinizio
commited on
Commit
·
d8afa61
0
Parent(s):
Fresh start
Browse files- .DS_Store +0 -0
- .gitattributes +36 -0
- Dockerfile +16 -0
- README.md +10 -0
- analysis_output/session_33d6d79f-952c-476a-9f36-cd5fdea84d3c/analysis.csv +6 -0
- analysis_output/session_4c97bc51-b190-4205-b4dd-f9fc2cd9fc15/analysis.csv +6 -0
- analysis_output/session_4cfe63bb-d56d-4457-8d2d-6e85af137d66/analysis.csv +6 -0
- analysis_output/session_bb31a607-52b9-495f-aeb1-346c8f87bee1/analysis.csv +6 -0
- analysis_output/session_d7af8070-871b-41bd-b611-fd2bd9773404/analysis.csv +146 -0
- analysis_output/session_ee8801d4-2515-4873-9db6-a8be6180e836/analysis.csv +6 -0
- app.py +1 -0
- backend/.DS_Store +0 -0
- backend/__init__.py +0 -0
- backend/__pycache__/__init__.cpython-310.pyc +0 -0
- backend/__pycache__/main.cpython-310.pyc +0 -0
- backend/main.py +911 -0
- backend/midas_utils/__init__.py +0 -0
- backend/midas_utils/__pycache__/__init__.cpython-310.pyc +0 -0
- backend/midas_utils/__pycache__/transforms.cpython-310.pyc +0 -0
- backend/midas_utils/fresh_model.pt +3 -0
- backend/midas_utils/model.pt +3 -0
- backend/midas_utils/transforms.py +40 -0
- backend/models/.DS_Store +0 -0
- backend/models/distance_classifier.pkl +3 -0
- backend/models/fear_classifier.pkl +3 -0
- backend/models/freeze_classifier.pkl +3 -0
- backend/models/yolo_retrained_model.pt +3 -0
- backend/models/yolov8n-pose.pt +3 -0
- ffmpeg +3 -0
- frontend/.DS_Store +0 -0
- frontend/index.html +141 -0
- frontend/static/script.js +429 -0
- frontend/static/style.css +251 -0
- requirements.txt +13 -0
.DS_Store
ADDED
Binary file (8.2 kB). View file
|
|
.gitattributes
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
ffmpeg filter=lfs diff=lfs merge=lfs -text
|
Dockerfile
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker
|
2 |
+
# you will also find guides on how best to write your Dockerfile
|
3 |
+
|
4 |
+
FROM python:3.9
|
5 |
+
|
6 |
+
RUN useradd -m -u 1000 user
|
7 |
+
USER user
|
8 |
+
ENV PATH="/home/user/.local/bin:$PATH"
|
9 |
+
|
10 |
+
WORKDIR /app
|
11 |
+
|
12 |
+
COPY --chown=user ./requirements.txt requirements.txt
|
13 |
+
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
14 |
+
|
15 |
+
COPY --chown=user . /app
|
16 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
README.md
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: CISS Web App
|
3 |
+
emoji: 📊
|
4 |
+
colorFrom: red
|
5 |
+
colorTo: yellow
|
6 |
+
sdk: docker
|
7 |
+
pinned: false
|
8 |
+
---
|
9 |
+
|
10 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
analysis_output/session_33d6d79f-952c-476a-9f36-cd5fdea84d3c/analysis.csv
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
timestamp,second,proximity to parent,proximity to stranger,fear,freeze
|
2 |
+
00:07:37,0,1,1,2,1
|
3 |
+
00:07:38,1,1,1,2,1
|
4 |
+
00:07:39,2,1,1,2,1
|
5 |
+
00:07:40,3,1,1,2,1
|
6 |
+
00:07:41,4,1,1,2,1
|
analysis_output/session_4c97bc51-b190-4205-b4dd-f9fc2cd9fc15/analysis.csv
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
timestamp,second,proximity to parent,proximity to stranger,fear,freeze
|
2 |
+
00:07:37,0,1,1,2,1
|
3 |
+
00:07:38,1,1,1,2,1
|
4 |
+
00:07:39,2,1,1,2,1
|
5 |
+
00:07:40,3,1,1,2,1
|
6 |
+
00:07:41,4,1,1,2,1
|
analysis_output/session_4cfe63bb-d56d-4457-8d2d-6e85af137d66/analysis.csv
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
timestamp,second,proximity to parent,proximity to stranger,fear,freeze
|
2 |
+
00:07:37,0,1,1,2,1
|
3 |
+
00:07:38,1,1,1,2,1
|
4 |
+
00:07:39,2,1,1,2,1
|
5 |
+
00:07:40,3,1,1,2,1
|
6 |
+
00:07:41,4,1,1,2,1
|
analysis_output/session_bb31a607-52b9-495f-aeb1-346c8f87bee1/analysis.csv
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
timestamp,second,proximity to parent,proximity to stranger,fear,freeze
|
2 |
+
00:07:37,0,1,1,2,1
|
3 |
+
00:07:38,1,1,1,2,1
|
4 |
+
00:07:39,2,1,1,2,1
|
5 |
+
00:07:40,3,1,1,2,1
|
6 |
+
00:07:41,4,1,1,2,1
|
analysis_output/session_d7af8070-871b-41bd-b611-fd2bd9773404/analysis.csv
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
timestamp,second,proximity to parent,proximity to stranger,fear,freeze
|
2 |
+
00:05:58,0,1,1,0,
|
3 |
+
00:05:59,1,1,1,0,
|
4 |
+
00:06:00,2,1,1,0,
|
5 |
+
00:06:01,3,1,1,2,
|
6 |
+
00:06:02,4,1,1,0,
|
7 |
+
00:06:03,5,1,1,0,
|
8 |
+
00:06:04,6,1,1,0,
|
9 |
+
00:06:05,7,1,1,0,
|
10 |
+
00:06:06,8,1,1,0,
|
11 |
+
00:06:07,9,1,1,0,
|
12 |
+
00:06:08,10,1,1,0,
|
13 |
+
00:06:09,11,1,1,0,
|
14 |
+
00:06:10,12,1,1,0,
|
15 |
+
00:06:11,13,1,1,0,
|
16 |
+
00:06:12,14,1,1,2,
|
17 |
+
00:06:13,15,1,1,0,
|
18 |
+
00:06:14,16,1,1,0,
|
19 |
+
00:06:15,17,1,1,0,
|
20 |
+
00:06:16,18,1,1,2,0
|
21 |
+
00:06:17,19,1,1,2,0
|
22 |
+
00:06:18,20,1,1,2,0
|
23 |
+
00:06:19,21,1,1,0,
|
24 |
+
00:06:20,22,1,1,2,
|
25 |
+
00:06:21,23,1,1,0,
|
26 |
+
00:06:22,24,1,1,0,
|
27 |
+
00:06:23,25,1,1,0,
|
28 |
+
00:06:24,26,1,1,2,
|
29 |
+
00:06:25,27,1,1,0,
|
30 |
+
00:06:26,28,1,1,0,
|
31 |
+
00:06:27,29,1,1,0,
|
32 |
+
00:06:28,30,1,1,2,0
|
33 |
+
00:06:29,31,1,1,2,0
|
34 |
+
00:06:30,32,1,1,2,0
|
35 |
+
00:06:31,33,1,1,0,
|
36 |
+
00:06:32,34,1,1,2,0
|
37 |
+
00:06:33,35,1,1,2,0
|
38 |
+
00:06:34,36,1,1,0,
|
39 |
+
00:06:35,37,1,1,0,
|
40 |
+
00:06:36,38,1,1,0,
|
41 |
+
00:06:37,39,1,1,2,
|
42 |
+
00:06:38,40,1,1,0,
|
43 |
+
00:06:39,41,1,1,0,
|
44 |
+
00:06:40,42,1,1,0,
|
45 |
+
00:06:41,43,1,1,0,
|
46 |
+
00:06:42,44,1,1,2,
|
47 |
+
00:06:43,45,1,1,0,
|
48 |
+
00:06:44,46,1,1,0,
|
49 |
+
00:06:45,47,1,1,0,
|
50 |
+
00:06:46,48,1,1,0,
|
51 |
+
00:06:47,49,1,1,2,
|
52 |
+
00:06:48,50,1,1,0,
|
53 |
+
00:06:49,51,1,1,0,
|
54 |
+
00:06:50,52,1,1,0,
|
55 |
+
00:06:51,53,1,1,0,
|
56 |
+
00:06:52,54,1,1,0,
|
57 |
+
00:06:53,55,1,1,0,
|
58 |
+
00:06:54,56,1,1,2,0
|
59 |
+
00:06:55,57,1,1,2,0
|
60 |
+
00:06:56,58,1,1,0,
|
61 |
+
00:06:57,59,1,1,0,
|
62 |
+
00:06:58,60,1,1,2,
|
63 |
+
00:06:59,61,1,1,0,
|
64 |
+
00:07:00,62,1,1,0,
|
65 |
+
00:07:01,63,1,1,0,
|
66 |
+
00:07:02,64,1,1,0,
|
67 |
+
00:07:03,65,1,1,0,
|
68 |
+
00:07:04,66,1,1,0,
|
69 |
+
00:07:05,67,1,1,0,
|
70 |
+
00:07:06,68,1,1,0,
|
71 |
+
00:07:07,69,1,1,2,
|
72 |
+
00:07:08,70,1,1,0,
|
73 |
+
00:07:09,71,1,1,0,
|
74 |
+
00:07:10,72,1,1,0,
|
75 |
+
00:07:11,73,1,1,0,
|
76 |
+
00:07:12,74,1,1,0,
|
77 |
+
00:07:13,75,1,1,0,
|
78 |
+
00:07:14,76,1,1,0,
|
79 |
+
00:07:15,77,1,1,0,
|
80 |
+
00:07:16,78,1,1,0,
|
81 |
+
00:07:17,79,1,1,0,
|
82 |
+
00:07:18,80,1,1,0,
|
83 |
+
00:07:19,81,1,1,2,1
|
84 |
+
00:07:20,82,1,1,2,1
|
85 |
+
00:07:21,83,1,1,0,
|
86 |
+
00:07:22,84,1,1,0,
|
87 |
+
00:07:23,85,1,1,0,
|
88 |
+
00:07:24,86,1,1,0,
|
89 |
+
00:07:25,87,1,1,0,
|
90 |
+
00:07:26,88,1,1,2,0
|
91 |
+
00:07:27,89,1,1,2,0
|
92 |
+
00:07:28,90,1,1,0,
|
93 |
+
00:07:29,91,1,1,0,
|
94 |
+
00:07:30,92,1,1,0,
|
95 |
+
00:07:31,93,,,,
|
96 |
+
00:07:32,94,0,2,0,
|
97 |
+
00:07:33,95,0,2,1,
|
98 |
+
00:07:34,96,0,2,0,
|
99 |
+
00:07:35,97,,,,
|
100 |
+
00:07:36,98,,,,
|
101 |
+
00:07:37,99,1,1,0,
|
102 |
+
00:07:38,100,1,1,0,
|
103 |
+
00:07:39,101,1,1,0,
|
104 |
+
00:07:40,102,1,1,0,
|
105 |
+
00:07:41,103,1,1,0,
|
106 |
+
00:07:42,104,1,1,1,0
|
107 |
+
00:07:43,105,1,1,2,0
|
108 |
+
00:07:44,106,1,1,2,0
|
109 |
+
00:07:45,107,1,1,2,1
|
110 |
+
00:07:46,108,1,1,2,1
|
111 |
+
00:07:47,109,1,1,0,
|
112 |
+
00:07:48,110,1,1,0,
|
113 |
+
00:07:49,111,1,1,0,
|
114 |
+
00:07:50,112,1,1,0,
|
115 |
+
00:07:51,113,1,1,0,
|
116 |
+
00:07:52,114,1,1,0,
|
117 |
+
00:07:53,115,1,1,1,
|
118 |
+
00:07:54,116,1,1,0,
|
119 |
+
00:07:55,117,1,1,2,1
|
120 |
+
00:07:56,118,1,1,2,1
|
121 |
+
00:07:57,119,1,1,0,
|
122 |
+
00:07:58,120,1,1,2,0
|
123 |
+
00:07:59,121,1,1,2,0
|
124 |
+
00:08:00,122,1,1,2,0
|
125 |
+
00:08:01,123,1,1,0,
|
126 |
+
00:08:02,124,1,1,0,
|
127 |
+
00:08:03,125,1,1,0,
|
128 |
+
00:08:04,126,1,1,0,
|
129 |
+
00:08:05,127,1,1,0,
|
130 |
+
00:08:06,128,1,1,0,
|
131 |
+
00:08:07,129,1,1,0,
|
132 |
+
00:08:08,130,1,1,0,
|
133 |
+
00:08:09,131,1,1,0,
|
134 |
+
00:08:10,132,1,1,0,
|
135 |
+
00:08:11,133,1,1,2,0
|
136 |
+
00:08:12,134,1,1,2,0
|
137 |
+
00:08:13,135,1,1,2,0
|
138 |
+
00:08:14,136,1,1,0,
|
139 |
+
00:08:15,137,1,1,0,
|
140 |
+
00:08:16,138,1,1,2,
|
141 |
+
00:08:17,139,1,1,0,
|
142 |
+
00:08:18,140,1,1,2,0
|
143 |
+
00:08:19,141,1,1,2,0
|
144 |
+
00:08:20,142,1,1,0,
|
145 |
+
00:08:21,143,1,1,0,
|
146 |
+
00:08:22,144,1,1,2,
|
analysis_output/session_ee8801d4-2515-4873-9db6-a8be6180e836/analysis.csv
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
timestamp,second,proximity to parent,proximity to stranger,fear,freeze
|
2 |
+
00:07:37,0,1,1,0,
|
3 |
+
00:07:38,1,1,1,0,
|
4 |
+
00:07:39,2,1,1,0,
|
5 |
+
00:07:40,3,1,1,0,
|
6 |
+
00:07:41,4,1,1,0,
|
app.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from backend.main import app
|
backend/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
backend/__init__.py
ADDED
File without changes
|
backend/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (155 Bytes). View file
|
|
backend/__pycache__/main.cpython-310.pyc
ADDED
Binary file (23.6 kB). View file
|
|
backend/main.py
ADDED
@@ -0,0 +1,911 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datetime
|
2 |
+
import os
|
3 |
+
import cv2
|
4 |
+
import uuid
|
5 |
+
import json
|
6 |
+
import time
|
7 |
+
import re
|
8 |
+
import subprocess
|
9 |
+
import uuid
|
10 |
+
import asyncio
|
11 |
+
import joblib
|
12 |
+
import logging
|
13 |
+
import numpy as np
|
14 |
+
import pandas as pd
|
15 |
+
import tempfile
|
16 |
+
import warnings
|
17 |
+
import shutil
|
18 |
+
from pathlib import Path
|
19 |
+
from PIL import Image
|
20 |
+
import ffmpeg
|
21 |
+
import torch
|
22 |
+
import torchvision.transforms as T
|
23 |
+
from ultralytics import YOLO
|
24 |
+
import mediapipe as mp
|
25 |
+
from fastapi import FastAPI, UploadFile, File, HTTPException, BackgroundTasks, Form, Request
|
26 |
+
from fastapi.responses import FileResponse, StreamingResponse, JSONResponse
|
27 |
+
from fastapi.middleware.cors import CORSMiddleware
|
28 |
+
from fastapi.staticfiles import StaticFiles
|
29 |
+
from backend.midas_utils.transforms import Compose, Resize, NormalizeImage, PrepareForNet
|
30 |
+
|
31 |
+
#################################################
|
32 |
+
# Initialize application
|
33 |
+
#################################################
|
34 |
+
torch.serialization.add_safe_globals([
|
35 |
+
torch.nn.modules.conv.Conv2d,
|
36 |
+
torch.nn.modules.batchnorm.BatchNorm2d,
|
37 |
+
torch.nn.modules.linear.Linear,
|
38 |
+
torch.nn.modules.container.Sequential,
|
39 |
+
torch.nn.modules.activation.SiLU,
|
40 |
+
torch.nn.modules.container.ModuleList,
|
41 |
+
torch.nn.modules.upsampling.Upsample,
|
42 |
+
torch.nn.modules.pooling.MaxPool2d
|
43 |
+
])
|
44 |
+
|
45 |
+
|
46 |
+
logger = logging.getLogger(__name__)
|
47 |
+
logging.basicConfig(level=logging.INFO)
|
48 |
+
|
49 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
50 |
+
|
51 |
+
app = FastAPI()
|
52 |
+
|
53 |
+
# CORS Configuration
|
54 |
+
app.add_middleware(
|
55 |
+
CORSMiddleware,
|
56 |
+
allow_origins=["*"],
|
57 |
+
allow_credentials=True,
|
58 |
+
allow_methods=["*"],
|
59 |
+
allow_headers=["*"],
|
60 |
+
)
|
61 |
+
|
62 |
+
|
63 |
+
# Serve frontend files
|
64 |
+
static_dir = Path(__file__).parent.parent / "frontend" / "static"
|
65 |
+
app.mount("/static", StaticFiles(directory=static_dir), name="static")
|
66 |
+
|
67 |
+
# Configuration
|
68 |
+
DETECTION_MODEL_PATH = Path(__file__).parent / 'models' / "yolo_retrained_model.pt"
|
69 |
+
POSE_MODEL_PATH = Path(__file__).parent / 'models' / "yolov8n-pose.pt"
|
70 |
+
MAX_VIDEO_SIZE = 500 * 1024 * 1024
|
71 |
+
OUTPUT_DIR = Path("analysis_output")
|
72 |
+
UPLOADED_VIDEOS = {} # Track uploaded video session
|
73 |
+
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
74 |
+
|
75 |
+
# Global state
|
76 |
+
PROGRESS_STORE = {}
|
77 |
+
ANALYSIS_ACTIVE = False
|
78 |
+
|
79 |
+
@app.middleware("http")
|
80 |
+
async def error_handling_middleware(request: Request, call_next):
|
81 |
+
try:
|
82 |
+
return await call_next(request)
|
83 |
+
except Exception as e:
|
84 |
+
logger.error(f"Unexpected error: {str(e)}")
|
85 |
+
return JSONResponse(
|
86 |
+
status_code=500,
|
87 |
+
content={"message": "Internal server error"}
|
88 |
+
)
|
89 |
+
|
90 |
+
@app.on_event("startup")
|
91 |
+
async def initialize_models():
|
92 |
+
"""Initialize models with warmup inference"""
|
93 |
+
|
94 |
+
try:
|
95 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
96 |
+
logger.info(f"Initializing models on {device}")
|
97 |
+
|
98 |
+
# Initialize detection model
|
99 |
+
app.state.detection_model = YOLO(DETECTION_MODEL_PATH).to(device)
|
100 |
+
dummy = np.zeros((640, 640, 3), dtype=np.uint8)
|
101 |
+
app.state.detection_model(dummy, verbose=False) # Warmup
|
102 |
+
|
103 |
+
# Initialize pose model
|
104 |
+
app.state.pose_model = YOLO(POSE_MODEL_PATH).to(device)
|
105 |
+
app.state.pose_model(dummy, verbose=False) # Warmup
|
106 |
+
|
107 |
+
logger.info("Models initialized successfully")
|
108 |
+
except Exception as e:
|
109 |
+
logger.error(f"Model initialization failed: {str(e)}")
|
110 |
+
raise RuntimeError(f"Model initialization failed: {str(e)}")
|
111 |
+
|
112 |
+
def update_progress(process_id: str, current: int, total: int, message: str):
|
113 |
+
"""Update progress store with analysis status"""
|
114 |
+
PROGRESS_STORE[process_id] = {
|
115 |
+
"percent": min(100, (current / total) * 100),
|
116 |
+
"message": message,
|
117 |
+
"current": current,
|
118 |
+
"total": total,
|
119 |
+
"status": "processing"
|
120 |
+
}
|
121 |
+
|
122 |
+
#################################################
|
123 |
+
# Initialize Models
|
124 |
+
#################################################
|
125 |
+
|
126 |
+
# Child detection and image cropping
|
127 |
+
def detect_child_and_crop(frame):
|
128 |
+
try:
|
129 |
+
results = app.state.detection_model.predict(frame, verbose=False)[0]
|
130 |
+
class_ids = results.boxes.cls.cpu().numpy()
|
131 |
+
confidences = results.boxes.conf.cpu().numpy()
|
132 |
+
bboxes = results.boxes.xyxy.cpu().numpy()
|
133 |
+
child_bbox = None
|
134 |
+
|
135 |
+
for box, cls, conf in zip(bboxes, class_ids, confidences):
|
136 |
+
if conf > 0.6:
|
137 |
+
if cls == 1:
|
138 |
+
child_bbox = box
|
139 |
+
elif cls == 0:
|
140 |
+
adult_bbox = box
|
141 |
+
elif cls == 2:
|
142 |
+
stranger_bbox = box
|
143 |
+
|
144 |
+
if child_bbox is None:
|
145 |
+
return None
|
146 |
+
|
147 |
+
x1, y1, x2, y2 = map(int, child_bbox)
|
148 |
+
# Validate and clamp coordinates
|
149 |
+
x1 = max(0, x1)
|
150 |
+
y1 = max(0, y1)
|
151 |
+
x2 = min(frame.shape[1], x2)
|
152 |
+
y2 = min(frame.shape[0], y2)
|
153 |
+
if x1 >= x2 or y1 >= y2:
|
154 |
+
logger.warning("Invalid child bounding box")
|
155 |
+
return None
|
156 |
+
|
157 |
+
child_roi = frame[y1:y2, x1:x2]
|
158 |
+
if child_roi.size == 0:
|
159 |
+
logger.warning("Empty child ROI")
|
160 |
+
return None
|
161 |
+
|
162 |
+
return child_roi
|
163 |
+
|
164 |
+
except Exception as e:
|
165 |
+
logger.error(f"Detection error: {str(e)}")
|
166 |
+
return None
|
167 |
+
|
168 |
+
def load_depth_model():
|
169 |
+
try:
|
170 |
+
with warnings.catch_warnings():
|
171 |
+
warnings.simplefilter("ignore")
|
172 |
+
model = torch.hub.load(
|
173 |
+
'intel-isl/MiDaS',
|
174 |
+
'MiDaS_small',
|
175 |
+
pretrained=True,
|
176 |
+
trust_repo=True
|
177 |
+
).float()
|
178 |
+
model.eval().to(device)
|
179 |
+
print("Successfully loaded MiDaS model from torch.hub")
|
180 |
+
return model
|
181 |
+
except Exception as e:
|
182 |
+
raise RuntimeError(f"Failed to load MiDaS model: {e}")
|
183 |
+
|
184 |
+
# Load transforms
|
185 |
+
midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms")
|
186 |
+
Resize = midas_transforms.Resize
|
187 |
+
NormalizeImage = midas_transforms.NormalizeImage
|
188 |
+
PrepareForNet = midas_transforms.PrepareForNet
|
189 |
+
|
190 |
+
# Define transform pipeline
|
191 |
+
transform_pipeline = T.Compose([
|
192 |
+
lambda img: {"image": np.array(img.convert("RGB"), dtype=np.float32) / 255.0},
|
193 |
+
Resize(
|
194 |
+
256, 256, resize_target=None, keep_aspect_ratio=True,
|
195 |
+
ensure_multiple_of=32, resize_method="upper_bound",
|
196 |
+
image_interpolation_method=cv2.INTER_CUBIC
|
197 |
+
),
|
198 |
+
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
199 |
+
PrepareForNet(),
|
200 |
+
lambda sample: torch.from_numpy(sample["image"]),
|
201 |
+
])
|
202 |
+
|
203 |
+
# Load model once
|
204 |
+
depth_model = load_depth_model()
|
205 |
+
|
206 |
+
def calculate_distance_between_objects(frame, obj1_label, obj2_label):
|
207 |
+
results = app.state.detection_model.predict(frame, verbose=False)[0]
|
208 |
+
labels = results.names if hasattr(results, 'names') else {}
|
209 |
+
|
210 |
+
obj1_center = None
|
211 |
+
obj2_center = None
|
212 |
+
|
213 |
+
for box in results.boxes:
|
214 |
+
cls = int(box.cls[0].item())
|
215 |
+
label = labels.get(cls, str(cls))
|
216 |
+
|
217 |
+
x1, y1, x2, y2 = map(int, box.xyxy[0].cpu().numpy())
|
218 |
+
center = ((x1 + x2) // 2, (y1 + y2) // 2)
|
219 |
+
|
220 |
+
if label.lower() == obj1_label.lower():
|
221 |
+
obj1_center = center
|
222 |
+
elif label.lower() == obj2_label.lower():
|
223 |
+
obj2_center = center
|
224 |
+
|
225 |
+
# Validation checks with proper error handling
|
226 |
+
if obj1_center is None:
|
227 |
+
print(f"Important warning: {obj1_label} not detected.")
|
228 |
+
return None
|
229 |
+
|
230 |
+
if obj2_center is None:
|
231 |
+
if obj2_label.lower() != "stranger":
|
232 |
+
print(f"Warning: {obj2_label} not detected.")
|
233 |
+
return None
|
234 |
+
|
235 |
+
# Add coordinate validation
|
236 |
+
def validate_coord(coord):
|
237 |
+
return isinstance(coord, tuple) and len(coord) == 2 and \
|
238 |
+
all(isinstance(v, (int, float)) for v in coord)
|
239 |
+
|
240 |
+
if not validate_coord(obj1_center) or not validate_coord(obj2_center):
|
241 |
+
print("Invalid coordinates detected")
|
242 |
+
return None
|
243 |
+
|
244 |
+
try:
|
245 |
+
# Estimate depth
|
246 |
+
img_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
247 |
+
img_pil = Image.fromarray(img_rgb) # Convert to PIL Image first
|
248 |
+
input_tensor = transform_pipeline(img_pil).to(device)
|
249 |
+
|
250 |
+
if input_tensor.dim() == 3:
|
251 |
+
input_tensor = input_tensor.unsqueeze(0)
|
252 |
+
input_tensor = input_tensor.to(device)
|
253 |
+
|
254 |
+
with torch.no_grad():
|
255 |
+
output = depth_model(input_tensor)
|
256 |
+
depth_map = output.squeeze().cpu().numpy()
|
257 |
+
|
258 |
+
# Rescale object centers with safety checks
|
259 |
+
original_h, original_w = frame.shape[:2]
|
260 |
+
depth_h, depth_w = depth_map.shape
|
261 |
+
|
262 |
+
def safe_scale(coord, orig_dim, target_dim):
|
263 |
+
try:
|
264 |
+
return int((coord / orig_dim) * target_dim)
|
265 |
+
except ZeroDivisionError:
|
266 |
+
return 0
|
267 |
+
|
268 |
+
# Corrected scaling calls
|
269 |
+
x1 = safe_scale(obj1_center[0], original_w, depth_w)
|
270 |
+
y1 = safe_scale(obj1_center[1], original_h, depth_h)
|
271 |
+
x2 = safe_scale(obj2_center[0], original_w, depth_w)
|
272 |
+
y2 = safe_scale(obj2_center[1], original_h, depth_h)
|
273 |
+
|
274 |
+
# Depth calculation with bounds checking
|
275 |
+
def get_depth(x, y):
|
276 |
+
x = max(0, min(depth_w-1, x))
|
277 |
+
y = max(0, min(depth_h-1, y))
|
278 |
+
return depth_map[y, x]
|
279 |
+
|
280 |
+
d1 = get_depth(x1, y1)
|
281 |
+
d2 = get_depth(x2, y2)
|
282 |
+
|
283 |
+
if d1 <= 0 or d2 <= 0:
|
284 |
+
return None
|
285 |
+
|
286 |
+
# 3D coordinate conversion
|
287 |
+
fx = fy = 1109 # Focal length assumption
|
288 |
+
cx, cy = depth_w // 2, depth_h // 2
|
289 |
+
|
290 |
+
point1 = (
|
291 |
+
(x1 - cx) * d1 / fx,
|
292 |
+
(y1 - cy) * d1 / fy,
|
293 |
+
d1
|
294 |
+
)
|
295 |
+
point2 = (
|
296 |
+
(x2 - cx) * d2 / fx,
|
297 |
+
(y2 - cy) * d2 / fy,
|
298 |
+
d2
|
299 |
+
)
|
300 |
+
|
301 |
+
return float(np.linalg.norm(np.array(point1) - np.array(point2)))
|
302 |
+
|
303 |
+
except Exception as e:
|
304 |
+
logger.error(f"Distance calculation error: {str(e)}")
|
305 |
+
return None
|
306 |
+
|
307 |
+
# MediaPipe initialization
|
308 |
+
mp_face_mesh = mp.solutions.face_mesh
|
309 |
+
face_mesh = mp_face_mesh.FaceMesh(
|
310 |
+
static_image_mode=False,
|
311 |
+
max_num_faces=1,
|
312 |
+
min_detection_confidence=0.5
|
313 |
+
)
|
314 |
+
|
315 |
+
LANDMARKS = {
|
316 |
+
"left_eye": [33, 133, 159, 145, 160, 144],
|
317 |
+
"right_eye": [362, 263, 386, 374, 387, 373],
|
318 |
+
"left_eyebrow": [70, 63, 105],
|
319 |
+
"right_eyebrow": [300, 293, 334],
|
320 |
+
"mouth": [13, 14, 78, 308],
|
321 |
+
"jaw": [152]
|
322 |
+
}
|
323 |
+
|
324 |
+
def facial_keypoints(image, prev_landmarks=None):
|
325 |
+
if image is None:
|
326 |
+
logger.error("Received None frame")
|
327 |
+
return 0, None
|
328 |
+
try:
|
329 |
+
h, w = image.shape[:2]
|
330 |
+
except AttributeError:
|
331 |
+
logger.error("Invalid image type")
|
332 |
+
return 0, None
|
333 |
+
if h == 0 or w == 0 or image.size == 0:
|
334 |
+
logger.error("Received empty frame")
|
335 |
+
return 0, None
|
336 |
+
|
337 |
+
try:
|
338 |
+
results = face_mesh.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
|
339 |
+
if not results.multi_face_landmarks:
|
340 |
+
return 0, None
|
341 |
+
|
342 |
+
current_landmarks = {}
|
343 |
+
for key, indices in LANDMARKS.items():
|
344 |
+
current_landmarks[key] = [
|
345 |
+
(int(lm.x * image.shape[1]), int(lm.y * image.shape[0]))
|
346 |
+
for lm in [results.multi_face_landmarks[0].landmark[i] for i in indices]
|
347 |
+
]
|
348 |
+
|
349 |
+
movement_score = 0
|
350 |
+
if prev_landmarks:
|
351 |
+
total_diff = sum(
|
352 |
+
np.sqrt((cx - px)**2 + (cy - py)**2)
|
353 |
+
for key in LANDMARKS
|
354 |
+
for (px, py), (cx, cy) in zip(prev_landmarks.get(key, []), current_landmarks.get(key, []))
|
355 |
+
)
|
356 |
+
valid_points = sum(len(landmarks) for landmarks in current_landmarks.values())
|
357 |
+
movement_score = 2 if (total_diff/valid_points) > 6 else 1 if (total_diff/valid_points) > 3 else 0
|
358 |
+
|
359 |
+
return movement_score, current_landmarks
|
360 |
+
except Exception as e:
|
361 |
+
logger.error(f"Facial processing error: {str(e)}")
|
362 |
+
return 0, None
|
363 |
+
|
364 |
+
def process_pose(image):
|
365 |
+
if image is None:
|
366 |
+
return None
|
367 |
+
try:
|
368 |
+
results = app.state.pose_model(image, verbose=False)
|
369 |
+
if results and hasattr(results[0], 'keypoints'):
|
370 |
+
return results[0].keypoints.xy[0].cpu().numpy()
|
371 |
+
return None
|
372 |
+
except Exception as e:
|
373 |
+
logger.error(f"Pose processing error: {str(e)}")
|
374 |
+
return None
|
375 |
+
|
376 |
+
def calculate_body_movement(current_pose, previous_pose):
|
377 |
+
if current_pose is None or previous_pose is None:
|
378 |
+
return 0.0
|
379 |
+
|
380 |
+
valid_points = 0
|
381 |
+
total_movement = 0.0
|
382 |
+
|
383 |
+
for prev, curr in zip(previous_pose, current_pose):
|
384 |
+
if not (np.isnan(prev).any() or np.isnan(curr).any()):
|
385 |
+
valid_points += 1
|
386 |
+
total_movement += abs(np.linalg.norm(curr - prev))
|
387 |
+
|
388 |
+
return total_movement
|
389 |
+
|
390 |
+
#################################################
|
391 |
+
# Preparing for Video Processing
|
392 |
+
#################################################
|
393 |
+
|
394 |
+
def time_to_seconds(timestamp):
|
395 |
+
return sum(x * int(t) for x, t in zip([3600, 60, 1], timestamp.split(':')))
|
396 |
+
|
397 |
+
def format_progress_message(stage, current, total, extras=None):
|
398 |
+
base = f"{stage} - Frame {current}/{total}"
|
399 |
+
if extras:
|
400 |
+
return f"{base} - {', '.join(f'{k}: {v}' for k,v in extras.items())}"
|
401 |
+
return base
|
402 |
+
|
403 |
+
def crop_video(process_id: str, video_path: str, timestamp1: str, timestamp2: str,
|
404 |
+
timestamp3: str, temp_dir: str, ffmpeg_path: str = 'ffmpeg') -> tuple[str, str]:
|
405 |
+
"""
|
406 |
+
Crop the video into two clips with cancellation support
|
407 |
+
"""
|
408 |
+
temp_dir_path = Path(temp_dir)
|
409 |
+
|
410 |
+
# Create temp directory if it doesn't exist
|
411 |
+
temp_dir_path.mkdir(parents=True, exist_ok=True)
|
412 |
+
|
413 |
+
# Generate temporary filenames
|
414 |
+
first_clip_path = temp_dir_path / f"clip1_{uuid.uuid4()}.mp4"
|
415 |
+
second_clip_path = temp_dir_path / f"clip2_{uuid.uuid4()}.mp4"
|
416 |
+
|
417 |
+
def check_cancellation():
|
418 |
+
"""Check if processing was cancelled (replace with your actual progress store)"""
|
419 |
+
# You'll need to import or access your PROGRESS_STORE here
|
420 |
+
if PROGRESS_STORE.get(process_id, {}).get('status') == 'cancelled':
|
421 |
+
raise asyncio.CancelledError("Processing cancelled by user during video cropping")
|
422 |
+
|
423 |
+
def run_ffmpeg_with_cancel_check(command: list, output_file: Path) -> None:
|
424 |
+
"""Run ffmpeg command with cancellation checks"""
|
425 |
+
try:
|
426 |
+
# Start the process
|
427 |
+
process = subprocess.Popen(
|
428 |
+
command,
|
429 |
+
stdout=subprocess.PIPE,
|
430 |
+
stderr=subprocess.PIPE,
|
431 |
+
universal_newlines=True
|
432 |
+
)
|
433 |
+
|
434 |
+
# Poll process while checking for cancellation
|
435 |
+
while True:
|
436 |
+
check_cancellation()
|
437 |
+
if process.poll() is not None: # Process finished
|
438 |
+
break
|
439 |
+
time.sleep(0.5) # Check every 500ms
|
440 |
+
|
441 |
+
# Check final status
|
442 |
+
if process.returncode != 0:
|
443 |
+
raise subprocess.CalledProcessError(
|
444 |
+
process.returncode,
|
445 |
+
command,
|
446 |
+
output=process.stdout,
|
447 |
+
stderr=process.stderr
|
448 |
+
)
|
449 |
+
|
450 |
+
except asyncio.CancelledError:
|
451 |
+
# Cleanup and terminate process
|
452 |
+
if process.poll() is None: # Still running
|
453 |
+
process.terminate()
|
454 |
+
try:
|
455 |
+
process.wait(timeout=5)
|
456 |
+
except subprocess.TimeoutExpired:
|
457 |
+
process.kill()
|
458 |
+
|
459 |
+
# Remove partial output file
|
460 |
+
if output_file.exists():
|
461 |
+
output_file.unlink()
|
462 |
+
|
463 |
+
raise
|
464 |
+
|
465 |
+
# Convert timestamps
|
466 |
+
ts1 = time_to_seconds(timestamp1)
|
467 |
+
ts2 = time_to_seconds(timestamp2)
|
468 |
+
ts3 = time_to_seconds(timestamp3)
|
469 |
+
|
470 |
+
# Build commands
|
471 |
+
commands = [
|
472 |
+
(
|
473 |
+
[
|
474 |
+
ffmpeg_path, '-y', '-i', video_path,
|
475 |
+
'-ss', str(ts1), '-t', str(ts2 - ts1),
|
476 |
+
'-c:v', 'libx264', '-preset', 'fast', '-crf', '23',
|
477 |
+
'-c:a', 'aac', str(first_clip_path)
|
478 |
+
],
|
479 |
+
first_clip_path
|
480 |
+
),
|
481 |
+
(
|
482 |
+
[
|
483 |
+
ffmpeg_path, '-y', '-i', video_path,
|
484 |
+
'-ss', str(ts2), '-t', str(ts3 - ts2),
|
485 |
+
'-c:v', 'libx264', '-preset', 'fast', '-crf', '23',
|
486 |
+
'-c:a', 'aac', str(second_clip_path)
|
487 |
+
],
|
488 |
+
second_clip_path
|
489 |
+
)
|
490 |
+
]
|
491 |
+
|
492 |
+
try:
|
493 |
+
# Process both clips
|
494 |
+
for cmd, output_path in commands:
|
495 |
+
logger.info("Running command: %s", ' '.join(cmd))
|
496 |
+
run_ffmpeg_with_cancel_check(cmd, output_path)
|
497 |
+
|
498 |
+
return str(first_clip_path), str(second_clip_path)
|
499 |
+
|
500 |
+
except asyncio.CancelledError:
|
501 |
+
# Cleanup both files if either was cancelled
|
502 |
+
for path in [first_clip_path, second_clip_path]:
|
503 |
+
if path.exists():
|
504 |
+
path.unlink()
|
505 |
+
raise
|
506 |
+
|
507 |
+
#################################################
|
508 |
+
# Video Processing Loop
|
509 |
+
#################################################
|
510 |
+
|
511 |
+
def process_freeplay(process_id: str, freeplay_video: str) -> float:
|
512 |
+
"""
|
513 |
+
Sample one frame per second from the freeplay clip,
|
514 |
+
compute body‐movement metrics and return the average.
|
515 |
+
"""
|
516 |
+
PROGRESS_STORE[process_id].update({"message": "Processing freeplay"})
|
517 |
+
cap = cv2.VideoCapture(freeplay_video)
|
518 |
+
if not cap.isOpened():
|
519 |
+
raise RuntimeError(f"Failed to open freeplay video at {freeplay_video}")
|
520 |
+
|
521 |
+
# Determine clip duration in seconds
|
522 |
+
fps = cap.get(cv2.CAP_PROP_FPS) or 1.0
|
523 |
+
total_frames = cap.get(cv2.CAP_PROP_FRAME_COUNT) or 0
|
524 |
+
duration = total_frames / fps
|
525 |
+
|
526 |
+
movements = []
|
527 |
+
prev_pose = None
|
528 |
+
|
529 |
+
for sec in range(int(duration)):
|
530 |
+
if PROGRESS_STORE.get(process_id, {}).get('status') == 'cancelled':
|
531 |
+
raise asyncio.CancelledError("Processing cancelled")
|
532 |
+
print(f"Processing freeplay frame {sec}")
|
533 |
+
if PROGRESS_STORE[process_id]["status"] == "cancelled":
|
534 |
+
break
|
535 |
+
|
536 |
+
# Seek by time (ms)
|
537 |
+
cap.set(cv2.CAP_PROP_POS_MSEC, sec * 1000)
|
538 |
+
ret, frame = cap.read()
|
539 |
+
if not ret or frame is None or frame.size == 0:
|
540 |
+
logger.warning(f"Freeplay: no frame at {sec}s")
|
541 |
+
continue
|
542 |
+
|
543 |
+
PROGRESS_STORE[process_id].update({
|
544 |
+
"current": sec,
|
545 |
+
"percent": 10 + int((sec + 1) / duration * 30)
|
546 |
+
})
|
547 |
+
|
548 |
+
try:
|
549 |
+
child_roi = detect_child_and_crop(frame)
|
550 |
+
pose_kps = process_pose(child_roi)
|
551 |
+
mv = calculate_body_movement(pose_kps, prev_pose)
|
552 |
+
movements.append(mv)
|
553 |
+
prev_pose = pose_kps
|
554 |
+
except Exception as e:
|
555 |
+
logger.error(f"Freeplay error at {sec}s: {e}", exc_info=True)
|
556 |
+
|
557 |
+
cap.release()
|
558 |
+
return float(np.mean(movements)) if movements else 0.0
|
559 |
+
|
560 |
+
def process_experiment(process_id: str, experiment_video: str, freeplay_movement: float) -> pd.DataFrame:
|
561 |
+
"""
|
562 |
+
Sample one frame per second from the experiment clip,
|
563 |
+
compute all metrics, and return a DataFrame.
|
564 |
+
"""
|
565 |
+
PROGRESS_STORE[process_id].update({"message": "Analyzing experiment"})
|
566 |
+
cap = cv2.VideoCapture(experiment_video)
|
567 |
+
if not cap.isOpened():
|
568 |
+
raise RuntimeError(f"Failed to open experiment video at {experiment_video}")
|
569 |
+
|
570 |
+
fps = cap.get(cv2.CAP_PROP_FPS) or 1.0
|
571 |
+
total_frames = cap.get(cv2.CAP_PROP_FRAME_COUNT) or 0
|
572 |
+
duration = total_frames / fps
|
573 |
+
PROGRESS_STORE[process_id].update({"total": int(duration)})
|
574 |
+
|
575 |
+
results = []
|
576 |
+
prev_landmarks = None
|
577 |
+
prev_pose = None
|
578 |
+
|
579 |
+
for sec in range(int(duration)):
|
580 |
+
if PROGRESS_STORE.get(process_id, {}).get('status') == 'cancelled':
|
581 |
+
raise asyncio.CancelledError("Processing cancelled")
|
582 |
+
print(f"Processing experiment frame {sec}")
|
583 |
+
if PROGRESS_STORE[process_id]["status"] == "cancelled":
|
584 |
+
break
|
585 |
+
|
586 |
+
cap.set(cv2.CAP_PROP_POS_MSEC, sec * 1000)
|
587 |
+
ret, frame = cap.read()
|
588 |
+
if not ret or frame is None or frame.size == 0:
|
589 |
+
logger.warning(f"Experiment: no frame at {sec}s")
|
590 |
+
results.append({
|
591 |
+
"second": sec,
|
592 |
+
"parent_dist": None,
|
593 |
+
"stranger_dist": None,
|
594 |
+
"face_movement": None,
|
595 |
+
"body_movement": None
|
596 |
+
})
|
597 |
+
continue
|
598 |
+
|
599 |
+
PROGRESS_STORE[process_id].update({
|
600 |
+
"current": sec,
|
601 |
+
"percent": 40 + int((sec + 1) / duration * 60)
|
602 |
+
})
|
603 |
+
|
604 |
+
try:
|
605 |
+
child_roi = detect_child_and_crop(frame)
|
606 |
+
face_score, curr_landmarks = facial_keypoints(child_roi, prev_landmarks)
|
607 |
+
pose_kps = process_pose(child_roi)
|
608 |
+
body_mv = calculate_body_movement(pose_kps, prev_pose)
|
609 |
+
mov_ratio = body_mv / freeplay_movement if freeplay_movement else 0.0
|
610 |
+
|
611 |
+
parent_dist = calculate_distance_between_objects(frame, "Child", "Adult")
|
612 |
+
stranger_dist = calculate_distance_between_objects(frame, "Child", "Stranger")
|
613 |
+
|
614 |
+
results.append({
|
615 |
+
"second": sec,
|
616 |
+
"distance_adult": parent_dist,
|
617 |
+
"distance_stranger": stranger_dist,
|
618 |
+
"facial_movement": face_score,
|
619 |
+
"body_movement": mov_ratio
|
620 |
+
})
|
621 |
+
|
622 |
+
prev_landmarks = curr_landmarks
|
623 |
+
prev_pose = pose_kps
|
624 |
+
|
625 |
+
except Exception as e:
|
626 |
+
logger.error(f"Experiment error at {sec}s: {e}", exc_info=True)
|
627 |
+
# still append a row so CSV timestamps remain aligned
|
628 |
+
results.append({
|
629 |
+
"second": sec,
|
630 |
+
"distance_adult": None,
|
631 |
+
"distance_stranger": None,
|
632 |
+
"facial_movement": None,
|
633 |
+
"body_movement": None
|
634 |
+
})
|
635 |
+
|
636 |
+
cap.release()
|
637 |
+
return pd.DataFrame(results)
|
638 |
+
|
639 |
+
def apply_classes(df, timestamp_start, timestamp_end,
|
640 |
+
distance_model_name='distance_classifier.pkl',
|
641 |
+
fear_model_name='fear_classifier.pkl',
|
642 |
+
freeze_model_name='freeze_classifier.pkl'):
|
643 |
+
|
644 |
+
|
645 |
+
distance_tree_path = Path(__file__).parent / 'models' / distance_model_name
|
646 |
+
fear_tree_path = Path(__file__).parent / 'models' / fear_model_name
|
647 |
+
freeze_tree_path = Path(__file__).parent / 'models' / freeze_model_name
|
648 |
+
|
649 |
+
# Load models
|
650 |
+
distance_clf = joblib.load(distance_tree_path)
|
651 |
+
fear_clf = joblib.load(fear_tree_path)
|
652 |
+
freeze_clf = joblib.load(freeze_tree_path)
|
653 |
+
|
654 |
+
# 1) Initialize outputs
|
655 |
+
df['proximity to parent'] = None
|
656 |
+
df['proximity to stranger'] = None
|
657 |
+
df['fear'] = None
|
658 |
+
df['freeze'] = pd.Series([pd.NA] * len(df), dtype="Int64")
|
659 |
+
|
660 |
+
# 2) Distance → proximity classes
|
661 |
+
valid_mask = df[['distance_adult','body_movement','facial_movement']].notnull().all(axis=1)
|
662 |
+
preds_parent = distance_clf.predict(df.loc[valid_mask, ['distance_adult']])
|
663 |
+
df.loc[valid_mask, 'proximity to parent'] = preds_parent
|
664 |
+
df.loc[valid_mask, 'proximity to stranger'] = pd.Series(preds_parent).map({0:2, 1:1, 2:0}).values
|
665 |
+
|
666 |
+
# 3) Fear classifier
|
667 |
+
fear_cols = ['proximity to parent','proximity to stranger','body_movement','facial_movement']
|
668 |
+
fear_mask = df[fear_cols].notnull().all(axis=1)
|
669 |
+
df.loc[fear_mask, 'fear'] = fear_clf.predict(df.loc[fear_mask, fear_cols])
|
670 |
+
|
671 |
+
# 4) Build pairwise DataFrame (includes 'second')
|
672 |
+
df1 = df.iloc[:-1].reset_index(drop=True).add_suffix('_1')
|
673 |
+
df2 = df.iloc[1:].reset_index(drop=True).add_suffix('_2')
|
674 |
+
df_pairs = pd.concat([df1, df2], axis=1)
|
675 |
+
|
676 |
+
# 5) Filter pairs where both fears > 0
|
677 |
+
mask = (df_pairs['fear_1'] > 0) & (df_pairs['fear_2'] > 0)
|
678 |
+
df_filtered = df_pairs[mask].copy()
|
679 |
+
df_filtered['body_movement_avg'] = (df_filtered['body_movement_1'] + df_filtered['body_movement_2']) / 2
|
680 |
+
|
681 |
+
# 6) Predict freeze and backfill to both seconds
|
682 |
+
if not df_filtered.empty:
|
683 |
+
df_filtered['freeze'] = freeze_clf.predict(df_filtered[['body_movement_avg']])
|
684 |
+
for _, row in df_filtered.iterrows():
|
685 |
+
for sec_col in ('second_1', 'second_2'):
|
686 |
+
sec = int(row[sec_col])
|
687 |
+
idx = df.index[df['second'] == sec][0]
|
688 |
+
current = df.at[idx, 'freeze']
|
689 |
+
if not (pd.notna(current) and current == 1):
|
690 |
+
df.at[idx, 'freeze'] = row['freeze']
|
691 |
+
|
692 |
+
# 7) Add timestamps column based on timestamp_start and 'second'
|
693 |
+
time_format = '%H:%M:%S'
|
694 |
+
ts_start = datetime.datetime.strptime(timestamp_start, time_format)
|
695 |
+
df['timestamp'] = df['second'].apply(
|
696 |
+
lambda x: (ts_start + datetime.timedelta(seconds=int(x))).time().strftime(time_format)
|
697 |
+
)
|
698 |
+
|
699 |
+
# 8) Return only the final columns
|
700 |
+
return df[['timestamp', 'second', 'proximity to parent', 'proximity to stranger', 'fear', 'freeze']]
|
701 |
+
|
702 |
+
async def process_video_async(process_id: str, video_path: Path, session_dir: Path,
|
703 |
+
timestamp1: str, timestamp2: str, timestamp3: str, temp_dir: Path):
|
704 |
+
|
705 |
+
if PROGRESS_STORE.get(process_id, {}).get("started"):
|
706 |
+
return
|
707 |
+
|
708 |
+
# Initialize progress tracking
|
709 |
+
PROGRESS_STORE[process_id] = {
|
710 |
+
"started": True,
|
711 |
+
"status": "processing",
|
712 |
+
"percent": 0,
|
713 |
+
"message": "Initializing",
|
714 |
+
"result": None,
|
715 |
+
"error": None
|
716 |
+
}
|
717 |
+
|
718 |
+
# Validate timestamps
|
719 |
+
def validate_timestamp(t):
|
720 |
+
parts = t.split(':')
|
721 |
+
return (len(parts) == 3 and all(p.isdigit() for p in parts))
|
722 |
+
|
723 |
+
if not all(validate_timestamp(ts) for ts in [timestamp1, timestamp2, timestamp3]):
|
724 |
+
raise ValueError("Invalid timestamp format")
|
725 |
+
|
726 |
+
# Crop video
|
727 |
+
PROGRESS_STORE[process_id].update({
|
728 |
+
"message": "Cropping video segments",
|
729 |
+
"percent": 5
|
730 |
+
})
|
731 |
+
|
732 |
+
|
733 |
+
try:
|
734 |
+
freeplay_video, experiment_video = await asyncio.to_thread(
|
735 |
+
crop_video,
|
736 |
+
process_id,
|
737 |
+
str(video_path),
|
738 |
+
timestamp1,
|
739 |
+
timestamp2,
|
740 |
+
timestamp3,
|
741 |
+
str(temp_dir)
|
742 |
+
)
|
743 |
+
|
744 |
+
|
745 |
+
# Process freeplay segment
|
746 |
+
PROGRESS_STORE[process_id].update({
|
747 |
+
"message": "Analyzing freeplay movement",
|
748 |
+
"percent": 10
|
749 |
+
})
|
750 |
+
freeplay_movement = await asyncio.to_thread(
|
751 |
+
process_freeplay,
|
752 |
+
process_id,
|
753 |
+
freeplay_video
|
754 |
+
)
|
755 |
+
|
756 |
+
# Process experiment segment in a thread
|
757 |
+
PROGRESS_STORE[process_id].update({
|
758 |
+
"message": "Analyzing experiment",
|
759 |
+
"percent": 40
|
760 |
+
})
|
761 |
+
result_df = await asyncio.to_thread(
|
762 |
+
process_experiment,
|
763 |
+
process_id,
|
764 |
+
experiment_video,
|
765 |
+
freeplay_movement
|
766 |
+
)
|
767 |
+
|
768 |
+
final_df = apply_classes(result_df, timestamp2, timestamp3)
|
769 |
+
|
770 |
+
result_path = session_dir / "analysis.csv"
|
771 |
+
final_df.to_csv(result_path, index=False)
|
772 |
+
os.sync()
|
773 |
+
|
774 |
+
PROGRESS_STORE[process_id].update({
|
775 |
+
"status": "completed",
|
776 |
+
"result": str(result_path),
|
777 |
+
"percent": 100,
|
778 |
+
"message": "Analysis complete"
|
779 |
+
})
|
780 |
+
|
781 |
+
except Exception as e:
|
782 |
+
logger.error(f"Processing error: {str(e)}", exc_info=True)
|
783 |
+
PROGRESS_STORE[process_id].update({
|
784 |
+
"status": "error",
|
785 |
+
"error": str(e),
|
786 |
+
"percent": 100
|
787 |
+
})
|
788 |
+
|
789 |
+
finally:
|
790 |
+
if video_path.exists():
|
791 |
+
video_path.unlink()
|
792 |
+
|
793 |
+
#################################################
|
794 |
+
# API Endpoints
|
795 |
+
#################################################
|
796 |
+
|
797 |
+
@app.post("/api/process-video")
|
798 |
+
async def start_processing(
|
799 |
+
video: UploadFile = File(...),
|
800 |
+
timestamp1: str = Form(...),
|
801 |
+
timestamp2: str = Form(...),
|
802 |
+
timestamp3: str = Form(...)
|
803 |
+
):
|
804 |
+
# 1) Generate IDs & dirs
|
805 |
+
process_id = str(uuid.uuid4())
|
806 |
+
temp_dir = Path(tempfile.mkdtemp())
|
807 |
+
session_dir = OUTPUT_DIR / f"session_{process_id}"
|
808 |
+
session_dir.mkdir(exist_ok=True)
|
809 |
+
|
810 |
+
# 2) Seed progress (so /api/progress can pick it up immediately)
|
811 |
+
PROGRESS_STORE[process_id] = {
|
812 |
+
"started": False,
|
813 |
+
"status": "queued",
|
814 |
+
"percent": 0,
|
815 |
+
"message": "Queued for processing",
|
816 |
+
"result": None,
|
817 |
+
"error": None
|
818 |
+
}
|
819 |
+
|
820 |
+
# 3) Save the upload
|
821 |
+
video_path = temp_dir / video.filename
|
822 |
+
with open(video_path, "wb") as f:
|
823 |
+
f.write(await video.read())
|
824 |
+
|
825 |
+
# 4) Kick off the async worker on the loop directly
|
826 |
+
asyncio.create_task(
|
827 |
+
process_video_async(
|
828 |
+
process_id, video_path, session_dir,
|
829 |
+
timestamp1, timestamp2, timestamp3, temp_dir
|
830 |
+
)
|
831 |
+
)
|
832 |
+
|
833 |
+
# 5) Return the process_id immediately
|
834 |
+
return {"process_id": process_id}
|
835 |
+
|
836 |
+
@app.get("/api/progress/{process_id}")
|
837 |
+
async def progress_stream(process_id: str):
|
838 |
+
async def event_generator():
|
839 |
+
last = {}
|
840 |
+
while True:
|
841 |
+
if process_id in PROGRESS_STORE:
|
842 |
+
current = PROGRESS_STORE[process_id]
|
843 |
+
if current != last:
|
844 |
+
last = current.copy() # snapshot instead of alias
|
845 |
+
yield f"data: {json.dumps(current)}\n\n"
|
846 |
+
if current["status"] in ["completed", "error", "cancelled"]:
|
847 |
+
break
|
848 |
+
await asyncio.sleep(0.5)
|
849 |
+
|
850 |
+
return StreamingResponse(
|
851 |
+
event_generator(),
|
852 |
+
media_type="text/event-stream",
|
853 |
+
headers={
|
854 |
+
"Cache-Control": "no-cache",
|
855 |
+
"Connection": "keep-alive" # ensure the stream stays open
|
856 |
+
}
|
857 |
+
)
|
858 |
+
|
859 |
+
@app.get("/api/results/{process_id}")
|
860 |
+
async def results(process_id: str):
|
861 |
+
if process_id not in PROGRESS_STORE:
|
862 |
+
raise HTTPException(404, detail="Process ID not found")
|
863 |
+
|
864 |
+
status = PROGRESS_STORE[process_id]
|
865 |
+
|
866 |
+
if status["status"] == "completed":
|
867 |
+
csv_path = Path(status["result"])
|
868 |
+
try:
|
869 |
+
# Validate file exists and is readable
|
870 |
+
if not csv_path.exists() or csv_path.stat().st_size == 0:
|
871 |
+
raise FileNotFoundError("Result file missing or empty")
|
872 |
+
|
873 |
+
return FileResponse(
|
874 |
+
csv_path,
|
875 |
+
media_type="text/csv",
|
876 |
+
filename="stranger_danger_analysis.csv",
|
877 |
+
headers={"X-Analysis-Complete": "true"}
|
878 |
+
)
|
879 |
+
except Exception as e:
|
880 |
+
logger.error(f"Results delivery failed: {str(e)}")
|
881 |
+
raise HTTPException(500, detail="Results generation failed")
|
882 |
+
|
883 |
+
raise HTTPException(425, detail="Analysis not complete yet")
|
884 |
+
|
885 |
+
@app.post("/api/cancel-analysis")
|
886 |
+
async def cancel_analysis(process_id: str = Form(...)):
|
887 |
+
if process_id in PROGRESS_STORE:
|
888 |
+
PROGRESS_STORE[process_id].update({"status": "cancelled", "message": "Cancelled by user"})
|
889 |
+
return {"status": "cancelled"}
|
890 |
+
|
891 |
+
@app.post("/api/delete-video")
|
892 |
+
async def delete_video(process_id: str = Form(...)):
|
893 |
+
if process_id in PROGRESS_STORE:
|
894 |
+
PROGRESS_STORE.pop(process_id, None)
|
895 |
+
return {"status": "deleted"}
|
896 |
+
raise HTTPException(404, detail="Video not found")
|
897 |
+
|
898 |
+
@app.get("/{full_path:path}")
|
899 |
+
async def serve_frontend(full_path: str):
|
900 |
+
if full_path.startswith(("api/", "static/")):
|
901 |
+
raise HTTPException(status_code=404)
|
902 |
+
frontend = Path("frontend/index.html")
|
903 |
+
if not frontend.exists():
|
904 |
+
raise HTTPException(status_code=404, detail="Frontend not found")
|
905 |
+
return FileResponse(frontend)
|
906 |
+
|
907 |
+
if __name__ == "__main__":
|
908 |
+
import uvicorn
|
909 |
+
uvicorn.run("main:app", host="0.0.0.0", port=8000, reload=True)
|
910 |
+
|
911 |
+
|
backend/midas_utils/__init__.py
ADDED
File without changes
|
backend/midas_utils/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (167 Bytes). View file
|
|
backend/midas_utils/__pycache__/transforms.cpython-310.pyc
ADDED
Binary file (1.91 kB). View file
|
|
backend/midas_utils/fresh_model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:70d6b9c891758c67f974a6097fb0c608c7ee67fb81ac3e5588847d5596d56fca
|
3 |
+
size 85761505
|
backend/midas_utils/model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:70d6b9c891758c67f974a6097fb0c608c7ee67fb81ac3e5588847d5596d56fca
|
3 |
+
size 85761505
|
backend/midas_utils/transforms.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from torchvision import transforms
|
5 |
+
|
6 |
+
class Resize(object):
|
7 |
+
def __init__(self, size):
|
8 |
+
self.size = size
|
9 |
+
|
10 |
+
def __call__(self, image):
|
11 |
+
image = cv2.resize(image, (self.size, self.size))
|
12 |
+
return image
|
13 |
+
|
14 |
+
class NormalizeImage(object):
|
15 |
+
def __init__(self, mean, std):
|
16 |
+
self.mean = mean
|
17 |
+
self.std = std
|
18 |
+
|
19 |
+
def __call__(self, image):
|
20 |
+
image = image.astype(np.float32) / 255.0
|
21 |
+
image -= np.array(self.mean)
|
22 |
+
image /= np.array(self.std)
|
23 |
+
return image
|
24 |
+
|
25 |
+
class PrepareForNet(object):
|
26 |
+
def __call__(self, image):
|
27 |
+
image = torch.from_numpy(image)
|
28 |
+
if len(image.shape) == 3:
|
29 |
+
image = image.permute(2, 0, 1)
|
30 |
+
image = image.unsqueeze(0)
|
31 |
+
return image
|
32 |
+
|
33 |
+
class Compose:
|
34 |
+
def __init__(self, transforms):
|
35 |
+
self.transforms = transforms
|
36 |
+
|
37 |
+
def __call__(self, img):
|
38 |
+
for t in self.transforms:
|
39 |
+
img = t(img)
|
40 |
+
return img
|
backend/models/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
backend/models/distance_classifier.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f5e48f5a4ec6ad18315c3a4c3a97cd76a506b35147008db0ca420056b6767a5e
|
3 |
+
size 2241
|
backend/models/fear_classifier.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ea252c3a845a28cac79a1b1ed944f4929a3e510286a772b3dccf6ba8412697c1
|
3 |
+
size 4273
|
backend/models/freeze_classifier.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:75491fb862b4c0bfdc79c214bdf5bdaa32622c5908cc2215e7a467754923bfe6
|
3 |
+
size 3129
|
backend/models/yolo_retrained_model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f09573aee77e183bad25d85a07f58be838d9e02bfbfcb0fdefb73bd59dddc117
|
3 |
+
size 52045563
|
backend/models/yolov8n-pose.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c6fa93dd1ee4a2c18c900a45c1d864a1c6f7aba75d84f91648a30b7fb641d212
|
3 |
+
size 6832633
|
ffmpeg
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e7e7fb30477f717e6f55f9180a70386c62677ef8a4d4d1a5d948f4098aa3eb99
|
3 |
+
size 79826272
|
frontend/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
frontend/index.html
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html lang="en">
|
3 |
+
<head>
|
4 |
+
<meta charset="UTF-8">
|
5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
6 |
+
<title>Experiment Auto-Labeler</title>
|
7 |
+
<base href="/">
|
8 |
+
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.0.0/css/all.min.css">
|
9 |
+
<link rel="stylesheet" href="/static/style.css">
|
10 |
+
</head>
|
11 |
+
<body>
|
12 |
+
<div class="container">
|
13 |
+
<!-- Initial Screen -->
|
14 |
+
<div class="card" id="initialScreen">
|
15 |
+
<h1>Stranger Danger Auto-Labeling</h1>
|
16 |
+
<div class="option-grid">
|
17 |
+
<div class="option-card" onclick="showUploadScreen('sharepoint')">
|
18 |
+
<i class="fab fa-microsoft"></i>
|
19 |
+
<h3>SharePoint</h3>
|
20 |
+
<p>Access videos from SharePoint</p>
|
21 |
+
</div>
|
22 |
+
<div class="option-card" onclick="showUploadScreen('local')">
|
23 |
+
<i class="fas fa-upload"></i>
|
24 |
+
<h3>Local Upload</h3>
|
25 |
+
<p>Upload from your device</p>
|
26 |
+
</div>
|
27 |
+
</div>
|
28 |
+
</div>
|
29 |
+
|
30 |
+
<!-- SharePoint Credentials Screen -->
|
31 |
+
<div class="card hidden" id="sharepointCredScreen">
|
32 |
+
<h2>SharePoint Connection</h2>
|
33 |
+
<form id="spCredForm" onsubmit="handleSpCredSubmit(event)">
|
34 |
+
<div class="form-group">
|
35 |
+
<label>Site URL</label>
|
36 |
+
<input type="url" id="spSiteUrl" required placeholder="https://yourdomain.sharepoint.com/sites/yoursite">
|
37 |
+
</div>
|
38 |
+
<div class="form-group">
|
39 |
+
<label>Client ID</label>
|
40 |
+
<input type="text" id="spClientId" required placeholder="a1b2c3d4-e5f6-7g8h-9i0j-k1l2m3n4o5p6">
|
41 |
+
</div>
|
42 |
+
<div class="form-group">
|
43 |
+
<label>Client Secret</label>
|
44 |
+
<input type="password" id="spClientSecret" required placeholder="ABC123~abcdefghijklmnopqrstuvwxyz">
|
45 |
+
</div>
|
46 |
+
<div class="form-group">
|
47 |
+
<label>Document Library</label>
|
48 |
+
<input type="text" id="spDocLibrary" value="Documents" required>
|
49 |
+
</div>
|
50 |
+
<button type="submit" class="btn">
|
51 |
+
<i class="fas fa-check"></i> Connect
|
52 |
+
</button>
|
53 |
+
<button type="button" class="btn secondary" onclick="showScreen('initialScreen')">
|
54 |
+
<i class="fas fa-arrow-left"></i> Back
|
55 |
+
</button>
|
56 |
+
</form>
|
57 |
+
</div>
|
58 |
+
|
59 |
+
<!-- SharePoint File Selection -->
|
60 |
+
<div class="card hidden" id="sharepointFileScreen">
|
61 |
+
<h2>Select SharePoint File</h2>
|
62 |
+
<div id="spFileList"></div>
|
63 |
+
<button class="btn secondary" onclick="showScreen('sharepointCredScreen')">
|
64 |
+
<i class="fas fa-arrow-left"></i> Back
|
65 |
+
</button>
|
66 |
+
</div>
|
67 |
+
|
68 |
+
<!-- Local Upload Screen -->
|
69 |
+
<div class="card hidden" id="localUploadScreen">
|
70 |
+
<h2>Upload Video</h2>
|
71 |
+
<div class="upload-area" id="dropZone">
|
72 |
+
<i class="fas fa-cloud-upload-alt"></i>
|
73 |
+
<p>Drag & drop or click to upload</p>
|
74 |
+
<input type="file" id="videoInput" hidden accept="video/*">
|
75 |
+
</div>
|
76 |
+
<div class="preview-container">
|
77 |
+
<video id="videoPreview" class="hidden" controls></video>
|
78 |
+
</div>
|
79 |
+
|
80 |
+
<!-- Add timestamp inputs -->
|
81 |
+
<div class="timestamp-group">
|
82 |
+
<div class="form-group">
|
83 |
+
<label>Start Time (HH:MM:SS)</label>
|
84 |
+
<input type="text" id="timestamp1" required
|
85 |
+
pattern="^([0-1][0-9]|2[0-3]):([0-5][0-9]):([0-5][0-9])$"
|
86 |
+
placeholder="00:00:00">
|
87 |
+
</div>
|
88 |
+
<div class="form-group">
|
89 |
+
<label>Transition Time (HH:MM:SS)</label>
|
90 |
+
<input type="text" id="timestamp2" required
|
91 |
+
pattern="^([0-1][0-9]|2[0-3]):([0-5][0-9]):([0-5][0-9])$"
|
92 |
+
placeholder="00:00:00">
|
93 |
+
</div>
|
94 |
+
<div class="form-group">
|
95 |
+
<label>End Time (HH:MM:SS)</label>
|
96 |
+
<input type="text" id="timestamp3" required
|
97 |
+
pattern="^([0-1][0-9]|2[0-3]):([0-5][0-9]):([0-5][0-9])$"
|
98 |
+
placeholder="00:00:00">
|
99 |
+
</div>
|
100 |
+
</div>
|
101 |
+
|
102 |
+
<button class="btn" id="analyzeBtn" disabled>
|
103 |
+
<i class="fas fa-play"></i> Start Analysis
|
104 |
+
</button>
|
105 |
+
<button class="btn secondary" onclick="showScreen('initialScreen')">
|
106 |
+
<i class="fas fa-arrow-left"></i> Back
|
107 |
+
</button>
|
108 |
+
</div>
|
109 |
+
|
110 |
+
<!-- Progress Screen -->
|
111 |
+
<div class="card hidden" id="progressScreen">
|
112 |
+
<h2>Analyzing Video</h2>
|
113 |
+
<div class="progress-container">
|
114 |
+
<div class="progress-bar" id="progressBar"></div>
|
115 |
+
<div id="frameCounter"></div>
|
116 |
+
</div>
|
117 |
+
<p id="progressMessage">Initializing analysis... Do not cancel</p>
|
118 |
+
<div class="button-group">
|
119 |
+
<button class="btn danger" id="cancelBtn" onclick="cancelAnalysis()">
|
120 |
+
<i class="fas fa-stop-circle"></i> Cancel Analysis
|
121 |
+
</button>
|
122 |
+
</div>
|
123 |
+
</div>
|
124 |
+
|
125 |
+
<!-- Results Screen -->
|
126 |
+
<div class="card hidden" id="resultsScreen">
|
127 |
+
<h2>Analysis Complete!</h2>
|
128 |
+
<div class="result-badge">
|
129 |
+
<i class="fas fa-check-circle"></i>
|
130 |
+
</div>
|
131 |
+
<button class="btn" id="downloadBtn">
|
132 |
+
<i class="fas fa-download"></i> Download Report
|
133 |
+
</button>
|
134 |
+
<button class="btn secondary" id="newAnalysisBtn">
|
135 |
+
<i class="fas fa-redo"></i> New Analysis
|
136 |
+
</button>
|
137 |
+
</div>
|
138 |
+
</div>
|
139 |
+
<script src="/static/script.js"></script>
|
140 |
+
</body>
|
141 |
+
</html>
|
frontend/static/script.js
ADDED
@@ -0,0 +1,429 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// ==================== Constants & Global State ====================
|
2 |
+
const API_BASE_URL = window.location.origin; // Base URL for API calls, using current origin
|
3 |
+
|
4 |
+
let currentFile = null; // Holds the currently selected video file (Blob or File)
|
5 |
+
let analysisAbortController = null; // Controller to abort video analysis requests
|
6 |
+
let spCredentials = {}; // Stores SharePoint credentials after connection
|
7 |
+
let isSharePointFile = false; // Flag indicating if the file came from SharePoint
|
8 |
+
let progressSource = null; // EventSource for server-sent events during processing
|
9 |
+
|
10 |
+
// ==================== Initialization ====================
|
11 |
+
|
12 |
+
document.addEventListener('DOMContentLoaded', () => {
|
13 |
+
initApp(); // Kick off app setup
|
14 |
+
});
|
15 |
+
|
16 |
+
function initApp() {
|
17 |
+
initEventListeners(); // Attach all UI event handlers
|
18 |
+
showScreen('initialScreen'); // Display the upload/timestamp screen
|
19 |
+
}
|
20 |
+
|
21 |
+
function initEventListeners() {
|
22 |
+
// File upload via click
|
23 |
+
document.getElementById('dropZone').addEventListener('click', () => {
|
24 |
+
document.getElementById('videoInput').click(); // Trigger hidden file input
|
25 |
+
});
|
26 |
+
|
27 |
+
// File input change handler
|
28 |
+
document.getElementById('videoInput').addEventListener('change', handleFileSelect);
|
29 |
+
|
30 |
+
// Drag-and-drop handlers
|
31 |
+
const dropZone = document.getElementById('dropZone');
|
32 |
+
dropZone.addEventListener('dragover', handleDragOver); // Highlight zone on drag over
|
33 |
+
dropZone.addEventListener('drop', handleDrop); // Handle file drop
|
34 |
+
dropZone.addEventListener('dragleave', () => dropZone.classList.remove('dragover')); // Remove highlight
|
35 |
+
|
36 |
+
// Navigation buttons to switch screens
|
37 |
+
document.querySelectorAll('[data-screen]').forEach(btn => {
|
38 |
+
btn.addEventListener('click', () => {
|
39 |
+
if (analysisAbortController) {
|
40 |
+
// If analysis in flight, cancel then switch
|
41 |
+
cancelAnalysis().finally(() => showScreen(btn.dataset.screen));
|
42 |
+
} else {
|
43 |
+
showScreen(btn.dataset.screen);
|
44 |
+
}
|
45 |
+
});
|
46 |
+
});
|
47 |
+
|
48 |
+
// "New Analysis" button on results screen
|
49 |
+
document.querySelector('#resultsScreen .btn.secondary').addEventListener('click', handleNewAnalysis);
|
50 |
+
|
51 |
+
// Analysis control buttons
|
52 |
+
document.getElementById('analyzeBtn').addEventListener('click', startAnalysis); // Start processing
|
53 |
+
document.getElementById('cancelBtn').addEventListener('click', cancelAnalysis); // Cancel processing
|
54 |
+
document.getElementById('downloadBtn').addEventListener('click', () => {
|
55 |
+
// Download handled dynamically in setupDownload()
|
56 |
+
});
|
57 |
+
|
58 |
+
// Timestamp input validation handlers
|
59 |
+
document.getElementById('timestamp1').addEventListener('input', validateTimestamps);
|
60 |
+
document.getElementById('timestamp2').addEventListener('input', validateTimestamps);
|
61 |
+
document.getElementById('timestamp3').addEventListener('input', validateTimestamps);
|
62 |
+
}
|
63 |
+
|
64 |
+
// ==================== High-Level Workflows ====================
|
65 |
+
|
66 |
+
// Start a brand new analysis (from results screen)
|
67 |
+
async function handleNewAnalysis() {
|
68 |
+
try {
|
69 |
+
await cancelAnalysis(); // Abort any running job
|
70 |
+
resetApp(); // Clear form and state
|
71 |
+
resetAnalyzeButton(); // Restore Analyze button
|
72 |
+
showScreen('initialScreen'); // Go back to upload
|
73 |
+
} catch (error) {
|
74 |
+
showError(`Failed to start new analysis: ${error.message}`); // Show error
|
75 |
+
}
|
76 |
+
}
|
77 |
+
|
78 |
+
// Handle SharePoint credentials submission and file listing
|
79 |
+
async function handleSpCredSubmit(event) {
|
80 |
+
event.preventDefault();
|
81 |
+
|
82 |
+
const submitBtn = event.target.querySelector('button[type="submit"]');
|
83 |
+
const originalText = submitBtn.innerHTML;
|
84 |
+
submitBtn.disabled = true; // Prevent double submits
|
85 |
+
submitBtn.innerHTML = '<i class="fas fa-spinner fa-spin"></i> Connecting...'; // Show spinner
|
86 |
+
|
87 |
+
// Collect credentials from form
|
88 |
+
spCredentials = {
|
89 |
+
siteUrl: document.getElementById('spSiteUrl').value.trim(),
|
90 |
+
clientId: document.getElementById('spClientId').value.trim(),
|
91 |
+
clientSecret: document.getElementById('spClientSecret').value.trim(),
|
92 |
+
docLibrary: document.getElementById('spDocLibrary').value.trim()
|
93 |
+
};
|
94 |
+
|
95 |
+
try {
|
96 |
+
const response = await fetch(`${API_BASE_URL}/api/sharepoint/files`, {
|
97 |
+
method: 'POST',
|
98 |
+
headers: { 'Content-Type': 'application/x-www-form-urlencoded' },
|
99 |
+
body: new URLSearchParams({
|
100 |
+
...spCredentials,
|
101 |
+
doc_library: spCredentials.docLibrary
|
102 |
+
})
|
103 |
+
});
|
104 |
+
|
105 |
+
if (!response.ok) {
|
106 |
+
const errorData = await response.json().catch(() => ({}));
|
107 |
+
throw new Error(errorData.detail || response.statusText);
|
108 |
+
}
|
109 |
+
|
110 |
+
const files = await response.json(); // Array of SharePoint files
|
111 |
+
renderSpFileList(files); // Populate file list UI
|
112 |
+
showScreen('sharepointFileScreen'); // Switch to file selection
|
113 |
+
} catch (error) {
|
114 |
+
showError(`SharePoint connection failed: ${error.message}`);
|
115 |
+
} finally {
|
116 |
+
submitBtn.disabled = false; // Restore button
|
117 |
+
submitBtn.innerHTML = originalText;
|
118 |
+
}
|
119 |
+
}
|
120 |
+
|
121 |
+
// Render list of SharePoint files with Select buttons
|
122 |
+
function renderSpFileList(files) {
|
123 |
+
const fileList = document.getElementById('spFileList');
|
124 |
+
if (!fileList) return;
|
125 |
+
|
126 |
+
fileList.innerHTML = files.map(file => `
|
127 |
+
<div class="sp-file-item">
|
128 |
+
<span>${file.name}</span>
|
129 |
+
<button class="btn" onclick="handleSpFile('${file.id}')">
|
130 |
+
<i class="fas fa-play"></i> Select
|
131 |
+
</button>
|
132 |
+
</div>
|
133 |
+
`).join('');
|
134 |
+
}
|
135 |
+
|
136 |
+
// Handle selecting and downloading a file from SharePoint
|
137 |
+
async function handleSpFile(fileId) {
|
138 |
+
const selectBtn = event.target;
|
139 |
+
const originalText = selectBtn.innerHTML;
|
140 |
+
selectBtn.disabled = true;
|
141 |
+
selectBtn.innerHTML = '<i class="fas fa-spinner fa-spin"></i> Loading...';
|
142 |
+
|
143 |
+
try {
|
144 |
+
const formData = new URLSearchParams({
|
145 |
+
...spCredentials,
|
146 |
+
file_id: fileId
|
147 |
+
});
|
148 |
+
|
149 |
+
const response = await fetch(`${API_BASE_URL}/api/sharepoint/download`, {
|
150 |
+
method: 'POST',
|
151 |
+
headers: { 'Content-Type': 'application/x-www-form-urlencoded' },
|
152 |
+
body: formData
|
153 |
+
});
|
154 |
+
|
155 |
+
if (!response.ok) {
|
156 |
+
const errorData = await response.json().catch(() => ({}));
|
157 |
+
throw new Error(errorData.detail || response.statusText);
|
158 |
+
}
|
159 |
+
|
160 |
+
currentFile = await response.blob(); // Store the downloaded blob
|
161 |
+
isSharePointFile = true; // Mark as SharePoint source
|
162 |
+
await startAnalysis(); // Begin processing
|
163 |
+
} catch (error) {
|
164 |
+
showError(`File download failed: ${error.message}`);
|
165 |
+
} finally {
|
166 |
+
selectBtn.disabled = false; // Restore button
|
167 |
+
selectBtn.innerHTML = originalText;
|
168 |
+
}
|
169 |
+
}
|
170 |
+
|
171 |
+
// Kick off video analysis by sending file and timestamps to backend
|
172 |
+
async function startAnalysis() {
|
173 |
+
const analyzeBtn = document.getElementById('analyzeBtn');
|
174 |
+
analyzeBtn.disabled = true; // Prevent re-click
|
175 |
+
analyzeBtn.onclick = null;
|
176 |
+
analyzeBtn.innerText = 'Analyzing…'; // Update label
|
177 |
+
|
178 |
+
if (!currentFile) {
|
179 |
+
showError('Please select a file first!');
|
180 |
+
resetAnalyzeButton();
|
181 |
+
return;
|
182 |
+
}
|
183 |
+
|
184 |
+
const t1 = document.getElementById('timestamp1').value;
|
185 |
+
const t2 = document.getElementById('timestamp2').value;
|
186 |
+
const t3 = document.getElementById('timestamp3').value;
|
187 |
+
if (!validateTimeOrder(t1, t2, t3)) {
|
188 |
+
showError('Timestamps must be in ascending order');
|
189 |
+
resetAnalyzeButton();
|
190 |
+
return;
|
191 |
+
}
|
192 |
+
|
193 |
+
showScreen('progressScreen'); // Show progress UI
|
194 |
+
analysisAbortController = new AbortController(); // New controller
|
195 |
+
|
196 |
+
try {
|
197 |
+
const formData = new FormData();
|
198 |
+
formData.append('video', currentFile);
|
199 |
+
formData.append('timestamp1', t1);
|
200 |
+
formData.append('timestamp2', t2);
|
201 |
+
formData.append('timestamp3', t3);
|
202 |
+
|
203 |
+
const response = await fetch(`${API_BASE_URL}/api/process-video`, {
|
204 |
+
method: 'POST',
|
205 |
+
body: formData,
|
206 |
+
signal: analysisAbortController.signal
|
207 |
+
});
|
208 |
+
|
209 |
+
if (!response.ok) {
|
210 |
+
const errorData = await response.json().catch(() => ({}));
|
211 |
+
throw new Error(errorData.detail || response.statusText);
|
212 |
+
}
|
213 |
+
|
214 |
+
const { process_id } = await response.json();
|
215 |
+
setupProgressTracker(process_id);
|
216 |
+
|
217 |
+
} catch (error) {
|
218 |
+
if (error.name !== 'AbortError') {
|
219 |
+
showError(`Analysis failed: ${error.message}`);
|
220 |
+
showScreen('initialScreen');
|
221 |
+
}
|
222 |
+
}
|
223 |
+
}
|
224 |
+
|
225 |
+
// ==================== File Upload/Selection Handlers ====================
|
226 |
+
|
227 |
+
function handleFileSelect(e) {
|
228 |
+
const file = e.target.files[0];
|
229 |
+
if (file) handleFile(file);
|
230 |
+
}
|
231 |
+
|
232 |
+
function handleDragOver(e) {
|
233 |
+
e.preventDefault();
|
234 |
+
e.stopPropagation();
|
235 |
+
e.currentTarget.classList.add('dragover');
|
236 |
+
}
|
237 |
+
|
238 |
+
function handleDrop(e) {
|
239 |
+
e.preventDefault();
|
240 |
+
e.stopPropagation();
|
241 |
+
e.currentTarget.classList.remove('dragover');
|
242 |
+
const file = e.dataTransfer.files[0];
|
243 |
+
if (file) handleFile(file);
|
244 |
+
}
|
245 |
+
|
246 |
+
function handleFile(file) {
|
247 |
+
if (!file || !file.type.startsWith('video/')) {
|
248 |
+
showError('Please upload a valid video file (MP4, MOV, or AVI)');
|
249 |
+
return;
|
250 |
+
}
|
251 |
+
|
252 |
+
currentFile = file;
|
253 |
+
isSharePointFile = false;
|
254 |
+
|
255 |
+
const preview = document.getElementById('videoPreview');
|
256 |
+
const analyzeBtn = document.getElementById('analyzeBtn');
|
257 |
+
|
258 |
+
if (preview.src) URL.revokeObjectURL(preview.src);
|
259 |
+
|
260 |
+
preview.src = URL.createObjectURL(file);
|
261 |
+
preview.classList.remove('hidden');
|
262 |
+
analyzeBtn.disabled = false;
|
263 |
+
|
264 |
+
document.getElementById('timestamp1').value = '';
|
265 |
+
document.getElementById('timestamp2').value = '';
|
266 |
+
document.getElementById('timestamp3').value = '';
|
267 |
+
validateTimestamps();
|
268 |
+
}
|
269 |
+
|
270 |
+
function showUploadScreen(type) {
|
271 |
+
if (type === 'sharepoint') {
|
272 |
+
showScreen('sharepointCredScreen');
|
273 |
+
} else {
|
274 |
+
showScreen('localUploadScreen');
|
275 |
+
}
|
276 |
+
}
|
277 |
+
|
278 |
+
// ==================== Progress Tracking ====================
|
279 |
+
|
280 |
+
function setupProgressTracker(processId) {
|
281 |
+
if (progressSource) progressSource.close();
|
282 |
+
|
283 |
+
progressSource = new EventSource(`${API_BASE_URL}/api/progress/${processId}`);
|
284 |
+
|
285 |
+
progressSource.onmessage = (event) => {
|
286 |
+
try {
|
287 |
+
const data = JSON.parse(event.data);
|
288 |
+
|
289 |
+
if (data.status === 'completed') {
|
290 |
+
handleAnalysisComplete(processId);
|
291 |
+
progressSource.close();
|
292 |
+
} else if (data.status === 'error') {
|
293 |
+
showError(data.error || 'Analysis failed');
|
294 |
+
progressSource.close();
|
295 |
+
showScreen('initialScreen');
|
296 |
+
} else {
|
297 |
+
updateProgressUI(data);
|
298 |
+
}
|
299 |
+
} catch (error) {
|
300 |
+
console.error('Error parsing progress:', error);
|
301 |
+
}
|
302 |
+
};
|
303 |
+
|
304 |
+
progressSource.onerror = () => {
|
305 |
+
console.log('SSE error - attempting reconnect');
|
306 |
+
setTimeout(() => setupProgressTracker(processId), 2000);
|
307 |
+
};
|
308 |
+
}
|
309 |
+
|
310 |
+
function updateProgressUI(progress) {
|
311 |
+
const progressBar = document.getElementById('progressBar');
|
312 |
+
const progressMessage = document.getElementById('progressMessage');
|
313 |
+
|
314 |
+
progressBar.style.width = `${progress.percent}%`;
|
315 |
+
progressMessage.textContent = progress.message;
|
316 |
+
|
317 |
+
if (progress.current && progress.total) {
|
318 |
+
document.getElementById('frameCounter').textContent = `${progress.current}/${progress.total} seconds processed`;
|
319 |
+
}
|
320 |
+
}
|
321 |
+
|
322 |
+
async function handleAnalysisComplete(processId) {
|
323 |
+
try {
|
324 |
+
const response = await fetch(`${API_BASE_URL}/api/results/${processId}`);
|
325 |
+
const blob = await response.blob();
|
326 |
+
setupDownload(blob);
|
327 |
+
showScreen('resultsScreen');
|
328 |
+
} catch (error) {
|
329 |
+
showError('Failed to retrieve results');
|
330 |
+
}
|
331 |
+
}
|
332 |
+
|
333 |
+
// ==================== Utilities ====================
|
334 |
+
|
335 |
+
function showScreen(screenId) {
|
336 |
+
document.querySelectorAll('.card').forEach(el => el.classList.add('hidden'));
|
337 |
+
const targetScreen = document.getElementById(screenId);
|
338 |
+
if (targetScreen) {
|
339 |
+
targetScreen.classList.remove('hidden');
|
340 |
+
window.scrollTo(0, 0);
|
341 |
+
} else {
|
342 |
+
console.error(`Screen with ID ${screenId} not found`);
|
343 |
+
}
|
344 |
+
}
|
345 |
+
|
346 |
+
function showError(message) {
|
347 |
+
const errorDiv = document.createElement('div');
|
348 |
+
errorDiv.className = 'error-message';
|
349 |
+
errorDiv.innerHTML = `<i class="fas fa-exclamation-circle"></i><span>${message}</span>`;
|
350 |
+
document.body.prepend(errorDiv);
|
351 |
+
setTimeout(() => { errorDiv.classList.add('fade-out'); setTimeout(() => errorDiv.remove(), 500); }, 5000);
|
352 |
+
}
|
353 |
+
|
354 |
+
function validateTimestamps() {
|
355 |
+
const t1 = document.getElementById('timestamp1');
|
356 |
+
const t2 = document.getElementById('timestamp2');
|
357 |
+
const t3 = document.getElementById('timestamp3');
|
358 |
+
const analyzeBtn = document.getElementById('analyzeBtn');
|
359 |
+
const isValid = t1.checkValidity() && t2.checkValidity() && t3.checkValidity() && t1.value !== '' && t2.value !== '' && t3.value !== '';
|
360 |
+
analyzeBtn.disabled = !isValid;
|
361 |
+
}
|
362 |
+
|
363 |
+
function validateTimeOrder(t1, t2, t3) {
|
364 |
+
const toSeconds = t => { const [h, m, s] = t.split(':').map(Number); return h*3600 + m*60 + s; };
|
365 |
+
return toSeconds(t1) < toSeconds(t2) && toSeconds(t2) < toSeconds(t3);
|
366 |
+
}
|
367 |
+
|
368 |
+
function resetAnalyzeButton() {
|
369 |
+
const btn = document.getElementById('analyzeBtn');
|
370 |
+
btn.disabled = false;
|
371 |
+
btn.innerText = 'Start Analysis';
|
372 |
+
btn.onclick = startAnalysis;
|
373 |
+
}
|
374 |
+
|
375 |
+
function resetApp() {
|
376 |
+
const preview = document.getElementById('videoPreview');
|
377 |
+
if (preview.src) URL.revokeObjectURL(preview.src);
|
378 |
+
preview.src = '';
|
379 |
+
preview.classList.add('hidden');
|
380 |
+
document.getElementById('videoInput').value = '';
|
381 |
+
const progressBar = document.getElementById('progressBar'); if (progressBar) progressBar.style.width = '0%';
|
382 |
+
const progressMessage = document.getElementById('progressMessage'); if (progressMessage) progressMessage.textContent = '';
|
383 |
+
const spForm = document.getElementById('spCredForm'); if (spForm) spForm.reset();
|
384 |
+
if (progressSource) { progressSource.close(); progressSource = null; }
|
385 |
+
currentFile = null;
|
386 |
+
isSharePointFile = false;
|
387 |
+
spCredentials = {};
|
388 |
+
}
|
389 |
+
|
390 |
+
async function cancelAnalysis() {
|
391 |
+
try {
|
392 |
+
if (progressSource) {
|
393 |
+
progressSource.close();
|
394 |
+
progressSource = null;
|
395 |
+
}
|
396 |
+
if (!analysisAbortController) return;
|
397 |
+
const progressMessage = document.getElementById('progressMessage'); if (progressMessage) progressMessage.textContent = "Cancelling analysis...";
|
398 |
+
analysisAbortController.abort();
|
399 |
+
await fetch(`${API_BASE_URL}/api/cancel-analysis`, { method: 'POST' });
|
400 |
+
} catch (error) {
|
401 |
+
console.error('Cancellation error:', error);
|
402 |
+
throw error;
|
403 |
+
} finally {
|
404 |
+
analysisAbortController = null;
|
405 |
+
}
|
406 |
+
}
|
407 |
+
|
408 |
+
function setupDownload(blob) {
|
409 |
+
const url = URL.createObjectURL(blob);
|
410 |
+
const downloadBtn = document.getElementById('downloadBtn');
|
411 |
+
downloadBtn.onclick = null;
|
412 |
+
downloadBtn.onclick = () => {
|
413 |
+
const a = document.createElement('a');
|
414 |
+
a.href = url;
|
415 |
+
a.download = `stranger_danger_analysis_${new Date().toISOString().slice(0,10)}.csv`;
|
416 |
+
document.body.appendChild(a);
|
417 |
+
a.click();
|
418 |
+
setTimeout(() => { document.body.removeChild(a); URL.revokeObjectURL(url); }, 100);
|
419 |
+
};
|
420 |
+
}
|
421 |
+
|
422 |
+
// ==================== Global Exports ====================
|
423 |
+
|
424 |
+
window.showUploadScreen = showUploadScreen;
|
425 |
+
window.handleSpCredSubmit = handleSpCredSubmit;
|
426 |
+
window.handleSpFile = handleSpFile;
|
427 |
+
window.startAnalysis = startAnalysis;
|
428 |
+
window.cancelAnalysis = cancelAnalysis;
|
429 |
+
window.resetApp = resetApp;
|
frontend/static/style.css
ADDED
@@ -0,0 +1,251 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
:root {
|
2 |
+
--primary: #2A2F4F;
|
3 |
+
--secondary: #917FB3;
|
4 |
+
--background: #FDE2F3;
|
5 |
+
--text: #2A2F4F;
|
6 |
+
--success: #4CAF50;
|
7 |
+
--danger: #dc3545;
|
8 |
+
}
|
9 |
+
|
10 |
+
* {
|
11 |
+
box-sizing: border-box;
|
12 |
+
margin: 0;
|
13 |
+
padding: 0;
|
14 |
+
}
|
15 |
+
|
16 |
+
body {
|
17 |
+
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
18 |
+
background: var(--background);
|
19 |
+
color: var(--text);
|
20 |
+
min-height: 100vh;
|
21 |
+
line-height: 1.6;
|
22 |
+
padding: 0;
|
23 |
+
margin: 0;
|
24 |
+
}
|
25 |
+
|
26 |
+
.container {
|
27 |
+
max-width: 1200px;
|
28 |
+
margin: 0 auto;
|
29 |
+
padding: 2rem;
|
30 |
+
min-height: 100vh;
|
31 |
+
display: flex;
|
32 |
+
flex-direction: column;
|
33 |
+
justify-content: center;
|
34 |
+
}
|
35 |
+
|
36 |
+
.card {
|
37 |
+
background: white;
|
38 |
+
border-radius: 1rem;
|
39 |
+
padding: 2rem;
|
40 |
+
box-shadow: 0 4px 20px rgba(0,0,0,0.1);
|
41 |
+
margin: 1rem auto;
|
42 |
+
width: 100%;
|
43 |
+
max-width: 800px;
|
44 |
+
}
|
45 |
+
|
46 |
+
h1, h2, h3 {
|
47 |
+
color: var(--primary);
|
48 |
+
margin-bottom: 1rem;
|
49 |
+
}
|
50 |
+
|
51 |
+
.option-grid {
|
52 |
+
display: grid;
|
53 |
+
gap: 1.5rem;
|
54 |
+
grid-template-columns: repeat(auto-fit, minmax(250px, 1fr));
|
55 |
+
margin: 2rem 0;
|
56 |
+
}
|
57 |
+
|
58 |
+
.option-card {
|
59 |
+
padding: 2rem;
|
60 |
+
border: 2px solid var(--primary);
|
61 |
+
border-radius: 1rem;
|
62 |
+
cursor: pointer;
|
63 |
+
transition: transform 0.2s;
|
64 |
+
}
|
65 |
+
|
66 |
+
.option-card:hover {
|
67 |
+
transform: translateY(-5px);
|
68 |
+
}
|
69 |
+
|
70 |
+
.btn {
|
71 |
+
background: var(--primary);
|
72 |
+
color: white;
|
73 |
+
border: none;
|
74 |
+
padding: 1rem 2rem;
|
75 |
+
border-radius: 0.5rem;
|
76 |
+
cursor: pointer;
|
77 |
+
font-size: 1rem;
|
78 |
+
transition: transform 0.2s;
|
79 |
+
display: inline-flex;
|
80 |
+
align-items: center;
|
81 |
+
gap: 0.5rem;
|
82 |
+
}
|
83 |
+
|
84 |
+
.btn:hover {
|
85 |
+
transform: translateY(-2px);
|
86 |
+
}
|
87 |
+
|
88 |
+
.secondary {
|
89 |
+
background: var(--secondary);
|
90 |
+
}
|
91 |
+
|
92 |
+
.upload-area {
|
93 |
+
border: 2px dashed var(--primary);
|
94 |
+
border-radius: 1rem;
|
95 |
+
padding: 3rem 2rem;
|
96 |
+
margin: 2rem 0;
|
97 |
+
cursor: pointer;
|
98 |
+
}
|
99 |
+
|
100 |
+
.preview-container {
|
101 |
+
width: 100%;
|
102 |
+
max-width: 600px;
|
103 |
+
margin: 1rem auto;
|
104 |
+
}
|
105 |
+
|
106 |
+
#videoPreview {
|
107 |
+
width: 100%;
|
108 |
+
max-width: 100%;
|
109 |
+
border-radius: 0.5rem;
|
110 |
+
display: block;
|
111 |
+
margin: 1rem 0;
|
112 |
+
}
|
113 |
+
|
114 |
+
.progress-container {
|
115 |
+
width: 100%;
|
116 |
+
margin: 2rem 0;
|
117 |
+
}
|
118 |
+
|
119 |
+
.progress-bar {
|
120 |
+
height: 20px;
|
121 |
+
background: var(--primary);
|
122 |
+
border-radius: 10px;
|
123 |
+
transition: width 0.3s ease;
|
124 |
+
width: 0%;
|
125 |
+
}
|
126 |
+
|
127 |
+
.hidden {
|
128 |
+
display: none !important;
|
129 |
+
}
|
130 |
+
|
131 |
+
.result-badge {
|
132 |
+
font-size: 4rem;
|
133 |
+
color: var(--primary);
|
134 |
+
margin: 2rem 0;
|
135 |
+
}
|
136 |
+
|
137 |
+
.form-group {
|
138 |
+
margin: 1rem 0;
|
139 |
+
}
|
140 |
+
|
141 |
+
.form-group label {
|
142 |
+
display: block;
|
143 |
+
margin-bottom: 0.5rem;
|
144 |
+
font-weight: 500;
|
145 |
+
}
|
146 |
+
|
147 |
+
.form-group input {
|
148 |
+
width: 100%;
|
149 |
+
padding: 0.8rem;
|
150 |
+
border: 1px solid #ddd;
|
151 |
+
border-radius: 0.5rem;
|
152 |
+
font-size: 1rem;
|
153 |
+
}
|
154 |
+
|
155 |
+
.sp-file-item {
|
156 |
+
padding: 1rem;
|
157 |
+
margin: 0.5rem 0;
|
158 |
+
border: 1px solid #ddd;
|
159 |
+
border-radius: 0.5rem;
|
160 |
+
display: flex;
|
161 |
+
justify-content: space-between;
|
162 |
+
align-items: center;
|
163 |
+
background: #fff;
|
164 |
+
}
|
165 |
+
|
166 |
+
.sp-file-item:hover {
|
167 |
+
background: #f8f9fa;
|
168 |
+
}
|
169 |
+
|
170 |
+
#analyzeBtn {
|
171 |
+
margin-top: 1rem;
|
172 |
+
}
|
173 |
+
|
174 |
+
#frameCounter {
|
175 |
+
text-align: center;
|
176 |
+
margin-top: 0.5rem;
|
177 |
+
font-size: 0.9em;
|
178 |
+
color: #666;
|
179 |
+
}
|
180 |
+
|
181 |
+
#cancelBtn {
|
182 |
+
margin-top: 1rem;
|
183 |
+
background: #dc3545;
|
184 |
+
}
|
185 |
+
|
186 |
+
#cancelBtn:hover {
|
187 |
+
background: #c82333;
|
188 |
+
transform: translateY(-2px);
|
189 |
+
}
|
190 |
+
|
191 |
+
.btn.danger {
|
192 |
+
background: #dc3545;
|
193 |
+
color: white;
|
194 |
+
}
|
195 |
+
|
196 |
+
.btn.danger:hover {
|
197 |
+
background: #c82333;
|
198 |
+
transform: translateY(-2px);
|
199 |
+
}
|
200 |
+
|
201 |
+
.button-group {
|
202 |
+
display: flex;
|
203 |
+
gap: 1rem;
|
204 |
+
justify-content: center;
|
205 |
+
margin-top: 1.5rem;
|
206 |
+
}
|
207 |
+
|
208 |
+
/* Add to your existing CSS */
|
209 |
+
#progressBar {
|
210 |
+
height: 20px;
|
211 |
+
background: var(--primary);
|
212 |
+
border-radius: 10px;
|
213 |
+
transition: width 0.3s ease;
|
214 |
+
width: 0%;
|
215 |
+
}
|
216 |
+
|
217 |
+
#frameCounter {
|
218 |
+
display: block;
|
219 |
+
text-align: center;
|
220 |
+
margin-top: 0.5rem;
|
221 |
+
color: var(--text);
|
222 |
+
font-size: 0.9em;
|
223 |
+
}
|
224 |
+
|
225 |
+
#newAnalysisBtn {
|
226 |
+
margin-top: 1rem;
|
227 |
+
}
|
228 |
+
|
229 |
+
/* Add to style.css */
|
230 |
+
.timestamp-group {
|
231 |
+
display: grid;
|
232 |
+
gap: 1rem;
|
233 |
+
margin: 1.5rem 0;
|
234 |
+
}
|
235 |
+
|
236 |
+
.timestamp-group .form-group {
|
237 |
+
margin: 0;
|
238 |
+
}
|
239 |
+
|
240 |
+
input[type="text"] {
|
241 |
+
width: 100%;
|
242 |
+
padding: 0.8rem;
|
243 |
+
border: 1px solid #ddd;
|
244 |
+
border-radius: 4px;
|
245 |
+
font-size: 1rem;
|
246 |
+
}
|
247 |
+
|
248 |
+
input:invalid {
|
249 |
+
border-color: #ff4444;
|
250 |
+
box-shadow: 0 0 3px #ff4444;
|
251 |
+
}
|
requirements.txt
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi>=0.68.0
|
2 |
+
uvicorn>=0.15.0
|
3 |
+
opencv-python-headless>=4.5.3
|
4 |
+
ultralytics>=8.0.0
|
5 |
+
mediapipe>=0.8.9.1
|
6 |
+
pandas>=1.3.0
|
7 |
+
numpy>=1.21.0
|
8 |
+
python-multipart>=0.0.5
|
9 |
+
aiohttp>=3.7.4
|
10 |
+
office365-rest-python-client>=2.3.12
|
11 |
+
ffmpeg>=0.2.0
|
12 |
+
joblib>=1.4.2
|
13 |
+
scikit-learn>=1.6.1
|