Spaces:
Sleeping
Sleeping
jmfinizio
commited on
Commit
·
d8afa61
0
Parent(s):
Fresh start
Browse files- .DS_Store +0 -0
- .gitattributes +36 -0
- Dockerfile +16 -0
- README.md +10 -0
- analysis_output/session_33d6d79f-952c-476a-9f36-cd5fdea84d3c/analysis.csv +6 -0
- analysis_output/session_4c97bc51-b190-4205-b4dd-f9fc2cd9fc15/analysis.csv +6 -0
- analysis_output/session_4cfe63bb-d56d-4457-8d2d-6e85af137d66/analysis.csv +6 -0
- analysis_output/session_bb31a607-52b9-495f-aeb1-346c8f87bee1/analysis.csv +6 -0
- analysis_output/session_d7af8070-871b-41bd-b611-fd2bd9773404/analysis.csv +146 -0
- analysis_output/session_ee8801d4-2515-4873-9db6-a8be6180e836/analysis.csv +6 -0
- app.py +1 -0
- backend/.DS_Store +0 -0
- backend/__init__.py +0 -0
- backend/__pycache__/__init__.cpython-310.pyc +0 -0
- backend/__pycache__/main.cpython-310.pyc +0 -0
- backend/main.py +911 -0
- backend/midas_utils/__init__.py +0 -0
- backend/midas_utils/__pycache__/__init__.cpython-310.pyc +0 -0
- backend/midas_utils/__pycache__/transforms.cpython-310.pyc +0 -0
- backend/midas_utils/fresh_model.pt +3 -0
- backend/midas_utils/model.pt +3 -0
- backend/midas_utils/transforms.py +40 -0
- backend/models/.DS_Store +0 -0
- backend/models/distance_classifier.pkl +3 -0
- backend/models/fear_classifier.pkl +3 -0
- backend/models/freeze_classifier.pkl +3 -0
- backend/models/yolo_retrained_model.pt +3 -0
- backend/models/yolov8n-pose.pt +3 -0
- ffmpeg +3 -0
- frontend/.DS_Store +0 -0
- frontend/index.html +141 -0
- frontend/static/script.js +429 -0
- frontend/static/style.css +251 -0
- requirements.txt +13 -0
.DS_Store
ADDED
|
Binary file (8.2 kB). View file
|
|
|
.gitattributes
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
ffmpeg filter=lfs diff=lfs merge=lfs -text
|
Dockerfile
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker
|
| 2 |
+
# you will also find guides on how best to write your Dockerfile
|
| 3 |
+
|
| 4 |
+
FROM python:3.9
|
| 5 |
+
|
| 6 |
+
RUN useradd -m -u 1000 user
|
| 7 |
+
USER user
|
| 8 |
+
ENV PATH="/home/user/.local/bin:$PATH"
|
| 9 |
+
|
| 10 |
+
WORKDIR /app
|
| 11 |
+
|
| 12 |
+
COPY --chown=user ./requirements.txt requirements.txt
|
| 13 |
+
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
| 14 |
+
|
| 15 |
+
COPY --chown=user . /app
|
| 16 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
README.md
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: CISS Web App
|
| 3 |
+
emoji: 📊
|
| 4 |
+
colorFrom: red
|
| 5 |
+
colorTo: yellow
|
| 6 |
+
sdk: docker
|
| 7 |
+
pinned: false
|
| 8 |
+
---
|
| 9 |
+
|
| 10 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
analysis_output/session_33d6d79f-952c-476a-9f36-cd5fdea84d3c/analysis.csv
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
timestamp,second,proximity to parent,proximity to stranger,fear,freeze
|
| 2 |
+
00:07:37,0,1,1,2,1
|
| 3 |
+
00:07:38,1,1,1,2,1
|
| 4 |
+
00:07:39,2,1,1,2,1
|
| 5 |
+
00:07:40,3,1,1,2,1
|
| 6 |
+
00:07:41,4,1,1,2,1
|
analysis_output/session_4c97bc51-b190-4205-b4dd-f9fc2cd9fc15/analysis.csv
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
timestamp,second,proximity to parent,proximity to stranger,fear,freeze
|
| 2 |
+
00:07:37,0,1,1,2,1
|
| 3 |
+
00:07:38,1,1,1,2,1
|
| 4 |
+
00:07:39,2,1,1,2,1
|
| 5 |
+
00:07:40,3,1,1,2,1
|
| 6 |
+
00:07:41,4,1,1,2,1
|
analysis_output/session_4cfe63bb-d56d-4457-8d2d-6e85af137d66/analysis.csv
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
timestamp,second,proximity to parent,proximity to stranger,fear,freeze
|
| 2 |
+
00:07:37,0,1,1,2,1
|
| 3 |
+
00:07:38,1,1,1,2,1
|
| 4 |
+
00:07:39,2,1,1,2,1
|
| 5 |
+
00:07:40,3,1,1,2,1
|
| 6 |
+
00:07:41,4,1,1,2,1
|
analysis_output/session_bb31a607-52b9-495f-aeb1-346c8f87bee1/analysis.csv
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
timestamp,second,proximity to parent,proximity to stranger,fear,freeze
|
| 2 |
+
00:07:37,0,1,1,2,1
|
| 3 |
+
00:07:38,1,1,1,2,1
|
| 4 |
+
00:07:39,2,1,1,2,1
|
| 5 |
+
00:07:40,3,1,1,2,1
|
| 6 |
+
00:07:41,4,1,1,2,1
|
analysis_output/session_d7af8070-871b-41bd-b611-fd2bd9773404/analysis.csv
ADDED
|
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
timestamp,second,proximity to parent,proximity to stranger,fear,freeze
|
| 2 |
+
00:05:58,0,1,1,0,
|
| 3 |
+
00:05:59,1,1,1,0,
|
| 4 |
+
00:06:00,2,1,1,0,
|
| 5 |
+
00:06:01,3,1,1,2,
|
| 6 |
+
00:06:02,4,1,1,0,
|
| 7 |
+
00:06:03,5,1,1,0,
|
| 8 |
+
00:06:04,6,1,1,0,
|
| 9 |
+
00:06:05,7,1,1,0,
|
| 10 |
+
00:06:06,8,1,1,0,
|
| 11 |
+
00:06:07,9,1,1,0,
|
| 12 |
+
00:06:08,10,1,1,0,
|
| 13 |
+
00:06:09,11,1,1,0,
|
| 14 |
+
00:06:10,12,1,1,0,
|
| 15 |
+
00:06:11,13,1,1,0,
|
| 16 |
+
00:06:12,14,1,1,2,
|
| 17 |
+
00:06:13,15,1,1,0,
|
| 18 |
+
00:06:14,16,1,1,0,
|
| 19 |
+
00:06:15,17,1,1,0,
|
| 20 |
+
00:06:16,18,1,1,2,0
|
| 21 |
+
00:06:17,19,1,1,2,0
|
| 22 |
+
00:06:18,20,1,1,2,0
|
| 23 |
+
00:06:19,21,1,1,0,
|
| 24 |
+
00:06:20,22,1,1,2,
|
| 25 |
+
00:06:21,23,1,1,0,
|
| 26 |
+
00:06:22,24,1,1,0,
|
| 27 |
+
00:06:23,25,1,1,0,
|
| 28 |
+
00:06:24,26,1,1,2,
|
| 29 |
+
00:06:25,27,1,1,0,
|
| 30 |
+
00:06:26,28,1,1,0,
|
| 31 |
+
00:06:27,29,1,1,0,
|
| 32 |
+
00:06:28,30,1,1,2,0
|
| 33 |
+
00:06:29,31,1,1,2,0
|
| 34 |
+
00:06:30,32,1,1,2,0
|
| 35 |
+
00:06:31,33,1,1,0,
|
| 36 |
+
00:06:32,34,1,1,2,0
|
| 37 |
+
00:06:33,35,1,1,2,0
|
| 38 |
+
00:06:34,36,1,1,0,
|
| 39 |
+
00:06:35,37,1,1,0,
|
| 40 |
+
00:06:36,38,1,1,0,
|
| 41 |
+
00:06:37,39,1,1,2,
|
| 42 |
+
00:06:38,40,1,1,0,
|
| 43 |
+
00:06:39,41,1,1,0,
|
| 44 |
+
00:06:40,42,1,1,0,
|
| 45 |
+
00:06:41,43,1,1,0,
|
| 46 |
+
00:06:42,44,1,1,2,
|
| 47 |
+
00:06:43,45,1,1,0,
|
| 48 |
+
00:06:44,46,1,1,0,
|
| 49 |
+
00:06:45,47,1,1,0,
|
| 50 |
+
00:06:46,48,1,1,0,
|
| 51 |
+
00:06:47,49,1,1,2,
|
| 52 |
+
00:06:48,50,1,1,0,
|
| 53 |
+
00:06:49,51,1,1,0,
|
| 54 |
+
00:06:50,52,1,1,0,
|
| 55 |
+
00:06:51,53,1,1,0,
|
| 56 |
+
00:06:52,54,1,1,0,
|
| 57 |
+
00:06:53,55,1,1,0,
|
| 58 |
+
00:06:54,56,1,1,2,0
|
| 59 |
+
00:06:55,57,1,1,2,0
|
| 60 |
+
00:06:56,58,1,1,0,
|
| 61 |
+
00:06:57,59,1,1,0,
|
| 62 |
+
00:06:58,60,1,1,2,
|
| 63 |
+
00:06:59,61,1,1,0,
|
| 64 |
+
00:07:00,62,1,1,0,
|
| 65 |
+
00:07:01,63,1,1,0,
|
| 66 |
+
00:07:02,64,1,1,0,
|
| 67 |
+
00:07:03,65,1,1,0,
|
| 68 |
+
00:07:04,66,1,1,0,
|
| 69 |
+
00:07:05,67,1,1,0,
|
| 70 |
+
00:07:06,68,1,1,0,
|
| 71 |
+
00:07:07,69,1,1,2,
|
| 72 |
+
00:07:08,70,1,1,0,
|
| 73 |
+
00:07:09,71,1,1,0,
|
| 74 |
+
00:07:10,72,1,1,0,
|
| 75 |
+
00:07:11,73,1,1,0,
|
| 76 |
+
00:07:12,74,1,1,0,
|
| 77 |
+
00:07:13,75,1,1,0,
|
| 78 |
+
00:07:14,76,1,1,0,
|
| 79 |
+
00:07:15,77,1,1,0,
|
| 80 |
+
00:07:16,78,1,1,0,
|
| 81 |
+
00:07:17,79,1,1,0,
|
| 82 |
+
00:07:18,80,1,1,0,
|
| 83 |
+
00:07:19,81,1,1,2,1
|
| 84 |
+
00:07:20,82,1,1,2,1
|
| 85 |
+
00:07:21,83,1,1,0,
|
| 86 |
+
00:07:22,84,1,1,0,
|
| 87 |
+
00:07:23,85,1,1,0,
|
| 88 |
+
00:07:24,86,1,1,0,
|
| 89 |
+
00:07:25,87,1,1,0,
|
| 90 |
+
00:07:26,88,1,1,2,0
|
| 91 |
+
00:07:27,89,1,1,2,0
|
| 92 |
+
00:07:28,90,1,1,0,
|
| 93 |
+
00:07:29,91,1,1,0,
|
| 94 |
+
00:07:30,92,1,1,0,
|
| 95 |
+
00:07:31,93,,,,
|
| 96 |
+
00:07:32,94,0,2,0,
|
| 97 |
+
00:07:33,95,0,2,1,
|
| 98 |
+
00:07:34,96,0,2,0,
|
| 99 |
+
00:07:35,97,,,,
|
| 100 |
+
00:07:36,98,,,,
|
| 101 |
+
00:07:37,99,1,1,0,
|
| 102 |
+
00:07:38,100,1,1,0,
|
| 103 |
+
00:07:39,101,1,1,0,
|
| 104 |
+
00:07:40,102,1,1,0,
|
| 105 |
+
00:07:41,103,1,1,0,
|
| 106 |
+
00:07:42,104,1,1,1,0
|
| 107 |
+
00:07:43,105,1,1,2,0
|
| 108 |
+
00:07:44,106,1,1,2,0
|
| 109 |
+
00:07:45,107,1,1,2,1
|
| 110 |
+
00:07:46,108,1,1,2,1
|
| 111 |
+
00:07:47,109,1,1,0,
|
| 112 |
+
00:07:48,110,1,1,0,
|
| 113 |
+
00:07:49,111,1,1,0,
|
| 114 |
+
00:07:50,112,1,1,0,
|
| 115 |
+
00:07:51,113,1,1,0,
|
| 116 |
+
00:07:52,114,1,1,0,
|
| 117 |
+
00:07:53,115,1,1,1,
|
| 118 |
+
00:07:54,116,1,1,0,
|
| 119 |
+
00:07:55,117,1,1,2,1
|
| 120 |
+
00:07:56,118,1,1,2,1
|
| 121 |
+
00:07:57,119,1,1,0,
|
| 122 |
+
00:07:58,120,1,1,2,0
|
| 123 |
+
00:07:59,121,1,1,2,0
|
| 124 |
+
00:08:00,122,1,1,2,0
|
| 125 |
+
00:08:01,123,1,1,0,
|
| 126 |
+
00:08:02,124,1,1,0,
|
| 127 |
+
00:08:03,125,1,1,0,
|
| 128 |
+
00:08:04,126,1,1,0,
|
| 129 |
+
00:08:05,127,1,1,0,
|
| 130 |
+
00:08:06,128,1,1,0,
|
| 131 |
+
00:08:07,129,1,1,0,
|
| 132 |
+
00:08:08,130,1,1,0,
|
| 133 |
+
00:08:09,131,1,1,0,
|
| 134 |
+
00:08:10,132,1,1,0,
|
| 135 |
+
00:08:11,133,1,1,2,0
|
| 136 |
+
00:08:12,134,1,1,2,0
|
| 137 |
+
00:08:13,135,1,1,2,0
|
| 138 |
+
00:08:14,136,1,1,0,
|
| 139 |
+
00:08:15,137,1,1,0,
|
| 140 |
+
00:08:16,138,1,1,2,
|
| 141 |
+
00:08:17,139,1,1,0,
|
| 142 |
+
00:08:18,140,1,1,2,0
|
| 143 |
+
00:08:19,141,1,1,2,0
|
| 144 |
+
00:08:20,142,1,1,0,
|
| 145 |
+
00:08:21,143,1,1,0,
|
| 146 |
+
00:08:22,144,1,1,2,
|
analysis_output/session_ee8801d4-2515-4873-9db6-a8be6180e836/analysis.csv
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
timestamp,second,proximity to parent,proximity to stranger,fear,freeze
|
| 2 |
+
00:07:37,0,1,1,0,
|
| 3 |
+
00:07:38,1,1,1,0,
|
| 4 |
+
00:07:39,2,1,1,0,
|
| 5 |
+
00:07:40,3,1,1,0,
|
| 6 |
+
00:07:41,4,1,1,0,
|
app.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
from backend.main import app
|
backend/.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
backend/__init__.py
ADDED
|
File without changes
|
backend/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (155 Bytes). View file
|
|
|
backend/__pycache__/main.cpython-310.pyc
ADDED
|
Binary file (23.6 kB). View file
|
|
|
backend/main.py
ADDED
|
@@ -0,0 +1,911 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import datetime
|
| 2 |
+
import os
|
| 3 |
+
import cv2
|
| 4 |
+
import uuid
|
| 5 |
+
import json
|
| 6 |
+
import time
|
| 7 |
+
import re
|
| 8 |
+
import subprocess
|
| 9 |
+
import uuid
|
| 10 |
+
import asyncio
|
| 11 |
+
import joblib
|
| 12 |
+
import logging
|
| 13 |
+
import numpy as np
|
| 14 |
+
import pandas as pd
|
| 15 |
+
import tempfile
|
| 16 |
+
import warnings
|
| 17 |
+
import shutil
|
| 18 |
+
from pathlib import Path
|
| 19 |
+
from PIL import Image
|
| 20 |
+
import ffmpeg
|
| 21 |
+
import torch
|
| 22 |
+
import torchvision.transforms as T
|
| 23 |
+
from ultralytics import YOLO
|
| 24 |
+
import mediapipe as mp
|
| 25 |
+
from fastapi import FastAPI, UploadFile, File, HTTPException, BackgroundTasks, Form, Request
|
| 26 |
+
from fastapi.responses import FileResponse, StreamingResponse, JSONResponse
|
| 27 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 28 |
+
from fastapi.staticfiles import StaticFiles
|
| 29 |
+
from backend.midas_utils.transforms import Compose, Resize, NormalizeImage, PrepareForNet
|
| 30 |
+
|
| 31 |
+
#################################################
|
| 32 |
+
# Initialize application
|
| 33 |
+
#################################################
|
| 34 |
+
torch.serialization.add_safe_globals([
|
| 35 |
+
torch.nn.modules.conv.Conv2d,
|
| 36 |
+
torch.nn.modules.batchnorm.BatchNorm2d,
|
| 37 |
+
torch.nn.modules.linear.Linear,
|
| 38 |
+
torch.nn.modules.container.Sequential,
|
| 39 |
+
torch.nn.modules.activation.SiLU,
|
| 40 |
+
torch.nn.modules.container.ModuleList,
|
| 41 |
+
torch.nn.modules.upsampling.Upsample,
|
| 42 |
+
torch.nn.modules.pooling.MaxPool2d
|
| 43 |
+
])
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
logger = logging.getLogger(__name__)
|
| 47 |
+
logging.basicConfig(level=logging.INFO)
|
| 48 |
+
|
| 49 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 50 |
+
|
| 51 |
+
app = FastAPI()
|
| 52 |
+
|
| 53 |
+
# CORS Configuration
|
| 54 |
+
app.add_middleware(
|
| 55 |
+
CORSMiddleware,
|
| 56 |
+
allow_origins=["*"],
|
| 57 |
+
allow_credentials=True,
|
| 58 |
+
allow_methods=["*"],
|
| 59 |
+
allow_headers=["*"],
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
# Serve frontend files
|
| 64 |
+
static_dir = Path(__file__).parent.parent / "frontend" / "static"
|
| 65 |
+
app.mount("/static", StaticFiles(directory=static_dir), name="static")
|
| 66 |
+
|
| 67 |
+
# Configuration
|
| 68 |
+
DETECTION_MODEL_PATH = Path(__file__).parent / 'models' / "yolo_retrained_model.pt"
|
| 69 |
+
POSE_MODEL_PATH = Path(__file__).parent / 'models' / "yolov8n-pose.pt"
|
| 70 |
+
MAX_VIDEO_SIZE = 500 * 1024 * 1024
|
| 71 |
+
OUTPUT_DIR = Path("analysis_output")
|
| 72 |
+
UPLOADED_VIDEOS = {} # Track uploaded video session
|
| 73 |
+
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
| 74 |
+
|
| 75 |
+
# Global state
|
| 76 |
+
PROGRESS_STORE = {}
|
| 77 |
+
ANALYSIS_ACTIVE = False
|
| 78 |
+
|
| 79 |
+
@app.middleware("http")
|
| 80 |
+
async def error_handling_middleware(request: Request, call_next):
|
| 81 |
+
try:
|
| 82 |
+
return await call_next(request)
|
| 83 |
+
except Exception as e:
|
| 84 |
+
logger.error(f"Unexpected error: {str(e)}")
|
| 85 |
+
return JSONResponse(
|
| 86 |
+
status_code=500,
|
| 87 |
+
content={"message": "Internal server error"}
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
@app.on_event("startup")
|
| 91 |
+
async def initialize_models():
|
| 92 |
+
"""Initialize models with warmup inference"""
|
| 93 |
+
|
| 94 |
+
try:
|
| 95 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 96 |
+
logger.info(f"Initializing models on {device}")
|
| 97 |
+
|
| 98 |
+
# Initialize detection model
|
| 99 |
+
app.state.detection_model = YOLO(DETECTION_MODEL_PATH).to(device)
|
| 100 |
+
dummy = np.zeros((640, 640, 3), dtype=np.uint8)
|
| 101 |
+
app.state.detection_model(dummy, verbose=False) # Warmup
|
| 102 |
+
|
| 103 |
+
# Initialize pose model
|
| 104 |
+
app.state.pose_model = YOLO(POSE_MODEL_PATH).to(device)
|
| 105 |
+
app.state.pose_model(dummy, verbose=False) # Warmup
|
| 106 |
+
|
| 107 |
+
logger.info("Models initialized successfully")
|
| 108 |
+
except Exception as e:
|
| 109 |
+
logger.error(f"Model initialization failed: {str(e)}")
|
| 110 |
+
raise RuntimeError(f"Model initialization failed: {str(e)}")
|
| 111 |
+
|
| 112 |
+
def update_progress(process_id: str, current: int, total: int, message: str):
|
| 113 |
+
"""Update progress store with analysis status"""
|
| 114 |
+
PROGRESS_STORE[process_id] = {
|
| 115 |
+
"percent": min(100, (current / total) * 100),
|
| 116 |
+
"message": message,
|
| 117 |
+
"current": current,
|
| 118 |
+
"total": total,
|
| 119 |
+
"status": "processing"
|
| 120 |
+
}
|
| 121 |
+
|
| 122 |
+
#################################################
|
| 123 |
+
# Initialize Models
|
| 124 |
+
#################################################
|
| 125 |
+
|
| 126 |
+
# Child detection and image cropping
|
| 127 |
+
def detect_child_and_crop(frame):
|
| 128 |
+
try:
|
| 129 |
+
results = app.state.detection_model.predict(frame, verbose=False)[0]
|
| 130 |
+
class_ids = results.boxes.cls.cpu().numpy()
|
| 131 |
+
confidences = results.boxes.conf.cpu().numpy()
|
| 132 |
+
bboxes = results.boxes.xyxy.cpu().numpy()
|
| 133 |
+
child_bbox = None
|
| 134 |
+
|
| 135 |
+
for box, cls, conf in zip(bboxes, class_ids, confidences):
|
| 136 |
+
if conf > 0.6:
|
| 137 |
+
if cls == 1:
|
| 138 |
+
child_bbox = box
|
| 139 |
+
elif cls == 0:
|
| 140 |
+
adult_bbox = box
|
| 141 |
+
elif cls == 2:
|
| 142 |
+
stranger_bbox = box
|
| 143 |
+
|
| 144 |
+
if child_bbox is None:
|
| 145 |
+
return None
|
| 146 |
+
|
| 147 |
+
x1, y1, x2, y2 = map(int, child_bbox)
|
| 148 |
+
# Validate and clamp coordinates
|
| 149 |
+
x1 = max(0, x1)
|
| 150 |
+
y1 = max(0, y1)
|
| 151 |
+
x2 = min(frame.shape[1], x2)
|
| 152 |
+
y2 = min(frame.shape[0], y2)
|
| 153 |
+
if x1 >= x2 or y1 >= y2:
|
| 154 |
+
logger.warning("Invalid child bounding box")
|
| 155 |
+
return None
|
| 156 |
+
|
| 157 |
+
child_roi = frame[y1:y2, x1:x2]
|
| 158 |
+
if child_roi.size == 0:
|
| 159 |
+
logger.warning("Empty child ROI")
|
| 160 |
+
return None
|
| 161 |
+
|
| 162 |
+
return child_roi
|
| 163 |
+
|
| 164 |
+
except Exception as e:
|
| 165 |
+
logger.error(f"Detection error: {str(e)}")
|
| 166 |
+
return None
|
| 167 |
+
|
| 168 |
+
def load_depth_model():
|
| 169 |
+
try:
|
| 170 |
+
with warnings.catch_warnings():
|
| 171 |
+
warnings.simplefilter("ignore")
|
| 172 |
+
model = torch.hub.load(
|
| 173 |
+
'intel-isl/MiDaS',
|
| 174 |
+
'MiDaS_small',
|
| 175 |
+
pretrained=True,
|
| 176 |
+
trust_repo=True
|
| 177 |
+
).float()
|
| 178 |
+
model.eval().to(device)
|
| 179 |
+
print("Successfully loaded MiDaS model from torch.hub")
|
| 180 |
+
return model
|
| 181 |
+
except Exception as e:
|
| 182 |
+
raise RuntimeError(f"Failed to load MiDaS model: {e}")
|
| 183 |
+
|
| 184 |
+
# Load transforms
|
| 185 |
+
midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms")
|
| 186 |
+
Resize = midas_transforms.Resize
|
| 187 |
+
NormalizeImage = midas_transforms.NormalizeImage
|
| 188 |
+
PrepareForNet = midas_transforms.PrepareForNet
|
| 189 |
+
|
| 190 |
+
# Define transform pipeline
|
| 191 |
+
transform_pipeline = T.Compose([
|
| 192 |
+
lambda img: {"image": np.array(img.convert("RGB"), dtype=np.float32) / 255.0},
|
| 193 |
+
Resize(
|
| 194 |
+
256, 256, resize_target=None, keep_aspect_ratio=True,
|
| 195 |
+
ensure_multiple_of=32, resize_method="upper_bound",
|
| 196 |
+
image_interpolation_method=cv2.INTER_CUBIC
|
| 197 |
+
),
|
| 198 |
+
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
| 199 |
+
PrepareForNet(),
|
| 200 |
+
lambda sample: torch.from_numpy(sample["image"]),
|
| 201 |
+
])
|
| 202 |
+
|
| 203 |
+
# Load model once
|
| 204 |
+
depth_model = load_depth_model()
|
| 205 |
+
|
| 206 |
+
def calculate_distance_between_objects(frame, obj1_label, obj2_label):
|
| 207 |
+
results = app.state.detection_model.predict(frame, verbose=False)[0]
|
| 208 |
+
labels = results.names if hasattr(results, 'names') else {}
|
| 209 |
+
|
| 210 |
+
obj1_center = None
|
| 211 |
+
obj2_center = None
|
| 212 |
+
|
| 213 |
+
for box in results.boxes:
|
| 214 |
+
cls = int(box.cls[0].item())
|
| 215 |
+
label = labels.get(cls, str(cls))
|
| 216 |
+
|
| 217 |
+
x1, y1, x2, y2 = map(int, box.xyxy[0].cpu().numpy())
|
| 218 |
+
center = ((x1 + x2) // 2, (y1 + y2) // 2)
|
| 219 |
+
|
| 220 |
+
if label.lower() == obj1_label.lower():
|
| 221 |
+
obj1_center = center
|
| 222 |
+
elif label.lower() == obj2_label.lower():
|
| 223 |
+
obj2_center = center
|
| 224 |
+
|
| 225 |
+
# Validation checks with proper error handling
|
| 226 |
+
if obj1_center is None:
|
| 227 |
+
print(f"Important warning: {obj1_label} not detected.")
|
| 228 |
+
return None
|
| 229 |
+
|
| 230 |
+
if obj2_center is None:
|
| 231 |
+
if obj2_label.lower() != "stranger":
|
| 232 |
+
print(f"Warning: {obj2_label} not detected.")
|
| 233 |
+
return None
|
| 234 |
+
|
| 235 |
+
# Add coordinate validation
|
| 236 |
+
def validate_coord(coord):
|
| 237 |
+
return isinstance(coord, tuple) and len(coord) == 2 and \
|
| 238 |
+
all(isinstance(v, (int, float)) for v in coord)
|
| 239 |
+
|
| 240 |
+
if not validate_coord(obj1_center) or not validate_coord(obj2_center):
|
| 241 |
+
print("Invalid coordinates detected")
|
| 242 |
+
return None
|
| 243 |
+
|
| 244 |
+
try:
|
| 245 |
+
# Estimate depth
|
| 246 |
+
img_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 247 |
+
img_pil = Image.fromarray(img_rgb) # Convert to PIL Image first
|
| 248 |
+
input_tensor = transform_pipeline(img_pil).to(device)
|
| 249 |
+
|
| 250 |
+
if input_tensor.dim() == 3:
|
| 251 |
+
input_tensor = input_tensor.unsqueeze(0)
|
| 252 |
+
input_tensor = input_tensor.to(device)
|
| 253 |
+
|
| 254 |
+
with torch.no_grad():
|
| 255 |
+
output = depth_model(input_tensor)
|
| 256 |
+
depth_map = output.squeeze().cpu().numpy()
|
| 257 |
+
|
| 258 |
+
# Rescale object centers with safety checks
|
| 259 |
+
original_h, original_w = frame.shape[:2]
|
| 260 |
+
depth_h, depth_w = depth_map.shape
|
| 261 |
+
|
| 262 |
+
def safe_scale(coord, orig_dim, target_dim):
|
| 263 |
+
try:
|
| 264 |
+
return int((coord / orig_dim) * target_dim)
|
| 265 |
+
except ZeroDivisionError:
|
| 266 |
+
return 0
|
| 267 |
+
|
| 268 |
+
# Corrected scaling calls
|
| 269 |
+
x1 = safe_scale(obj1_center[0], original_w, depth_w)
|
| 270 |
+
y1 = safe_scale(obj1_center[1], original_h, depth_h)
|
| 271 |
+
x2 = safe_scale(obj2_center[0], original_w, depth_w)
|
| 272 |
+
y2 = safe_scale(obj2_center[1], original_h, depth_h)
|
| 273 |
+
|
| 274 |
+
# Depth calculation with bounds checking
|
| 275 |
+
def get_depth(x, y):
|
| 276 |
+
x = max(0, min(depth_w-1, x))
|
| 277 |
+
y = max(0, min(depth_h-1, y))
|
| 278 |
+
return depth_map[y, x]
|
| 279 |
+
|
| 280 |
+
d1 = get_depth(x1, y1)
|
| 281 |
+
d2 = get_depth(x2, y2)
|
| 282 |
+
|
| 283 |
+
if d1 <= 0 or d2 <= 0:
|
| 284 |
+
return None
|
| 285 |
+
|
| 286 |
+
# 3D coordinate conversion
|
| 287 |
+
fx = fy = 1109 # Focal length assumption
|
| 288 |
+
cx, cy = depth_w // 2, depth_h // 2
|
| 289 |
+
|
| 290 |
+
point1 = (
|
| 291 |
+
(x1 - cx) * d1 / fx,
|
| 292 |
+
(y1 - cy) * d1 / fy,
|
| 293 |
+
d1
|
| 294 |
+
)
|
| 295 |
+
point2 = (
|
| 296 |
+
(x2 - cx) * d2 / fx,
|
| 297 |
+
(y2 - cy) * d2 / fy,
|
| 298 |
+
d2
|
| 299 |
+
)
|
| 300 |
+
|
| 301 |
+
return float(np.linalg.norm(np.array(point1) - np.array(point2)))
|
| 302 |
+
|
| 303 |
+
except Exception as e:
|
| 304 |
+
logger.error(f"Distance calculation error: {str(e)}")
|
| 305 |
+
return None
|
| 306 |
+
|
| 307 |
+
# MediaPipe initialization
|
| 308 |
+
mp_face_mesh = mp.solutions.face_mesh
|
| 309 |
+
face_mesh = mp_face_mesh.FaceMesh(
|
| 310 |
+
static_image_mode=False,
|
| 311 |
+
max_num_faces=1,
|
| 312 |
+
min_detection_confidence=0.5
|
| 313 |
+
)
|
| 314 |
+
|
| 315 |
+
LANDMARKS = {
|
| 316 |
+
"left_eye": [33, 133, 159, 145, 160, 144],
|
| 317 |
+
"right_eye": [362, 263, 386, 374, 387, 373],
|
| 318 |
+
"left_eyebrow": [70, 63, 105],
|
| 319 |
+
"right_eyebrow": [300, 293, 334],
|
| 320 |
+
"mouth": [13, 14, 78, 308],
|
| 321 |
+
"jaw": [152]
|
| 322 |
+
}
|
| 323 |
+
|
| 324 |
+
def facial_keypoints(image, prev_landmarks=None):
|
| 325 |
+
if image is None:
|
| 326 |
+
logger.error("Received None frame")
|
| 327 |
+
return 0, None
|
| 328 |
+
try:
|
| 329 |
+
h, w = image.shape[:2]
|
| 330 |
+
except AttributeError:
|
| 331 |
+
logger.error("Invalid image type")
|
| 332 |
+
return 0, None
|
| 333 |
+
if h == 0 or w == 0 or image.size == 0:
|
| 334 |
+
logger.error("Received empty frame")
|
| 335 |
+
return 0, None
|
| 336 |
+
|
| 337 |
+
try:
|
| 338 |
+
results = face_mesh.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
|
| 339 |
+
if not results.multi_face_landmarks:
|
| 340 |
+
return 0, None
|
| 341 |
+
|
| 342 |
+
current_landmarks = {}
|
| 343 |
+
for key, indices in LANDMARKS.items():
|
| 344 |
+
current_landmarks[key] = [
|
| 345 |
+
(int(lm.x * image.shape[1]), int(lm.y * image.shape[0]))
|
| 346 |
+
for lm in [results.multi_face_landmarks[0].landmark[i] for i in indices]
|
| 347 |
+
]
|
| 348 |
+
|
| 349 |
+
movement_score = 0
|
| 350 |
+
if prev_landmarks:
|
| 351 |
+
total_diff = sum(
|
| 352 |
+
np.sqrt((cx - px)**2 + (cy - py)**2)
|
| 353 |
+
for key in LANDMARKS
|
| 354 |
+
for (px, py), (cx, cy) in zip(prev_landmarks.get(key, []), current_landmarks.get(key, []))
|
| 355 |
+
)
|
| 356 |
+
valid_points = sum(len(landmarks) for landmarks in current_landmarks.values())
|
| 357 |
+
movement_score = 2 if (total_diff/valid_points) > 6 else 1 if (total_diff/valid_points) > 3 else 0
|
| 358 |
+
|
| 359 |
+
return movement_score, current_landmarks
|
| 360 |
+
except Exception as e:
|
| 361 |
+
logger.error(f"Facial processing error: {str(e)}")
|
| 362 |
+
return 0, None
|
| 363 |
+
|
| 364 |
+
def process_pose(image):
|
| 365 |
+
if image is None:
|
| 366 |
+
return None
|
| 367 |
+
try:
|
| 368 |
+
results = app.state.pose_model(image, verbose=False)
|
| 369 |
+
if results and hasattr(results[0], 'keypoints'):
|
| 370 |
+
return results[0].keypoints.xy[0].cpu().numpy()
|
| 371 |
+
return None
|
| 372 |
+
except Exception as e:
|
| 373 |
+
logger.error(f"Pose processing error: {str(e)}")
|
| 374 |
+
return None
|
| 375 |
+
|
| 376 |
+
def calculate_body_movement(current_pose, previous_pose):
|
| 377 |
+
if current_pose is None or previous_pose is None:
|
| 378 |
+
return 0.0
|
| 379 |
+
|
| 380 |
+
valid_points = 0
|
| 381 |
+
total_movement = 0.0
|
| 382 |
+
|
| 383 |
+
for prev, curr in zip(previous_pose, current_pose):
|
| 384 |
+
if not (np.isnan(prev).any() or np.isnan(curr).any()):
|
| 385 |
+
valid_points += 1
|
| 386 |
+
total_movement += abs(np.linalg.norm(curr - prev))
|
| 387 |
+
|
| 388 |
+
return total_movement
|
| 389 |
+
|
| 390 |
+
#################################################
|
| 391 |
+
# Preparing for Video Processing
|
| 392 |
+
#################################################
|
| 393 |
+
|
| 394 |
+
def time_to_seconds(timestamp):
|
| 395 |
+
return sum(x * int(t) for x, t in zip([3600, 60, 1], timestamp.split(':')))
|
| 396 |
+
|
| 397 |
+
def format_progress_message(stage, current, total, extras=None):
|
| 398 |
+
base = f"{stage} - Frame {current}/{total}"
|
| 399 |
+
if extras:
|
| 400 |
+
return f"{base} - {', '.join(f'{k}: {v}' for k,v in extras.items())}"
|
| 401 |
+
return base
|
| 402 |
+
|
| 403 |
+
def crop_video(process_id: str, video_path: str, timestamp1: str, timestamp2: str,
|
| 404 |
+
timestamp3: str, temp_dir: str, ffmpeg_path: str = 'ffmpeg') -> tuple[str, str]:
|
| 405 |
+
"""
|
| 406 |
+
Crop the video into two clips with cancellation support
|
| 407 |
+
"""
|
| 408 |
+
temp_dir_path = Path(temp_dir)
|
| 409 |
+
|
| 410 |
+
# Create temp directory if it doesn't exist
|
| 411 |
+
temp_dir_path.mkdir(parents=True, exist_ok=True)
|
| 412 |
+
|
| 413 |
+
# Generate temporary filenames
|
| 414 |
+
first_clip_path = temp_dir_path / f"clip1_{uuid.uuid4()}.mp4"
|
| 415 |
+
second_clip_path = temp_dir_path / f"clip2_{uuid.uuid4()}.mp4"
|
| 416 |
+
|
| 417 |
+
def check_cancellation():
|
| 418 |
+
"""Check if processing was cancelled (replace with your actual progress store)"""
|
| 419 |
+
# You'll need to import or access your PROGRESS_STORE here
|
| 420 |
+
if PROGRESS_STORE.get(process_id, {}).get('status') == 'cancelled':
|
| 421 |
+
raise asyncio.CancelledError("Processing cancelled by user during video cropping")
|
| 422 |
+
|
| 423 |
+
def run_ffmpeg_with_cancel_check(command: list, output_file: Path) -> None:
|
| 424 |
+
"""Run ffmpeg command with cancellation checks"""
|
| 425 |
+
try:
|
| 426 |
+
# Start the process
|
| 427 |
+
process = subprocess.Popen(
|
| 428 |
+
command,
|
| 429 |
+
stdout=subprocess.PIPE,
|
| 430 |
+
stderr=subprocess.PIPE,
|
| 431 |
+
universal_newlines=True
|
| 432 |
+
)
|
| 433 |
+
|
| 434 |
+
# Poll process while checking for cancellation
|
| 435 |
+
while True:
|
| 436 |
+
check_cancellation()
|
| 437 |
+
if process.poll() is not None: # Process finished
|
| 438 |
+
break
|
| 439 |
+
time.sleep(0.5) # Check every 500ms
|
| 440 |
+
|
| 441 |
+
# Check final status
|
| 442 |
+
if process.returncode != 0:
|
| 443 |
+
raise subprocess.CalledProcessError(
|
| 444 |
+
process.returncode,
|
| 445 |
+
command,
|
| 446 |
+
output=process.stdout,
|
| 447 |
+
stderr=process.stderr
|
| 448 |
+
)
|
| 449 |
+
|
| 450 |
+
except asyncio.CancelledError:
|
| 451 |
+
# Cleanup and terminate process
|
| 452 |
+
if process.poll() is None: # Still running
|
| 453 |
+
process.terminate()
|
| 454 |
+
try:
|
| 455 |
+
process.wait(timeout=5)
|
| 456 |
+
except subprocess.TimeoutExpired:
|
| 457 |
+
process.kill()
|
| 458 |
+
|
| 459 |
+
# Remove partial output file
|
| 460 |
+
if output_file.exists():
|
| 461 |
+
output_file.unlink()
|
| 462 |
+
|
| 463 |
+
raise
|
| 464 |
+
|
| 465 |
+
# Convert timestamps
|
| 466 |
+
ts1 = time_to_seconds(timestamp1)
|
| 467 |
+
ts2 = time_to_seconds(timestamp2)
|
| 468 |
+
ts3 = time_to_seconds(timestamp3)
|
| 469 |
+
|
| 470 |
+
# Build commands
|
| 471 |
+
commands = [
|
| 472 |
+
(
|
| 473 |
+
[
|
| 474 |
+
ffmpeg_path, '-y', '-i', video_path,
|
| 475 |
+
'-ss', str(ts1), '-t', str(ts2 - ts1),
|
| 476 |
+
'-c:v', 'libx264', '-preset', 'fast', '-crf', '23',
|
| 477 |
+
'-c:a', 'aac', str(first_clip_path)
|
| 478 |
+
],
|
| 479 |
+
first_clip_path
|
| 480 |
+
),
|
| 481 |
+
(
|
| 482 |
+
[
|
| 483 |
+
ffmpeg_path, '-y', '-i', video_path,
|
| 484 |
+
'-ss', str(ts2), '-t', str(ts3 - ts2),
|
| 485 |
+
'-c:v', 'libx264', '-preset', 'fast', '-crf', '23',
|
| 486 |
+
'-c:a', 'aac', str(second_clip_path)
|
| 487 |
+
],
|
| 488 |
+
second_clip_path
|
| 489 |
+
)
|
| 490 |
+
]
|
| 491 |
+
|
| 492 |
+
try:
|
| 493 |
+
# Process both clips
|
| 494 |
+
for cmd, output_path in commands:
|
| 495 |
+
logger.info("Running command: %s", ' '.join(cmd))
|
| 496 |
+
run_ffmpeg_with_cancel_check(cmd, output_path)
|
| 497 |
+
|
| 498 |
+
return str(first_clip_path), str(second_clip_path)
|
| 499 |
+
|
| 500 |
+
except asyncio.CancelledError:
|
| 501 |
+
# Cleanup both files if either was cancelled
|
| 502 |
+
for path in [first_clip_path, second_clip_path]:
|
| 503 |
+
if path.exists():
|
| 504 |
+
path.unlink()
|
| 505 |
+
raise
|
| 506 |
+
|
| 507 |
+
#################################################
|
| 508 |
+
# Video Processing Loop
|
| 509 |
+
#################################################
|
| 510 |
+
|
| 511 |
+
def process_freeplay(process_id: str, freeplay_video: str) -> float:
|
| 512 |
+
"""
|
| 513 |
+
Sample one frame per second from the freeplay clip,
|
| 514 |
+
compute body‐movement metrics and return the average.
|
| 515 |
+
"""
|
| 516 |
+
PROGRESS_STORE[process_id].update({"message": "Processing freeplay"})
|
| 517 |
+
cap = cv2.VideoCapture(freeplay_video)
|
| 518 |
+
if not cap.isOpened():
|
| 519 |
+
raise RuntimeError(f"Failed to open freeplay video at {freeplay_video}")
|
| 520 |
+
|
| 521 |
+
# Determine clip duration in seconds
|
| 522 |
+
fps = cap.get(cv2.CAP_PROP_FPS) or 1.0
|
| 523 |
+
total_frames = cap.get(cv2.CAP_PROP_FRAME_COUNT) or 0
|
| 524 |
+
duration = total_frames / fps
|
| 525 |
+
|
| 526 |
+
movements = []
|
| 527 |
+
prev_pose = None
|
| 528 |
+
|
| 529 |
+
for sec in range(int(duration)):
|
| 530 |
+
if PROGRESS_STORE.get(process_id, {}).get('status') == 'cancelled':
|
| 531 |
+
raise asyncio.CancelledError("Processing cancelled")
|
| 532 |
+
print(f"Processing freeplay frame {sec}")
|
| 533 |
+
if PROGRESS_STORE[process_id]["status"] == "cancelled":
|
| 534 |
+
break
|
| 535 |
+
|
| 536 |
+
# Seek by time (ms)
|
| 537 |
+
cap.set(cv2.CAP_PROP_POS_MSEC, sec * 1000)
|
| 538 |
+
ret, frame = cap.read()
|
| 539 |
+
if not ret or frame is None or frame.size == 0:
|
| 540 |
+
logger.warning(f"Freeplay: no frame at {sec}s")
|
| 541 |
+
continue
|
| 542 |
+
|
| 543 |
+
PROGRESS_STORE[process_id].update({
|
| 544 |
+
"current": sec,
|
| 545 |
+
"percent": 10 + int((sec + 1) / duration * 30)
|
| 546 |
+
})
|
| 547 |
+
|
| 548 |
+
try:
|
| 549 |
+
child_roi = detect_child_and_crop(frame)
|
| 550 |
+
pose_kps = process_pose(child_roi)
|
| 551 |
+
mv = calculate_body_movement(pose_kps, prev_pose)
|
| 552 |
+
movements.append(mv)
|
| 553 |
+
prev_pose = pose_kps
|
| 554 |
+
except Exception as e:
|
| 555 |
+
logger.error(f"Freeplay error at {sec}s: {e}", exc_info=True)
|
| 556 |
+
|
| 557 |
+
cap.release()
|
| 558 |
+
return float(np.mean(movements)) if movements else 0.0
|
| 559 |
+
|
| 560 |
+
def process_experiment(process_id: str, experiment_video: str, freeplay_movement: float) -> pd.DataFrame:
|
| 561 |
+
"""
|
| 562 |
+
Sample one frame per second from the experiment clip,
|
| 563 |
+
compute all metrics, and return a DataFrame.
|
| 564 |
+
"""
|
| 565 |
+
PROGRESS_STORE[process_id].update({"message": "Analyzing experiment"})
|
| 566 |
+
cap = cv2.VideoCapture(experiment_video)
|
| 567 |
+
if not cap.isOpened():
|
| 568 |
+
raise RuntimeError(f"Failed to open experiment video at {experiment_video}")
|
| 569 |
+
|
| 570 |
+
fps = cap.get(cv2.CAP_PROP_FPS) or 1.0
|
| 571 |
+
total_frames = cap.get(cv2.CAP_PROP_FRAME_COUNT) or 0
|
| 572 |
+
duration = total_frames / fps
|
| 573 |
+
PROGRESS_STORE[process_id].update({"total": int(duration)})
|
| 574 |
+
|
| 575 |
+
results = []
|
| 576 |
+
prev_landmarks = None
|
| 577 |
+
prev_pose = None
|
| 578 |
+
|
| 579 |
+
for sec in range(int(duration)):
|
| 580 |
+
if PROGRESS_STORE.get(process_id, {}).get('status') == 'cancelled':
|
| 581 |
+
raise asyncio.CancelledError("Processing cancelled")
|
| 582 |
+
print(f"Processing experiment frame {sec}")
|
| 583 |
+
if PROGRESS_STORE[process_id]["status"] == "cancelled":
|
| 584 |
+
break
|
| 585 |
+
|
| 586 |
+
cap.set(cv2.CAP_PROP_POS_MSEC, sec * 1000)
|
| 587 |
+
ret, frame = cap.read()
|
| 588 |
+
if not ret or frame is None or frame.size == 0:
|
| 589 |
+
logger.warning(f"Experiment: no frame at {sec}s")
|
| 590 |
+
results.append({
|
| 591 |
+
"second": sec,
|
| 592 |
+
"parent_dist": None,
|
| 593 |
+
"stranger_dist": None,
|
| 594 |
+
"face_movement": None,
|
| 595 |
+
"body_movement": None
|
| 596 |
+
})
|
| 597 |
+
continue
|
| 598 |
+
|
| 599 |
+
PROGRESS_STORE[process_id].update({
|
| 600 |
+
"current": sec,
|
| 601 |
+
"percent": 40 + int((sec + 1) / duration * 60)
|
| 602 |
+
})
|
| 603 |
+
|
| 604 |
+
try:
|
| 605 |
+
child_roi = detect_child_and_crop(frame)
|
| 606 |
+
face_score, curr_landmarks = facial_keypoints(child_roi, prev_landmarks)
|
| 607 |
+
pose_kps = process_pose(child_roi)
|
| 608 |
+
body_mv = calculate_body_movement(pose_kps, prev_pose)
|
| 609 |
+
mov_ratio = body_mv / freeplay_movement if freeplay_movement else 0.0
|
| 610 |
+
|
| 611 |
+
parent_dist = calculate_distance_between_objects(frame, "Child", "Adult")
|
| 612 |
+
stranger_dist = calculate_distance_between_objects(frame, "Child", "Stranger")
|
| 613 |
+
|
| 614 |
+
results.append({
|
| 615 |
+
"second": sec,
|
| 616 |
+
"distance_adult": parent_dist,
|
| 617 |
+
"distance_stranger": stranger_dist,
|
| 618 |
+
"facial_movement": face_score,
|
| 619 |
+
"body_movement": mov_ratio
|
| 620 |
+
})
|
| 621 |
+
|
| 622 |
+
prev_landmarks = curr_landmarks
|
| 623 |
+
prev_pose = pose_kps
|
| 624 |
+
|
| 625 |
+
except Exception as e:
|
| 626 |
+
logger.error(f"Experiment error at {sec}s: {e}", exc_info=True)
|
| 627 |
+
# still append a row so CSV timestamps remain aligned
|
| 628 |
+
results.append({
|
| 629 |
+
"second": sec,
|
| 630 |
+
"distance_adult": None,
|
| 631 |
+
"distance_stranger": None,
|
| 632 |
+
"facial_movement": None,
|
| 633 |
+
"body_movement": None
|
| 634 |
+
})
|
| 635 |
+
|
| 636 |
+
cap.release()
|
| 637 |
+
return pd.DataFrame(results)
|
| 638 |
+
|
| 639 |
+
def apply_classes(df, timestamp_start, timestamp_end,
|
| 640 |
+
distance_model_name='distance_classifier.pkl',
|
| 641 |
+
fear_model_name='fear_classifier.pkl',
|
| 642 |
+
freeze_model_name='freeze_classifier.pkl'):
|
| 643 |
+
|
| 644 |
+
|
| 645 |
+
distance_tree_path = Path(__file__).parent / 'models' / distance_model_name
|
| 646 |
+
fear_tree_path = Path(__file__).parent / 'models' / fear_model_name
|
| 647 |
+
freeze_tree_path = Path(__file__).parent / 'models' / freeze_model_name
|
| 648 |
+
|
| 649 |
+
# Load models
|
| 650 |
+
distance_clf = joblib.load(distance_tree_path)
|
| 651 |
+
fear_clf = joblib.load(fear_tree_path)
|
| 652 |
+
freeze_clf = joblib.load(freeze_tree_path)
|
| 653 |
+
|
| 654 |
+
# 1) Initialize outputs
|
| 655 |
+
df['proximity to parent'] = None
|
| 656 |
+
df['proximity to stranger'] = None
|
| 657 |
+
df['fear'] = None
|
| 658 |
+
df['freeze'] = pd.Series([pd.NA] * len(df), dtype="Int64")
|
| 659 |
+
|
| 660 |
+
# 2) Distance → proximity classes
|
| 661 |
+
valid_mask = df[['distance_adult','body_movement','facial_movement']].notnull().all(axis=1)
|
| 662 |
+
preds_parent = distance_clf.predict(df.loc[valid_mask, ['distance_adult']])
|
| 663 |
+
df.loc[valid_mask, 'proximity to parent'] = preds_parent
|
| 664 |
+
df.loc[valid_mask, 'proximity to stranger'] = pd.Series(preds_parent).map({0:2, 1:1, 2:0}).values
|
| 665 |
+
|
| 666 |
+
# 3) Fear classifier
|
| 667 |
+
fear_cols = ['proximity to parent','proximity to stranger','body_movement','facial_movement']
|
| 668 |
+
fear_mask = df[fear_cols].notnull().all(axis=1)
|
| 669 |
+
df.loc[fear_mask, 'fear'] = fear_clf.predict(df.loc[fear_mask, fear_cols])
|
| 670 |
+
|
| 671 |
+
# 4) Build pairwise DataFrame (includes 'second')
|
| 672 |
+
df1 = df.iloc[:-1].reset_index(drop=True).add_suffix('_1')
|
| 673 |
+
df2 = df.iloc[1:].reset_index(drop=True).add_suffix('_2')
|
| 674 |
+
df_pairs = pd.concat([df1, df2], axis=1)
|
| 675 |
+
|
| 676 |
+
# 5) Filter pairs where both fears > 0
|
| 677 |
+
mask = (df_pairs['fear_1'] > 0) & (df_pairs['fear_2'] > 0)
|
| 678 |
+
df_filtered = df_pairs[mask].copy()
|
| 679 |
+
df_filtered['body_movement_avg'] = (df_filtered['body_movement_1'] + df_filtered['body_movement_2']) / 2
|
| 680 |
+
|
| 681 |
+
# 6) Predict freeze and backfill to both seconds
|
| 682 |
+
if not df_filtered.empty:
|
| 683 |
+
df_filtered['freeze'] = freeze_clf.predict(df_filtered[['body_movement_avg']])
|
| 684 |
+
for _, row in df_filtered.iterrows():
|
| 685 |
+
for sec_col in ('second_1', 'second_2'):
|
| 686 |
+
sec = int(row[sec_col])
|
| 687 |
+
idx = df.index[df['second'] == sec][0]
|
| 688 |
+
current = df.at[idx, 'freeze']
|
| 689 |
+
if not (pd.notna(current) and current == 1):
|
| 690 |
+
df.at[idx, 'freeze'] = row['freeze']
|
| 691 |
+
|
| 692 |
+
# 7) Add timestamps column based on timestamp_start and 'second'
|
| 693 |
+
time_format = '%H:%M:%S'
|
| 694 |
+
ts_start = datetime.datetime.strptime(timestamp_start, time_format)
|
| 695 |
+
df['timestamp'] = df['second'].apply(
|
| 696 |
+
lambda x: (ts_start + datetime.timedelta(seconds=int(x))).time().strftime(time_format)
|
| 697 |
+
)
|
| 698 |
+
|
| 699 |
+
# 8) Return only the final columns
|
| 700 |
+
return df[['timestamp', 'second', 'proximity to parent', 'proximity to stranger', 'fear', 'freeze']]
|
| 701 |
+
|
| 702 |
+
async def process_video_async(process_id: str, video_path: Path, session_dir: Path,
|
| 703 |
+
timestamp1: str, timestamp2: str, timestamp3: str, temp_dir: Path):
|
| 704 |
+
|
| 705 |
+
if PROGRESS_STORE.get(process_id, {}).get("started"):
|
| 706 |
+
return
|
| 707 |
+
|
| 708 |
+
# Initialize progress tracking
|
| 709 |
+
PROGRESS_STORE[process_id] = {
|
| 710 |
+
"started": True,
|
| 711 |
+
"status": "processing",
|
| 712 |
+
"percent": 0,
|
| 713 |
+
"message": "Initializing",
|
| 714 |
+
"result": None,
|
| 715 |
+
"error": None
|
| 716 |
+
}
|
| 717 |
+
|
| 718 |
+
# Validate timestamps
|
| 719 |
+
def validate_timestamp(t):
|
| 720 |
+
parts = t.split(':')
|
| 721 |
+
return (len(parts) == 3 and all(p.isdigit() for p in parts))
|
| 722 |
+
|
| 723 |
+
if not all(validate_timestamp(ts) for ts in [timestamp1, timestamp2, timestamp3]):
|
| 724 |
+
raise ValueError("Invalid timestamp format")
|
| 725 |
+
|
| 726 |
+
# Crop video
|
| 727 |
+
PROGRESS_STORE[process_id].update({
|
| 728 |
+
"message": "Cropping video segments",
|
| 729 |
+
"percent": 5
|
| 730 |
+
})
|
| 731 |
+
|
| 732 |
+
|
| 733 |
+
try:
|
| 734 |
+
freeplay_video, experiment_video = await asyncio.to_thread(
|
| 735 |
+
crop_video,
|
| 736 |
+
process_id,
|
| 737 |
+
str(video_path),
|
| 738 |
+
timestamp1,
|
| 739 |
+
timestamp2,
|
| 740 |
+
timestamp3,
|
| 741 |
+
str(temp_dir)
|
| 742 |
+
)
|
| 743 |
+
|
| 744 |
+
|
| 745 |
+
# Process freeplay segment
|
| 746 |
+
PROGRESS_STORE[process_id].update({
|
| 747 |
+
"message": "Analyzing freeplay movement",
|
| 748 |
+
"percent": 10
|
| 749 |
+
})
|
| 750 |
+
freeplay_movement = await asyncio.to_thread(
|
| 751 |
+
process_freeplay,
|
| 752 |
+
process_id,
|
| 753 |
+
freeplay_video
|
| 754 |
+
)
|
| 755 |
+
|
| 756 |
+
# Process experiment segment in a thread
|
| 757 |
+
PROGRESS_STORE[process_id].update({
|
| 758 |
+
"message": "Analyzing experiment",
|
| 759 |
+
"percent": 40
|
| 760 |
+
})
|
| 761 |
+
result_df = await asyncio.to_thread(
|
| 762 |
+
process_experiment,
|
| 763 |
+
process_id,
|
| 764 |
+
experiment_video,
|
| 765 |
+
freeplay_movement
|
| 766 |
+
)
|
| 767 |
+
|
| 768 |
+
final_df = apply_classes(result_df, timestamp2, timestamp3)
|
| 769 |
+
|
| 770 |
+
result_path = session_dir / "analysis.csv"
|
| 771 |
+
final_df.to_csv(result_path, index=False)
|
| 772 |
+
os.sync()
|
| 773 |
+
|
| 774 |
+
PROGRESS_STORE[process_id].update({
|
| 775 |
+
"status": "completed",
|
| 776 |
+
"result": str(result_path),
|
| 777 |
+
"percent": 100,
|
| 778 |
+
"message": "Analysis complete"
|
| 779 |
+
})
|
| 780 |
+
|
| 781 |
+
except Exception as e:
|
| 782 |
+
logger.error(f"Processing error: {str(e)}", exc_info=True)
|
| 783 |
+
PROGRESS_STORE[process_id].update({
|
| 784 |
+
"status": "error",
|
| 785 |
+
"error": str(e),
|
| 786 |
+
"percent": 100
|
| 787 |
+
})
|
| 788 |
+
|
| 789 |
+
finally:
|
| 790 |
+
if video_path.exists():
|
| 791 |
+
video_path.unlink()
|
| 792 |
+
|
| 793 |
+
#################################################
|
| 794 |
+
# API Endpoints
|
| 795 |
+
#################################################
|
| 796 |
+
|
| 797 |
+
@app.post("/api/process-video")
|
| 798 |
+
async def start_processing(
|
| 799 |
+
video: UploadFile = File(...),
|
| 800 |
+
timestamp1: str = Form(...),
|
| 801 |
+
timestamp2: str = Form(...),
|
| 802 |
+
timestamp3: str = Form(...)
|
| 803 |
+
):
|
| 804 |
+
# 1) Generate IDs & dirs
|
| 805 |
+
process_id = str(uuid.uuid4())
|
| 806 |
+
temp_dir = Path(tempfile.mkdtemp())
|
| 807 |
+
session_dir = OUTPUT_DIR / f"session_{process_id}"
|
| 808 |
+
session_dir.mkdir(exist_ok=True)
|
| 809 |
+
|
| 810 |
+
# 2) Seed progress (so /api/progress can pick it up immediately)
|
| 811 |
+
PROGRESS_STORE[process_id] = {
|
| 812 |
+
"started": False,
|
| 813 |
+
"status": "queued",
|
| 814 |
+
"percent": 0,
|
| 815 |
+
"message": "Queued for processing",
|
| 816 |
+
"result": None,
|
| 817 |
+
"error": None
|
| 818 |
+
}
|
| 819 |
+
|
| 820 |
+
# 3) Save the upload
|
| 821 |
+
video_path = temp_dir / video.filename
|
| 822 |
+
with open(video_path, "wb") as f:
|
| 823 |
+
f.write(await video.read())
|
| 824 |
+
|
| 825 |
+
# 4) Kick off the async worker on the loop directly
|
| 826 |
+
asyncio.create_task(
|
| 827 |
+
process_video_async(
|
| 828 |
+
process_id, video_path, session_dir,
|
| 829 |
+
timestamp1, timestamp2, timestamp3, temp_dir
|
| 830 |
+
)
|
| 831 |
+
)
|
| 832 |
+
|
| 833 |
+
# 5) Return the process_id immediately
|
| 834 |
+
return {"process_id": process_id}
|
| 835 |
+
|
| 836 |
+
@app.get("/api/progress/{process_id}")
|
| 837 |
+
async def progress_stream(process_id: str):
|
| 838 |
+
async def event_generator():
|
| 839 |
+
last = {}
|
| 840 |
+
while True:
|
| 841 |
+
if process_id in PROGRESS_STORE:
|
| 842 |
+
current = PROGRESS_STORE[process_id]
|
| 843 |
+
if current != last:
|
| 844 |
+
last = current.copy() # snapshot instead of alias
|
| 845 |
+
yield f"data: {json.dumps(current)}\n\n"
|
| 846 |
+
if current["status"] in ["completed", "error", "cancelled"]:
|
| 847 |
+
break
|
| 848 |
+
await asyncio.sleep(0.5)
|
| 849 |
+
|
| 850 |
+
return StreamingResponse(
|
| 851 |
+
event_generator(),
|
| 852 |
+
media_type="text/event-stream",
|
| 853 |
+
headers={
|
| 854 |
+
"Cache-Control": "no-cache",
|
| 855 |
+
"Connection": "keep-alive" # ensure the stream stays open
|
| 856 |
+
}
|
| 857 |
+
)
|
| 858 |
+
|
| 859 |
+
@app.get("/api/results/{process_id}")
|
| 860 |
+
async def results(process_id: str):
|
| 861 |
+
if process_id not in PROGRESS_STORE:
|
| 862 |
+
raise HTTPException(404, detail="Process ID not found")
|
| 863 |
+
|
| 864 |
+
status = PROGRESS_STORE[process_id]
|
| 865 |
+
|
| 866 |
+
if status["status"] == "completed":
|
| 867 |
+
csv_path = Path(status["result"])
|
| 868 |
+
try:
|
| 869 |
+
# Validate file exists and is readable
|
| 870 |
+
if not csv_path.exists() or csv_path.stat().st_size == 0:
|
| 871 |
+
raise FileNotFoundError("Result file missing or empty")
|
| 872 |
+
|
| 873 |
+
return FileResponse(
|
| 874 |
+
csv_path,
|
| 875 |
+
media_type="text/csv",
|
| 876 |
+
filename="stranger_danger_analysis.csv",
|
| 877 |
+
headers={"X-Analysis-Complete": "true"}
|
| 878 |
+
)
|
| 879 |
+
except Exception as e:
|
| 880 |
+
logger.error(f"Results delivery failed: {str(e)}")
|
| 881 |
+
raise HTTPException(500, detail="Results generation failed")
|
| 882 |
+
|
| 883 |
+
raise HTTPException(425, detail="Analysis not complete yet")
|
| 884 |
+
|
| 885 |
+
@app.post("/api/cancel-analysis")
|
| 886 |
+
async def cancel_analysis(process_id: str = Form(...)):
|
| 887 |
+
if process_id in PROGRESS_STORE:
|
| 888 |
+
PROGRESS_STORE[process_id].update({"status": "cancelled", "message": "Cancelled by user"})
|
| 889 |
+
return {"status": "cancelled"}
|
| 890 |
+
|
| 891 |
+
@app.post("/api/delete-video")
|
| 892 |
+
async def delete_video(process_id: str = Form(...)):
|
| 893 |
+
if process_id in PROGRESS_STORE:
|
| 894 |
+
PROGRESS_STORE.pop(process_id, None)
|
| 895 |
+
return {"status": "deleted"}
|
| 896 |
+
raise HTTPException(404, detail="Video not found")
|
| 897 |
+
|
| 898 |
+
@app.get("/{full_path:path}")
|
| 899 |
+
async def serve_frontend(full_path: str):
|
| 900 |
+
if full_path.startswith(("api/", "static/")):
|
| 901 |
+
raise HTTPException(status_code=404)
|
| 902 |
+
frontend = Path("frontend/index.html")
|
| 903 |
+
if not frontend.exists():
|
| 904 |
+
raise HTTPException(status_code=404, detail="Frontend not found")
|
| 905 |
+
return FileResponse(frontend)
|
| 906 |
+
|
| 907 |
+
if __name__ == "__main__":
|
| 908 |
+
import uvicorn
|
| 909 |
+
uvicorn.run("main:app", host="0.0.0.0", port=8000, reload=True)
|
| 910 |
+
|
| 911 |
+
|
backend/midas_utils/__init__.py
ADDED
|
File without changes
|
backend/midas_utils/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (167 Bytes). View file
|
|
|
backend/midas_utils/__pycache__/transforms.cpython-310.pyc
ADDED
|
Binary file (1.91 kB). View file
|
|
|
backend/midas_utils/fresh_model.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:70d6b9c891758c67f974a6097fb0c608c7ee67fb81ac3e5588847d5596d56fca
|
| 3 |
+
size 85761505
|
backend/midas_utils/model.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:70d6b9c891758c67f974a6097fb0c608c7ee67fb81ac3e5588847d5596d56fca
|
| 3 |
+
size 85761505
|
backend/midas_utils/transforms.py
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
+
from torchvision import transforms
|
| 5 |
+
|
| 6 |
+
class Resize(object):
|
| 7 |
+
def __init__(self, size):
|
| 8 |
+
self.size = size
|
| 9 |
+
|
| 10 |
+
def __call__(self, image):
|
| 11 |
+
image = cv2.resize(image, (self.size, self.size))
|
| 12 |
+
return image
|
| 13 |
+
|
| 14 |
+
class NormalizeImage(object):
|
| 15 |
+
def __init__(self, mean, std):
|
| 16 |
+
self.mean = mean
|
| 17 |
+
self.std = std
|
| 18 |
+
|
| 19 |
+
def __call__(self, image):
|
| 20 |
+
image = image.astype(np.float32) / 255.0
|
| 21 |
+
image -= np.array(self.mean)
|
| 22 |
+
image /= np.array(self.std)
|
| 23 |
+
return image
|
| 24 |
+
|
| 25 |
+
class PrepareForNet(object):
|
| 26 |
+
def __call__(self, image):
|
| 27 |
+
image = torch.from_numpy(image)
|
| 28 |
+
if len(image.shape) == 3:
|
| 29 |
+
image = image.permute(2, 0, 1)
|
| 30 |
+
image = image.unsqueeze(0)
|
| 31 |
+
return image
|
| 32 |
+
|
| 33 |
+
class Compose:
|
| 34 |
+
def __init__(self, transforms):
|
| 35 |
+
self.transforms = transforms
|
| 36 |
+
|
| 37 |
+
def __call__(self, img):
|
| 38 |
+
for t in self.transforms:
|
| 39 |
+
img = t(img)
|
| 40 |
+
return img
|
backend/models/.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
backend/models/distance_classifier.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f5e48f5a4ec6ad18315c3a4c3a97cd76a506b35147008db0ca420056b6767a5e
|
| 3 |
+
size 2241
|
backend/models/fear_classifier.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ea252c3a845a28cac79a1b1ed944f4929a3e510286a772b3dccf6ba8412697c1
|
| 3 |
+
size 4273
|
backend/models/freeze_classifier.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:75491fb862b4c0bfdc79c214bdf5bdaa32622c5908cc2215e7a467754923bfe6
|
| 3 |
+
size 3129
|
backend/models/yolo_retrained_model.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f09573aee77e183bad25d85a07f58be838d9e02bfbfcb0fdefb73bd59dddc117
|
| 3 |
+
size 52045563
|
backend/models/yolov8n-pose.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c6fa93dd1ee4a2c18c900a45c1d864a1c6f7aba75d84f91648a30b7fb641d212
|
| 3 |
+
size 6832633
|
ffmpeg
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e7e7fb30477f717e6f55f9180a70386c62677ef8a4d4d1a5d948f4098aa3eb99
|
| 3 |
+
size 79826272
|
frontend/.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
frontend/index.html
ADDED
|
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<!DOCTYPE html>
|
| 2 |
+
<html lang="en">
|
| 3 |
+
<head>
|
| 4 |
+
<meta charset="UTF-8">
|
| 5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
| 6 |
+
<title>Experiment Auto-Labeler</title>
|
| 7 |
+
<base href="/">
|
| 8 |
+
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.0.0/css/all.min.css">
|
| 9 |
+
<link rel="stylesheet" href="/static/style.css">
|
| 10 |
+
</head>
|
| 11 |
+
<body>
|
| 12 |
+
<div class="container">
|
| 13 |
+
<!-- Initial Screen -->
|
| 14 |
+
<div class="card" id="initialScreen">
|
| 15 |
+
<h1>Stranger Danger Auto-Labeling</h1>
|
| 16 |
+
<div class="option-grid">
|
| 17 |
+
<div class="option-card" onclick="showUploadScreen('sharepoint')">
|
| 18 |
+
<i class="fab fa-microsoft"></i>
|
| 19 |
+
<h3>SharePoint</h3>
|
| 20 |
+
<p>Access videos from SharePoint</p>
|
| 21 |
+
</div>
|
| 22 |
+
<div class="option-card" onclick="showUploadScreen('local')">
|
| 23 |
+
<i class="fas fa-upload"></i>
|
| 24 |
+
<h3>Local Upload</h3>
|
| 25 |
+
<p>Upload from your device</p>
|
| 26 |
+
</div>
|
| 27 |
+
</div>
|
| 28 |
+
</div>
|
| 29 |
+
|
| 30 |
+
<!-- SharePoint Credentials Screen -->
|
| 31 |
+
<div class="card hidden" id="sharepointCredScreen">
|
| 32 |
+
<h2>SharePoint Connection</h2>
|
| 33 |
+
<form id="spCredForm" onsubmit="handleSpCredSubmit(event)">
|
| 34 |
+
<div class="form-group">
|
| 35 |
+
<label>Site URL</label>
|
| 36 |
+
<input type="url" id="spSiteUrl" required placeholder="https://yourdomain.sharepoint.com/sites/yoursite">
|
| 37 |
+
</div>
|
| 38 |
+
<div class="form-group">
|
| 39 |
+
<label>Client ID</label>
|
| 40 |
+
<input type="text" id="spClientId" required placeholder="a1b2c3d4-e5f6-7g8h-9i0j-k1l2m3n4o5p6">
|
| 41 |
+
</div>
|
| 42 |
+
<div class="form-group">
|
| 43 |
+
<label>Client Secret</label>
|
| 44 |
+
<input type="password" id="spClientSecret" required placeholder="ABC123~abcdefghijklmnopqrstuvwxyz">
|
| 45 |
+
</div>
|
| 46 |
+
<div class="form-group">
|
| 47 |
+
<label>Document Library</label>
|
| 48 |
+
<input type="text" id="spDocLibrary" value="Documents" required>
|
| 49 |
+
</div>
|
| 50 |
+
<button type="submit" class="btn">
|
| 51 |
+
<i class="fas fa-check"></i> Connect
|
| 52 |
+
</button>
|
| 53 |
+
<button type="button" class="btn secondary" onclick="showScreen('initialScreen')">
|
| 54 |
+
<i class="fas fa-arrow-left"></i> Back
|
| 55 |
+
</button>
|
| 56 |
+
</form>
|
| 57 |
+
</div>
|
| 58 |
+
|
| 59 |
+
<!-- SharePoint File Selection -->
|
| 60 |
+
<div class="card hidden" id="sharepointFileScreen">
|
| 61 |
+
<h2>Select SharePoint File</h2>
|
| 62 |
+
<div id="spFileList"></div>
|
| 63 |
+
<button class="btn secondary" onclick="showScreen('sharepointCredScreen')">
|
| 64 |
+
<i class="fas fa-arrow-left"></i> Back
|
| 65 |
+
</button>
|
| 66 |
+
</div>
|
| 67 |
+
|
| 68 |
+
<!-- Local Upload Screen -->
|
| 69 |
+
<div class="card hidden" id="localUploadScreen">
|
| 70 |
+
<h2>Upload Video</h2>
|
| 71 |
+
<div class="upload-area" id="dropZone">
|
| 72 |
+
<i class="fas fa-cloud-upload-alt"></i>
|
| 73 |
+
<p>Drag & drop or click to upload</p>
|
| 74 |
+
<input type="file" id="videoInput" hidden accept="video/*">
|
| 75 |
+
</div>
|
| 76 |
+
<div class="preview-container">
|
| 77 |
+
<video id="videoPreview" class="hidden" controls></video>
|
| 78 |
+
</div>
|
| 79 |
+
|
| 80 |
+
<!-- Add timestamp inputs -->
|
| 81 |
+
<div class="timestamp-group">
|
| 82 |
+
<div class="form-group">
|
| 83 |
+
<label>Start Time (HH:MM:SS)</label>
|
| 84 |
+
<input type="text" id="timestamp1" required
|
| 85 |
+
pattern="^([0-1][0-9]|2[0-3]):([0-5][0-9]):([0-5][0-9])$"
|
| 86 |
+
placeholder="00:00:00">
|
| 87 |
+
</div>
|
| 88 |
+
<div class="form-group">
|
| 89 |
+
<label>Transition Time (HH:MM:SS)</label>
|
| 90 |
+
<input type="text" id="timestamp2" required
|
| 91 |
+
pattern="^([0-1][0-9]|2[0-3]):([0-5][0-9]):([0-5][0-9])$"
|
| 92 |
+
placeholder="00:00:00">
|
| 93 |
+
</div>
|
| 94 |
+
<div class="form-group">
|
| 95 |
+
<label>End Time (HH:MM:SS)</label>
|
| 96 |
+
<input type="text" id="timestamp3" required
|
| 97 |
+
pattern="^([0-1][0-9]|2[0-3]):([0-5][0-9]):([0-5][0-9])$"
|
| 98 |
+
placeholder="00:00:00">
|
| 99 |
+
</div>
|
| 100 |
+
</div>
|
| 101 |
+
|
| 102 |
+
<button class="btn" id="analyzeBtn" disabled>
|
| 103 |
+
<i class="fas fa-play"></i> Start Analysis
|
| 104 |
+
</button>
|
| 105 |
+
<button class="btn secondary" onclick="showScreen('initialScreen')">
|
| 106 |
+
<i class="fas fa-arrow-left"></i> Back
|
| 107 |
+
</button>
|
| 108 |
+
</div>
|
| 109 |
+
|
| 110 |
+
<!-- Progress Screen -->
|
| 111 |
+
<div class="card hidden" id="progressScreen">
|
| 112 |
+
<h2>Analyzing Video</h2>
|
| 113 |
+
<div class="progress-container">
|
| 114 |
+
<div class="progress-bar" id="progressBar"></div>
|
| 115 |
+
<div id="frameCounter"></div>
|
| 116 |
+
</div>
|
| 117 |
+
<p id="progressMessage">Initializing analysis... Do not cancel</p>
|
| 118 |
+
<div class="button-group">
|
| 119 |
+
<button class="btn danger" id="cancelBtn" onclick="cancelAnalysis()">
|
| 120 |
+
<i class="fas fa-stop-circle"></i> Cancel Analysis
|
| 121 |
+
</button>
|
| 122 |
+
</div>
|
| 123 |
+
</div>
|
| 124 |
+
|
| 125 |
+
<!-- Results Screen -->
|
| 126 |
+
<div class="card hidden" id="resultsScreen">
|
| 127 |
+
<h2>Analysis Complete!</h2>
|
| 128 |
+
<div class="result-badge">
|
| 129 |
+
<i class="fas fa-check-circle"></i>
|
| 130 |
+
</div>
|
| 131 |
+
<button class="btn" id="downloadBtn">
|
| 132 |
+
<i class="fas fa-download"></i> Download Report
|
| 133 |
+
</button>
|
| 134 |
+
<button class="btn secondary" id="newAnalysisBtn">
|
| 135 |
+
<i class="fas fa-redo"></i> New Analysis
|
| 136 |
+
</button>
|
| 137 |
+
</div>
|
| 138 |
+
</div>
|
| 139 |
+
<script src="/static/script.js"></script>
|
| 140 |
+
</body>
|
| 141 |
+
</html>
|
frontend/static/script.js
ADDED
|
@@ -0,0 +1,429 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// ==================== Constants & Global State ====================
|
| 2 |
+
const API_BASE_URL = window.location.origin; // Base URL for API calls, using current origin
|
| 3 |
+
|
| 4 |
+
let currentFile = null; // Holds the currently selected video file (Blob or File)
|
| 5 |
+
let analysisAbortController = null; // Controller to abort video analysis requests
|
| 6 |
+
let spCredentials = {}; // Stores SharePoint credentials after connection
|
| 7 |
+
let isSharePointFile = false; // Flag indicating if the file came from SharePoint
|
| 8 |
+
let progressSource = null; // EventSource for server-sent events during processing
|
| 9 |
+
|
| 10 |
+
// ==================== Initialization ====================
|
| 11 |
+
|
| 12 |
+
document.addEventListener('DOMContentLoaded', () => {
|
| 13 |
+
initApp(); // Kick off app setup
|
| 14 |
+
});
|
| 15 |
+
|
| 16 |
+
function initApp() {
|
| 17 |
+
initEventListeners(); // Attach all UI event handlers
|
| 18 |
+
showScreen('initialScreen'); // Display the upload/timestamp screen
|
| 19 |
+
}
|
| 20 |
+
|
| 21 |
+
function initEventListeners() {
|
| 22 |
+
// File upload via click
|
| 23 |
+
document.getElementById('dropZone').addEventListener('click', () => {
|
| 24 |
+
document.getElementById('videoInput').click(); // Trigger hidden file input
|
| 25 |
+
});
|
| 26 |
+
|
| 27 |
+
// File input change handler
|
| 28 |
+
document.getElementById('videoInput').addEventListener('change', handleFileSelect);
|
| 29 |
+
|
| 30 |
+
// Drag-and-drop handlers
|
| 31 |
+
const dropZone = document.getElementById('dropZone');
|
| 32 |
+
dropZone.addEventListener('dragover', handleDragOver); // Highlight zone on drag over
|
| 33 |
+
dropZone.addEventListener('drop', handleDrop); // Handle file drop
|
| 34 |
+
dropZone.addEventListener('dragleave', () => dropZone.classList.remove('dragover')); // Remove highlight
|
| 35 |
+
|
| 36 |
+
// Navigation buttons to switch screens
|
| 37 |
+
document.querySelectorAll('[data-screen]').forEach(btn => {
|
| 38 |
+
btn.addEventListener('click', () => {
|
| 39 |
+
if (analysisAbortController) {
|
| 40 |
+
// If analysis in flight, cancel then switch
|
| 41 |
+
cancelAnalysis().finally(() => showScreen(btn.dataset.screen));
|
| 42 |
+
} else {
|
| 43 |
+
showScreen(btn.dataset.screen);
|
| 44 |
+
}
|
| 45 |
+
});
|
| 46 |
+
});
|
| 47 |
+
|
| 48 |
+
// "New Analysis" button on results screen
|
| 49 |
+
document.querySelector('#resultsScreen .btn.secondary').addEventListener('click', handleNewAnalysis);
|
| 50 |
+
|
| 51 |
+
// Analysis control buttons
|
| 52 |
+
document.getElementById('analyzeBtn').addEventListener('click', startAnalysis); // Start processing
|
| 53 |
+
document.getElementById('cancelBtn').addEventListener('click', cancelAnalysis); // Cancel processing
|
| 54 |
+
document.getElementById('downloadBtn').addEventListener('click', () => {
|
| 55 |
+
// Download handled dynamically in setupDownload()
|
| 56 |
+
});
|
| 57 |
+
|
| 58 |
+
// Timestamp input validation handlers
|
| 59 |
+
document.getElementById('timestamp1').addEventListener('input', validateTimestamps);
|
| 60 |
+
document.getElementById('timestamp2').addEventListener('input', validateTimestamps);
|
| 61 |
+
document.getElementById('timestamp3').addEventListener('input', validateTimestamps);
|
| 62 |
+
}
|
| 63 |
+
|
| 64 |
+
// ==================== High-Level Workflows ====================
|
| 65 |
+
|
| 66 |
+
// Start a brand new analysis (from results screen)
|
| 67 |
+
async function handleNewAnalysis() {
|
| 68 |
+
try {
|
| 69 |
+
await cancelAnalysis(); // Abort any running job
|
| 70 |
+
resetApp(); // Clear form and state
|
| 71 |
+
resetAnalyzeButton(); // Restore Analyze button
|
| 72 |
+
showScreen('initialScreen'); // Go back to upload
|
| 73 |
+
} catch (error) {
|
| 74 |
+
showError(`Failed to start new analysis: ${error.message}`); // Show error
|
| 75 |
+
}
|
| 76 |
+
}
|
| 77 |
+
|
| 78 |
+
// Handle SharePoint credentials submission and file listing
|
| 79 |
+
async function handleSpCredSubmit(event) {
|
| 80 |
+
event.preventDefault();
|
| 81 |
+
|
| 82 |
+
const submitBtn = event.target.querySelector('button[type="submit"]');
|
| 83 |
+
const originalText = submitBtn.innerHTML;
|
| 84 |
+
submitBtn.disabled = true; // Prevent double submits
|
| 85 |
+
submitBtn.innerHTML = '<i class="fas fa-spinner fa-spin"></i> Connecting...'; // Show spinner
|
| 86 |
+
|
| 87 |
+
// Collect credentials from form
|
| 88 |
+
spCredentials = {
|
| 89 |
+
siteUrl: document.getElementById('spSiteUrl').value.trim(),
|
| 90 |
+
clientId: document.getElementById('spClientId').value.trim(),
|
| 91 |
+
clientSecret: document.getElementById('spClientSecret').value.trim(),
|
| 92 |
+
docLibrary: document.getElementById('spDocLibrary').value.trim()
|
| 93 |
+
};
|
| 94 |
+
|
| 95 |
+
try {
|
| 96 |
+
const response = await fetch(`${API_BASE_URL}/api/sharepoint/files`, {
|
| 97 |
+
method: 'POST',
|
| 98 |
+
headers: { 'Content-Type': 'application/x-www-form-urlencoded' },
|
| 99 |
+
body: new URLSearchParams({
|
| 100 |
+
...spCredentials,
|
| 101 |
+
doc_library: spCredentials.docLibrary
|
| 102 |
+
})
|
| 103 |
+
});
|
| 104 |
+
|
| 105 |
+
if (!response.ok) {
|
| 106 |
+
const errorData = await response.json().catch(() => ({}));
|
| 107 |
+
throw new Error(errorData.detail || response.statusText);
|
| 108 |
+
}
|
| 109 |
+
|
| 110 |
+
const files = await response.json(); // Array of SharePoint files
|
| 111 |
+
renderSpFileList(files); // Populate file list UI
|
| 112 |
+
showScreen('sharepointFileScreen'); // Switch to file selection
|
| 113 |
+
} catch (error) {
|
| 114 |
+
showError(`SharePoint connection failed: ${error.message}`);
|
| 115 |
+
} finally {
|
| 116 |
+
submitBtn.disabled = false; // Restore button
|
| 117 |
+
submitBtn.innerHTML = originalText;
|
| 118 |
+
}
|
| 119 |
+
}
|
| 120 |
+
|
| 121 |
+
// Render list of SharePoint files with Select buttons
|
| 122 |
+
function renderSpFileList(files) {
|
| 123 |
+
const fileList = document.getElementById('spFileList');
|
| 124 |
+
if (!fileList) return;
|
| 125 |
+
|
| 126 |
+
fileList.innerHTML = files.map(file => `
|
| 127 |
+
<div class="sp-file-item">
|
| 128 |
+
<span>${file.name}</span>
|
| 129 |
+
<button class="btn" onclick="handleSpFile('${file.id}')">
|
| 130 |
+
<i class="fas fa-play"></i> Select
|
| 131 |
+
</button>
|
| 132 |
+
</div>
|
| 133 |
+
`).join('');
|
| 134 |
+
}
|
| 135 |
+
|
| 136 |
+
// Handle selecting and downloading a file from SharePoint
|
| 137 |
+
async function handleSpFile(fileId) {
|
| 138 |
+
const selectBtn = event.target;
|
| 139 |
+
const originalText = selectBtn.innerHTML;
|
| 140 |
+
selectBtn.disabled = true;
|
| 141 |
+
selectBtn.innerHTML = '<i class="fas fa-spinner fa-spin"></i> Loading...';
|
| 142 |
+
|
| 143 |
+
try {
|
| 144 |
+
const formData = new URLSearchParams({
|
| 145 |
+
...spCredentials,
|
| 146 |
+
file_id: fileId
|
| 147 |
+
});
|
| 148 |
+
|
| 149 |
+
const response = await fetch(`${API_BASE_URL}/api/sharepoint/download`, {
|
| 150 |
+
method: 'POST',
|
| 151 |
+
headers: { 'Content-Type': 'application/x-www-form-urlencoded' },
|
| 152 |
+
body: formData
|
| 153 |
+
});
|
| 154 |
+
|
| 155 |
+
if (!response.ok) {
|
| 156 |
+
const errorData = await response.json().catch(() => ({}));
|
| 157 |
+
throw new Error(errorData.detail || response.statusText);
|
| 158 |
+
}
|
| 159 |
+
|
| 160 |
+
currentFile = await response.blob(); // Store the downloaded blob
|
| 161 |
+
isSharePointFile = true; // Mark as SharePoint source
|
| 162 |
+
await startAnalysis(); // Begin processing
|
| 163 |
+
} catch (error) {
|
| 164 |
+
showError(`File download failed: ${error.message}`);
|
| 165 |
+
} finally {
|
| 166 |
+
selectBtn.disabled = false; // Restore button
|
| 167 |
+
selectBtn.innerHTML = originalText;
|
| 168 |
+
}
|
| 169 |
+
}
|
| 170 |
+
|
| 171 |
+
// Kick off video analysis by sending file and timestamps to backend
|
| 172 |
+
async function startAnalysis() {
|
| 173 |
+
const analyzeBtn = document.getElementById('analyzeBtn');
|
| 174 |
+
analyzeBtn.disabled = true; // Prevent re-click
|
| 175 |
+
analyzeBtn.onclick = null;
|
| 176 |
+
analyzeBtn.innerText = 'Analyzing…'; // Update label
|
| 177 |
+
|
| 178 |
+
if (!currentFile) {
|
| 179 |
+
showError('Please select a file first!');
|
| 180 |
+
resetAnalyzeButton();
|
| 181 |
+
return;
|
| 182 |
+
}
|
| 183 |
+
|
| 184 |
+
const t1 = document.getElementById('timestamp1').value;
|
| 185 |
+
const t2 = document.getElementById('timestamp2').value;
|
| 186 |
+
const t3 = document.getElementById('timestamp3').value;
|
| 187 |
+
if (!validateTimeOrder(t1, t2, t3)) {
|
| 188 |
+
showError('Timestamps must be in ascending order');
|
| 189 |
+
resetAnalyzeButton();
|
| 190 |
+
return;
|
| 191 |
+
}
|
| 192 |
+
|
| 193 |
+
showScreen('progressScreen'); // Show progress UI
|
| 194 |
+
analysisAbortController = new AbortController(); // New controller
|
| 195 |
+
|
| 196 |
+
try {
|
| 197 |
+
const formData = new FormData();
|
| 198 |
+
formData.append('video', currentFile);
|
| 199 |
+
formData.append('timestamp1', t1);
|
| 200 |
+
formData.append('timestamp2', t2);
|
| 201 |
+
formData.append('timestamp3', t3);
|
| 202 |
+
|
| 203 |
+
const response = await fetch(`${API_BASE_URL}/api/process-video`, {
|
| 204 |
+
method: 'POST',
|
| 205 |
+
body: formData,
|
| 206 |
+
signal: analysisAbortController.signal
|
| 207 |
+
});
|
| 208 |
+
|
| 209 |
+
if (!response.ok) {
|
| 210 |
+
const errorData = await response.json().catch(() => ({}));
|
| 211 |
+
throw new Error(errorData.detail || response.statusText);
|
| 212 |
+
}
|
| 213 |
+
|
| 214 |
+
const { process_id } = await response.json();
|
| 215 |
+
setupProgressTracker(process_id);
|
| 216 |
+
|
| 217 |
+
} catch (error) {
|
| 218 |
+
if (error.name !== 'AbortError') {
|
| 219 |
+
showError(`Analysis failed: ${error.message}`);
|
| 220 |
+
showScreen('initialScreen');
|
| 221 |
+
}
|
| 222 |
+
}
|
| 223 |
+
}
|
| 224 |
+
|
| 225 |
+
// ==================== File Upload/Selection Handlers ====================
|
| 226 |
+
|
| 227 |
+
function handleFileSelect(e) {
|
| 228 |
+
const file = e.target.files[0];
|
| 229 |
+
if (file) handleFile(file);
|
| 230 |
+
}
|
| 231 |
+
|
| 232 |
+
function handleDragOver(e) {
|
| 233 |
+
e.preventDefault();
|
| 234 |
+
e.stopPropagation();
|
| 235 |
+
e.currentTarget.classList.add('dragover');
|
| 236 |
+
}
|
| 237 |
+
|
| 238 |
+
function handleDrop(e) {
|
| 239 |
+
e.preventDefault();
|
| 240 |
+
e.stopPropagation();
|
| 241 |
+
e.currentTarget.classList.remove('dragover');
|
| 242 |
+
const file = e.dataTransfer.files[0];
|
| 243 |
+
if (file) handleFile(file);
|
| 244 |
+
}
|
| 245 |
+
|
| 246 |
+
function handleFile(file) {
|
| 247 |
+
if (!file || !file.type.startsWith('video/')) {
|
| 248 |
+
showError('Please upload a valid video file (MP4, MOV, or AVI)');
|
| 249 |
+
return;
|
| 250 |
+
}
|
| 251 |
+
|
| 252 |
+
currentFile = file;
|
| 253 |
+
isSharePointFile = false;
|
| 254 |
+
|
| 255 |
+
const preview = document.getElementById('videoPreview');
|
| 256 |
+
const analyzeBtn = document.getElementById('analyzeBtn');
|
| 257 |
+
|
| 258 |
+
if (preview.src) URL.revokeObjectURL(preview.src);
|
| 259 |
+
|
| 260 |
+
preview.src = URL.createObjectURL(file);
|
| 261 |
+
preview.classList.remove('hidden');
|
| 262 |
+
analyzeBtn.disabled = false;
|
| 263 |
+
|
| 264 |
+
document.getElementById('timestamp1').value = '';
|
| 265 |
+
document.getElementById('timestamp2').value = '';
|
| 266 |
+
document.getElementById('timestamp3').value = '';
|
| 267 |
+
validateTimestamps();
|
| 268 |
+
}
|
| 269 |
+
|
| 270 |
+
function showUploadScreen(type) {
|
| 271 |
+
if (type === 'sharepoint') {
|
| 272 |
+
showScreen('sharepointCredScreen');
|
| 273 |
+
} else {
|
| 274 |
+
showScreen('localUploadScreen');
|
| 275 |
+
}
|
| 276 |
+
}
|
| 277 |
+
|
| 278 |
+
// ==================== Progress Tracking ====================
|
| 279 |
+
|
| 280 |
+
function setupProgressTracker(processId) {
|
| 281 |
+
if (progressSource) progressSource.close();
|
| 282 |
+
|
| 283 |
+
progressSource = new EventSource(`${API_BASE_URL}/api/progress/${processId}`);
|
| 284 |
+
|
| 285 |
+
progressSource.onmessage = (event) => {
|
| 286 |
+
try {
|
| 287 |
+
const data = JSON.parse(event.data);
|
| 288 |
+
|
| 289 |
+
if (data.status === 'completed') {
|
| 290 |
+
handleAnalysisComplete(processId);
|
| 291 |
+
progressSource.close();
|
| 292 |
+
} else if (data.status === 'error') {
|
| 293 |
+
showError(data.error || 'Analysis failed');
|
| 294 |
+
progressSource.close();
|
| 295 |
+
showScreen('initialScreen');
|
| 296 |
+
} else {
|
| 297 |
+
updateProgressUI(data);
|
| 298 |
+
}
|
| 299 |
+
} catch (error) {
|
| 300 |
+
console.error('Error parsing progress:', error);
|
| 301 |
+
}
|
| 302 |
+
};
|
| 303 |
+
|
| 304 |
+
progressSource.onerror = () => {
|
| 305 |
+
console.log('SSE error - attempting reconnect');
|
| 306 |
+
setTimeout(() => setupProgressTracker(processId), 2000);
|
| 307 |
+
};
|
| 308 |
+
}
|
| 309 |
+
|
| 310 |
+
function updateProgressUI(progress) {
|
| 311 |
+
const progressBar = document.getElementById('progressBar');
|
| 312 |
+
const progressMessage = document.getElementById('progressMessage');
|
| 313 |
+
|
| 314 |
+
progressBar.style.width = `${progress.percent}%`;
|
| 315 |
+
progressMessage.textContent = progress.message;
|
| 316 |
+
|
| 317 |
+
if (progress.current && progress.total) {
|
| 318 |
+
document.getElementById('frameCounter').textContent = `${progress.current}/${progress.total} seconds processed`;
|
| 319 |
+
}
|
| 320 |
+
}
|
| 321 |
+
|
| 322 |
+
async function handleAnalysisComplete(processId) {
|
| 323 |
+
try {
|
| 324 |
+
const response = await fetch(`${API_BASE_URL}/api/results/${processId}`);
|
| 325 |
+
const blob = await response.blob();
|
| 326 |
+
setupDownload(blob);
|
| 327 |
+
showScreen('resultsScreen');
|
| 328 |
+
} catch (error) {
|
| 329 |
+
showError('Failed to retrieve results');
|
| 330 |
+
}
|
| 331 |
+
}
|
| 332 |
+
|
| 333 |
+
// ==================== Utilities ====================
|
| 334 |
+
|
| 335 |
+
function showScreen(screenId) {
|
| 336 |
+
document.querySelectorAll('.card').forEach(el => el.classList.add('hidden'));
|
| 337 |
+
const targetScreen = document.getElementById(screenId);
|
| 338 |
+
if (targetScreen) {
|
| 339 |
+
targetScreen.classList.remove('hidden');
|
| 340 |
+
window.scrollTo(0, 0);
|
| 341 |
+
} else {
|
| 342 |
+
console.error(`Screen with ID ${screenId} not found`);
|
| 343 |
+
}
|
| 344 |
+
}
|
| 345 |
+
|
| 346 |
+
function showError(message) {
|
| 347 |
+
const errorDiv = document.createElement('div');
|
| 348 |
+
errorDiv.className = 'error-message';
|
| 349 |
+
errorDiv.innerHTML = `<i class="fas fa-exclamation-circle"></i><span>${message}</span>`;
|
| 350 |
+
document.body.prepend(errorDiv);
|
| 351 |
+
setTimeout(() => { errorDiv.classList.add('fade-out'); setTimeout(() => errorDiv.remove(), 500); }, 5000);
|
| 352 |
+
}
|
| 353 |
+
|
| 354 |
+
function validateTimestamps() {
|
| 355 |
+
const t1 = document.getElementById('timestamp1');
|
| 356 |
+
const t2 = document.getElementById('timestamp2');
|
| 357 |
+
const t3 = document.getElementById('timestamp3');
|
| 358 |
+
const analyzeBtn = document.getElementById('analyzeBtn');
|
| 359 |
+
const isValid = t1.checkValidity() && t2.checkValidity() && t3.checkValidity() && t1.value !== '' && t2.value !== '' && t3.value !== '';
|
| 360 |
+
analyzeBtn.disabled = !isValid;
|
| 361 |
+
}
|
| 362 |
+
|
| 363 |
+
function validateTimeOrder(t1, t2, t3) {
|
| 364 |
+
const toSeconds = t => { const [h, m, s] = t.split(':').map(Number); return h*3600 + m*60 + s; };
|
| 365 |
+
return toSeconds(t1) < toSeconds(t2) && toSeconds(t2) < toSeconds(t3);
|
| 366 |
+
}
|
| 367 |
+
|
| 368 |
+
function resetAnalyzeButton() {
|
| 369 |
+
const btn = document.getElementById('analyzeBtn');
|
| 370 |
+
btn.disabled = false;
|
| 371 |
+
btn.innerText = 'Start Analysis';
|
| 372 |
+
btn.onclick = startAnalysis;
|
| 373 |
+
}
|
| 374 |
+
|
| 375 |
+
function resetApp() {
|
| 376 |
+
const preview = document.getElementById('videoPreview');
|
| 377 |
+
if (preview.src) URL.revokeObjectURL(preview.src);
|
| 378 |
+
preview.src = '';
|
| 379 |
+
preview.classList.add('hidden');
|
| 380 |
+
document.getElementById('videoInput').value = '';
|
| 381 |
+
const progressBar = document.getElementById('progressBar'); if (progressBar) progressBar.style.width = '0%';
|
| 382 |
+
const progressMessage = document.getElementById('progressMessage'); if (progressMessage) progressMessage.textContent = '';
|
| 383 |
+
const spForm = document.getElementById('spCredForm'); if (spForm) spForm.reset();
|
| 384 |
+
if (progressSource) { progressSource.close(); progressSource = null; }
|
| 385 |
+
currentFile = null;
|
| 386 |
+
isSharePointFile = false;
|
| 387 |
+
spCredentials = {};
|
| 388 |
+
}
|
| 389 |
+
|
| 390 |
+
async function cancelAnalysis() {
|
| 391 |
+
try {
|
| 392 |
+
if (progressSource) {
|
| 393 |
+
progressSource.close();
|
| 394 |
+
progressSource = null;
|
| 395 |
+
}
|
| 396 |
+
if (!analysisAbortController) return;
|
| 397 |
+
const progressMessage = document.getElementById('progressMessage'); if (progressMessage) progressMessage.textContent = "Cancelling analysis...";
|
| 398 |
+
analysisAbortController.abort();
|
| 399 |
+
await fetch(`${API_BASE_URL}/api/cancel-analysis`, { method: 'POST' });
|
| 400 |
+
} catch (error) {
|
| 401 |
+
console.error('Cancellation error:', error);
|
| 402 |
+
throw error;
|
| 403 |
+
} finally {
|
| 404 |
+
analysisAbortController = null;
|
| 405 |
+
}
|
| 406 |
+
}
|
| 407 |
+
|
| 408 |
+
function setupDownload(blob) {
|
| 409 |
+
const url = URL.createObjectURL(blob);
|
| 410 |
+
const downloadBtn = document.getElementById('downloadBtn');
|
| 411 |
+
downloadBtn.onclick = null;
|
| 412 |
+
downloadBtn.onclick = () => {
|
| 413 |
+
const a = document.createElement('a');
|
| 414 |
+
a.href = url;
|
| 415 |
+
a.download = `stranger_danger_analysis_${new Date().toISOString().slice(0,10)}.csv`;
|
| 416 |
+
document.body.appendChild(a);
|
| 417 |
+
a.click();
|
| 418 |
+
setTimeout(() => { document.body.removeChild(a); URL.revokeObjectURL(url); }, 100);
|
| 419 |
+
};
|
| 420 |
+
}
|
| 421 |
+
|
| 422 |
+
// ==================== Global Exports ====================
|
| 423 |
+
|
| 424 |
+
window.showUploadScreen = showUploadScreen;
|
| 425 |
+
window.handleSpCredSubmit = handleSpCredSubmit;
|
| 426 |
+
window.handleSpFile = handleSpFile;
|
| 427 |
+
window.startAnalysis = startAnalysis;
|
| 428 |
+
window.cancelAnalysis = cancelAnalysis;
|
| 429 |
+
window.resetApp = resetApp;
|
frontend/static/style.css
ADDED
|
@@ -0,0 +1,251 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
:root {
|
| 2 |
+
--primary: #2A2F4F;
|
| 3 |
+
--secondary: #917FB3;
|
| 4 |
+
--background: #FDE2F3;
|
| 5 |
+
--text: #2A2F4F;
|
| 6 |
+
--success: #4CAF50;
|
| 7 |
+
--danger: #dc3545;
|
| 8 |
+
}
|
| 9 |
+
|
| 10 |
+
* {
|
| 11 |
+
box-sizing: border-box;
|
| 12 |
+
margin: 0;
|
| 13 |
+
padding: 0;
|
| 14 |
+
}
|
| 15 |
+
|
| 16 |
+
body {
|
| 17 |
+
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
| 18 |
+
background: var(--background);
|
| 19 |
+
color: var(--text);
|
| 20 |
+
min-height: 100vh;
|
| 21 |
+
line-height: 1.6;
|
| 22 |
+
padding: 0;
|
| 23 |
+
margin: 0;
|
| 24 |
+
}
|
| 25 |
+
|
| 26 |
+
.container {
|
| 27 |
+
max-width: 1200px;
|
| 28 |
+
margin: 0 auto;
|
| 29 |
+
padding: 2rem;
|
| 30 |
+
min-height: 100vh;
|
| 31 |
+
display: flex;
|
| 32 |
+
flex-direction: column;
|
| 33 |
+
justify-content: center;
|
| 34 |
+
}
|
| 35 |
+
|
| 36 |
+
.card {
|
| 37 |
+
background: white;
|
| 38 |
+
border-radius: 1rem;
|
| 39 |
+
padding: 2rem;
|
| 40 |
+
box-shadow: 0 4px 20px rgba(0,0,0,0.1);
|
| 41 |
+
margin: 1rem auto;
|
| 42 |
+
width: 100%;
|
| 43 |
+
max-width: 800px;
|
| 44 |
+
}
|
| 45 |
+
|
| 46 |
+
h1, h2, h3 {
|
| 47 |
+
color: var(--primary);
|
| 48 |
+
margin-bottom: 1rem;
|
| 49 |
+
}
|
| 50 |
+
|
| 51 |
+
.option-grid {
|
| 52 |
+
display: grid;
|
| 53 |
+
gap: 1.5rem;
|
| 54 |
+
grid-template-columns: repeat(auto-fit, minmax(250px, 1fr));
|
| 55 |
+
margin: 2rem 0;
|
| 56 |
+
}
|
| 57 |
+
|
| 58 |
+
.option-card {
|
| 59 |
+
padding: 2rem;
|
| 60 |
+
border: 2px solid var(--primary);
|
| 61 |
+
border-radius: 1rem;
|
| 62 |
+
cursor: pointer;
|
| 63 |
+
transition: transform 0.2s;
|
| 64 |
+
}
|
| 65 |
+
|
| 66 |
+
.option-card:hover {
|
| 67 |
+
transform: translateY(-5px);
|
| 68 |
+
}
|
| 69 |
+
|
| 70 |
+
.btn {
|
| 71 |
+
background: var(--primary);
|
| 72 |
+
color: white;
|
| 73 |
+
border: none;
|
| 74 |
+
padding: 1rem 2rem;
|
| 75 |
+
border-radius: 0.5rem;
|
| 76 |
+
cursor: pointer;
|
| 77 |
+
font-size: 1rem;
|
| 78 |
+
transition: transform 0.2s;
|
| 79 |
+
display: inline-flex;
|
| 80 |
+
align-items: center;
|
| 81 |
+
gap: 0.5rem;
|
| 82 |
+
}
|
| 83 |
+
|
| 84 |
+
.btn:hover {
|
| 85 |
+
transform: translateY(-2px);
|
| 86 |
+
}
|
| 87 |
+
|
| 88 |
+
.secondary {
|
| 89 |
+
background: var(--secondary);
|
| 90 |
+
}
|
| 91 |
+
|
| 92 |
+
.upload-area {
|
| 93 |
+
border: 2px dashed var(--primary);
|
| 94 |
+
border-radius: 1rem;
|
| 95 |
+
padding: 3rem 2rem;
|
| 96 |
+
margin: 2rem 0;
|
| 97 |
+
cursor: pointer;
|
| 98 |
+
}
|
| 99 |
+
|
| 100 |
+
.preview-container {
|
| 101 |
+
width: 100%;
|
| 102 |
+
max-width: 600px;
|
| 103 |
+
margin: 1rem auto;
|
| 104 |
+
}
|
| 105 |
+
|
| 106 |
+
#videoPreview {
|
| 107 |
+
width: 100%;
|
| 108 |
+
max-width: 100%;
|
| 109 |
+
border-radius: 0.5rem;
|
| 110 |
+
display: block;
|
| 111 |
+
margin: 1rem 0;
|
| 112 |
+
}
|
| 113 |
+
|
| 114 |
+
.progress-container {
|
| 115 |
+
width: 100%;
|
| 116 |
+
margin: 2rem 0;
|
| 117 |
+
}
|
| 118 |
+
|
| 119 |
+
.progress-bar {
|
| 120 |
+
height: 20px;
|
| 121 |
+
background: var(--primary);
|
| 122 |
+
border-radius: 10px;
|
| 123 |
+
transition: width 0.3s ease;
|
| 124 |
+
width: 0%;
|
| 125 |
+
}
|
| 126 |
+
|
| 127 |
+
.hidden {
|
| 128 |
+
display: none !important;
|
| 129 |
+
}
|
| 130 |
+
|
| 131 |
+
.result-badge {
|
| 132 |
+
font-size: 4rem;
|
| 133 |
+
color: var(--primary);
|
| 134 |
+
margin: 2rem 0;
|
| 135 |
+
}
|
| 136 |
+
|
| 137 |
+
.form-group {
|
| 138 |
+
margin: 1rem 0;
|
| 139 |
+
}
|
| 140 |
+
|
| 141 |
+
.form-group label {
|
| 142 |
+
display: block;
|
| 143 |
+
margin-bottom: 0.5rem;
|
| 144 |
+
font-weight: 500;
|
| 145 |
+
}
|
| 146 |
+
|
| 147 |
+
.form-group input {
|
| 148 |
+
width: 100%;
|
| 149 |
+
padding: 0.8rem;
|
| 150 |
+
border: 1px solid #ddd;
|
| 151 |
+
border-radius: 0.5rem;
|
| 152 |
+
font-size: 1rem;
|
| 153 |
+
}
|
| 154 |
+
|
| 155 |
+
.sp-file-item {
|
| 156 |
+
padding: 1rem;
|
| 157 |
+
margin: 0.5rem 0;
|
| 158 |
+
border: 1px solid #ddd;
|
| 159 |
+
border-radius: 0.5rem;
|
| 160 |
+
display: flex;
|
| 161 |
+
justify-content: space-between;
|
| 162 |
+
align-items: center;
|
| 163 |
+
background: #fff;
|
| 164 |
+
}
|
| 165 |
+
|
| 166 |
+
.sp-file-item:hover {
|
| 167 |
+
background: #f8f9fa;
|
| 168 |
+
}
|
| 169 |
+
|
| 170 |
+
#analyzeBtn {
|
| 171 |
+
margin-top: 1rem;
|
| 172 |
+
}
|
| 173 |
+
|
| 174 |
+
#frameCounter {
|
| 175 |
+
text-align: center;
|
| 176 |
+
margin-top: 0.5rem;
|
| 177 |
+
font-size: 0.9em;
|
| 178 |
+
color: #666;
|
| 179 |
+
}
|
| 180 |
+
|
| 181 |
+
#cancelBtn {
|
| 182 |
+
margin-top: 1rem;
|
| 183 |
+
background: #dc3545;
|
| 184 |
+
}
|
| 185 |
+
|
| 186 |
+
#cancelBtn:hover {
|
| 187 |
+
background: #c82333;
|
| 188 |
+
transform: translateY(-2px);
|
| 189 |
+
}
|
| 190 |
+
|
| 191 |
+
.btn.danger {
|
| 192 |
+
background: #dc3545;
|
| 193 |
+
color: white;
|
| 194 |
+
}
|
| 195 |
+
|
| 196 |
+
.btn.danger:hover {
|
| 197 |
+
background: #c82333;
|
| 198 |
+
transform: translateY(-2px);
|
| 199 |
+
}
|
| 200 |
+
|
| 201 |
+
.button-group {
|
| 202 |
+
display: flex;
|
| 203 |
+
gap: 1rem;
|
| 204 |
+
justify-content: center;
|
| 205 |
+
margin-top: 1.5rem;
|
| 206 |
+
}
|
| 207 |
+
|
| 208 |
+
/* Add to your existing CSS */
|
| 209 |
+
#progressBar {
|
| 210 |
+
height: 20px;
|
| 211 |
+
background: var(--primary);
|
| 212 |
+
border-radius: 10px;
|
| 213 |
+
transition: width 0.3s ease;
|
| 214 |
+
width: 0%;
|
| 215 |
+
}
|
| 216 |
+
|
| 217 |
+
#frameCounter {
|
| 218 |
+
display: block;
|
| 219 |
+
text-align: center;
|
| 220 |
+
margin-top: 0.5rem;
|
| 221 |
+
color: var(--text);
|
| 222 |
+
font-size: 0.9em;
|
| 223 |
+
}
|
| 224 |
+
|
| 225 |
+
#newAnalysisBtn {
|
| 226 |
+
margin-top: 1rem;
|
| 227 |
+
}
|
| 228 |
+
|
| 229 |
+
/* Add to style.css */
|
| 230 |
+
.timestamp-group {
|
| 231 |
+
display: grid;
|
| 232 |
+
gap: 1rem;
|
| 233 |
+
margin: 1.5rem 0;
|
| 234 |
+
}
|
| 235 |
+
|
| 236 |
+
.timestamp-group .form-group {
|
| 237 |
+
margin: 0;
|
| 238 |
+
}
|
| 239 |
+
|
| 240 |
+
input[type="text"] {
|
| 241 |
+
width: 100%;
|
| 242 |
+
padding: 0.8rem;
|
| 243 |
+
border: 1px solid #ddd;
|
| 244 |
+
border-radius: 4px;
|
| 245 |
+
font-size: 1rem;
|
| 246 |
+
}
|
| 247 |
+
|
| 248 |
+
input:invalid {
|
| 249 |
+
border-color: #ff4444;
|
| 250 |
+
box-shadow: 0 0 3px #ff4444;
|
| 251 |
+
}
|
requirements.txt
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
fastapi>=0.68.0
|
| 2 |
+
uvicorn>=0.15.0
|
| 3 |
+
opencv-python-headless>=4.5.3
|
| 4 |
+
ultralytics>=8.0.0
|
| 5 |
+
mediapipe>=0.8.9.1
|
| 6 |
+
pandas>=1.3.0
|
| 7 |
+
numpy>=1.21.0
|
| 8 |
+
python-multipart>=0.0.5
|
| 9 |
+
aiohttp>=3.7.4
|
| 10 |
+
office365-rest-python-client>=2.3.12
|
| 11 |
+
ffmpeg>=0.2.0
|
| 12 |
+
joblib>=1.4.2
|
| 13 |
+
scikit-learn>=1.6.1
|