import datetime import os import cv2 import uuid import json import time import re import subprocess import uuid import asyncio import joblib import logging import numpy as np import pandas as pd import tempfile import warnings import shutil from pathlib import Path from PIL import Image import ffmpeg import torch import torchvision.transforms as T from ultralytics import YOLO import mediapipe as mp from fastapi import FastAPI, UploadFile, File, HTTPException, BackgroundTasks, Form, Request from fastapi.responses import FileResponse, StreamingResponse, JSONResponse from fastapi.middleware.cors import CORSMiddleware from fastapi.staticfiles import StaticFiles from backend.midas_utils.transforms import Compose, Resize, NormalizeImage, PrepareForNet ################################################# # Initialize application ################################################# torch.serialization.add_safe_globals([ torch.nn.modules.conv.Conv2d, torch.nn.modules.batchnorm.BatchNorm2d, torch.nn.modules.linear.Linear, torch.nn.modules.container.Sequential, torch.nn.modules.activation.SiLU, torch.nn.modules.container.ModuleList, torch.nn.modules.upsampling.Upsample, torch.nn.modules.pooling.MaxPool2d ]) logger = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") app = FastAPI() # CORS Configuration app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) # Serve frontend files static_dir = Path(__file__).parent.parent / "frontend" / "static" app.mount("/static", StaticFiles(directory=static_dir), name="static") # Configuration DETECTION_MODEL_PATH = Path(__file__).parent / 'models' / "yolo_retrained_model.pt" POSE_MODEL_PATH = Path(__file__).parent / 'models' / "yolov8n-pose.pt" MAX_VIDEO_SIZE = 500 * 1024 * 1024 OUTPUT_DIR = Path("analysis_output") UPLOADED_VIDEOS = {} # Track uploaded video session os.makedirs(OUTPUT_DIR, exist_ok=True) # Global state PROGRESS_STORE = {} ANALYSIS_ACTIVE = False @app.middleware("http") async def error_handling_middleware(request: Request, call_next): try: return await call_next(request) except Exception as e: logger.error(f"Unexpected error: {str(e)}") return JSONResponse( status_code=500, content={"message": "Internal server error"} ) @app.on_event("startup") async def initialize_models(): """Initialize models with warmup inference""" try: device = 'cuda' if torch.cuda.is_available() else 'cpu' logger.info(f"Initializing models on {device}") # Initialize detection model app.state.detection_model = YOLO(DETECTION_MODEL_PATH).to(device) dummy = np.zeros((640, 640, 3), dtype=np.uint8) app.state.detection_model(dummy, verbose=False) # Warmup # Initialize pose model app.state.pose_model = YOLO(POSE_MODEL_PATH).to(device) app.state.pose_model(dummy, verbose=False) # Warmup logger.info("Models initialized successfully") except Exception as e: logger.error(f"Model initialization failed: {str(e)}") raise RuntimeError(f"Model initialization failed: {str(e)}") def update_progress(process_id: str, current: int, total: int, message: str): """Update progress store with analysis status""" PROGRESS_STORE[process_id] = { "percent": min(100, (current / total) * 100), "message": message, "current": current, "total": total, "status": "processing" } ################################################# # Initialize Models ################################################# # Child detection and image cropping def detect_child_and_crop(frame): try: results = app.state.detection_model.predict(frame, verbose=False)[0] class_ids = results.boxes.cls.cpu().numpy() confidences = results.boxes.conf.cpu().numpy() bboxes = results.boxes.xyxy.cpu().numpy() child_bbox = None for box, cls, conf in zip(bboxes, class_ids, confidences): if conf > 0.6: if cls == 1: child_bbox = box elif cls == 0: adult_bbox = box elif cls == 2: stranger_bbox = box if child_bbox is None: return None x1, y1, x2, y2 = map(int, child_bbox) # Validate and clamp coordinates x1 = max(0, x1) y1 = max(0, y1) x2 = min(frame.shape[1], x2) y2 = min(frame.shape[0], y2) if x1 >= x2 or y1 >= y2: logger.warning("Invalid child bounding box") return None child_roi = frame[y1:y2, x1:x2] if child_roi.size == 0: logger.warning("Empty child ROI") return None return child_roi except Exception as e: logger.error(f"Detection error: {str(e)}") return None def load_depth_model(): try: with warnings.catch_warnings(): warnings.simplefilter("ignore") model = torch.hub.load( 'intel-isl/MiDaS', 'MiDaS_small', pretrained=True, trust_repo=True ).float() model.eval().to(device) print("Successfully loaded MiDaS model from torch.hub") return model except Exception as e: raise RuntimeError(f"Failed to load MiDaS model: {e}") # Load transforms midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms") Resize = midas_transforms.Resize NormalizeImage = midas_transforms.NormalizeImage PrepareForNet = midas_transforms.PrepareForNet # Define transform pipeline transform_pipeline = T.Compose([ lambda img: {"image": np.array(img.convert("RGB"), dtype=np.float32) / 255.0}, Resize( 256, 256, resize_target=None, keep_aspect_ratio=True, ensure_multiple_of=32, resize_method="upper_bound", image_interpolation_method=cv2.INTER_CUBIC ), NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), PrepareForNet(), lambda sample: torch.from_numpy(sample["image"]), ]) # Load model once depth_model = load_depth_model() def calculate_distance_between_objects(frame, obj1_label, obj2_label): results = app.state.detection_model.predict(frame, verbose=False)[0] labels = results.names if hasattr(results, 'names') else {} obj1_center = None obj2_center = None for box in results.boxes: cls = int(box.cls[0].item()) label = labels.get(cls, str(cls)) x1, y1, x2, y2 = map(int, box.xyxy[0].cpu().numpy()) center = ((x1 + x2) // 2, (y1 + y2) // 2) if label.lower() == obj1_label.lower(): obj1_center = center elif label.lower() == obj2_label.lower(): obj2_center = center # Validation checks with proper error handling if obj1_center is None: print(f"Important warning: {obj1_label} not detected.") return None if obj2_center is None: if obj2_label.lower() != "stranger": print(f"Warning: {obj2_label} not detected.") return None # Add coordinate validation def validate_coord(coord): return isinstance(coord, tuple) and len(coord) == 2 and \ all(isinstance(v, (int, float)) for v in coord) if not validate_coord(obj1_center) or not validate_coord(obj2_center): print("Invalid coordinates detected") return None try: # Estimate depth img_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) img_pil = Image.fromarray(img_rgb) # Convert to PIL Image first input_tensor = transform_pipeline(img_pil).to(device) if input_tensor.dim() == 3: input_tensor = input_tensor.unsqueeze(0) input_tensor = input_tensor.to(device) with torch.no_grad(): output = depth_model(input_tensor) depth_map = output.squeeze().cpu().numpy() # Rescale object centers with safety checks original_h, original_w = frame.shape[:2] depth_h, depth_w = depth_map.shape def safe_scale(coord, orig_dim, target_dim): try: return int((coord / orig_dim) * target_dim) except ZeroDivisionError: return 0 # Corrected scaling calls x1 = safe_scale(obj1_center[0], original_w, depth_w) y1 = safe_scale(obj1_center[1], original_h, depth_h) x2 = safe_scale(obj2_center[0], original_w, depth_w) y2 = safe_scale(obj2_center[1], original_h, depth_h) # Depth calculation with bounds checking def get_depth(x, y): x = max(0, min(depth_w-1, x)) y = max(0, min(depth_h-1, y)) return depth_map[y, x] d1 = get_depth(x1, y1) d2 = get_depth(x2, y2) if d1 <= 0 or d2 <= 0: return None # 3D coordinate conversion fx = fy = 1109 # Focal length assumption cx, cy = depth_w // 2, depth_h // 2 point1 = ( (x1 - cx) * d1 / fx, (y1 - cy) * d1 / fy, d1 ) point2 = ( (x2 - cx) * d2 / fx, (y2 - cy) * d2 / fy, d2 ) return float(np.linalg.norm(np.array(point1) - np.array(point2))) except Exception as e: logger.error(f"Distance calculation error: {str(e)}") return None # MediaPipe initialization mp_face_mesh = mp.solutions.face_mesh face_mesh = mp_face_mesh.FaceMesh( static_image_mode=False, max_num_faces=1, min_detection_confidence=0.5 ) LANDMARKS = { "left_eye": [33, 133, 159, 145, 160, 144], "right_eye": [362, 263, 386, 374, 387, 373], "left_eyebrow": [70, 63, 105], "right_eyebrow": [300, 293, 334], "mouth": [13, 14, 78, 308], "jaw": [152] } def facial_keypoints(image, prev_landmarks=None): if image is None: logger.error("Received None frame") return 0, None try: h, w = image.shape[:2] except AttributeError: logger.error("Invalid image type") return 0, None if h == 0 or w == 0 or image.size == 0: logger.error("Received empty frame") return 0, None try: results = face_mesh.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)) if not results.multi_face_landmarks: return 0, None current_landmarks = {} for key, indices in LANDMARKS.items(): current_landmarks[key] = [ (int(lm.x * image.shape[1]), int(lm.y * image.shape[0])) for lm in [results.multi_face_landmarks[0].landmark[i] for i in indices] ] movement_score = 0 if prev_landmarks: total_diff = sum( np.sqrt((cx - px)**2 + (cy - py)**2) for key in LANDMARKS for (px, py), (cx, cy) in zip(prev_landmarks.get(key, []), current_landmarks.get(key, [])) ) valid_points = sum(len(landmarks) for landmarks in current_landmarks.values()) movement_score = 2 if (total_diff/valid_points) > 6 else 1 if (total_diff/valid_points) > 3 else 0 return movement_score, current_landmarks except Exception as e: logger.error(f"Facial processing error: {str(e)}") return 0, None def process_pose(image): if image is None: return None try: results = app.state.pose_model(image, verbose=False) if results and hasattr(results[0], 'keypoints'): return results[0].keypoints.xy[0].cpu().numpy() return None except Exception as e: logger.error(f"Pose processing error: {str(e)}") return None def calculate_body_movement(current_pose, previous_pose): if current_pose is None or previous_pose is None: return 0.0 valid_points = 0 total_movement = 0.0 for prev, curr in zip(previous_pose, current_pose): if not (np.isnan(prev).any() or np.isnan(curr).any()): valid_points += 1 total_movement += abs(np.linalg.norm(curr - prev)) return total_movement ################################################# # Preparing for Video Processing ################################################# def time_to_seconds(timestamp): return sum(x * int(t) for x, t in zip([3600, 60, 1], timestamp.split(':'))) def format_progress_message(stage, current, total, extras=None): base = f"{stage} - Frame {current}/{total}" if extras: return f"{base} - {', '.join(f'{k}: {v}' for k,v in extras.items())}" return base def crop_video(process_id: str, video_path: str, timestamp1: str, timestamp2: str, timestamp3: str, temp_dir: str, ffmpeg_path: str = 'ffmpeg') -> tuple[str, str]: """ Crop the video into two clips with cancellation support """ temp_dir_path = Path(temp_dir) # Create temp directory if it doesn't exist temp_dir_path.mkdir(parents=True, exist_ok=True) # Generate temporary filenames first_clip_path = temp_dir_path / f"clip1_{uuid.uuid4()}.mp4" second_clip_path = temp_dir_path / f"clip2_{uuid.uuid4()}.mp4" def check_cancellation(): """Check if processing was cancelled (replace with your actual progress store)""" # You'll need to import or access your PROGRESS_STORE here if PROGRESS_STORE.get(process_id, {}).get('status') == 'cancelled': raise asyncio.CancelledError("Processing cancelled by user during video cropping") def run_ffmpeg_with_cancel_check(command: list, output_file: Path) -> None: """Run ffmpeg command with cancellation checks""" try: # Start the process process = subprocess.Popen( command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True ) # Poll process while checking for cancellation while True: check_cancellation() if process.poll() is not None: # Process finished break time.sleep(0.5) # Check every 500ms # Check final status if process.returncode != 0: raise subprocess.CalledProcessError( process.returncode, command, output=process.stdout, stderr=process.stderr ) except asyncio.CancelledError: # Cleanup and terminate process if process.poll() is None: # Still running process.terminate() try: process.wait(timeout=5) except subprocess.TimeoutExpired: process.kill() # Remove partial output file if output_file.exists(): output_file.unlink() raise # Convert timestamps ts1 = time_to_seconds(timestamp1) ts2 = time_to_seconds(timestamp2) ts3 = time_to_seconds(timestamp3) # Build commands commands = [ ( [ ffmpeg_path, '-y', '-i', video_path, '-ss', str(ts1), '-t', str(ts2 - ts1), '-c:v', 'libx264', '-preset', 'fast', '-crf', '23', '-c:a', 'aac', str(first_clip_path) ], first_clip_path ), ( [ ffmpeg_path, '-y', '-i', video_path, '-ss', str(ts2), '-t', str(ts3 - ts2), '-c:v', 'libx264', '-preset', 'fast', '-crf', '23', '-c:a', 'aac', str(second_clip_path) ], second_clip_path ) ] try: # Process both clips for cmd, output_path in commands: logger.info("Running command: %s", ' '.join(cmd)) run_ffmpeg_with_cancel_check(cmd, output_path) return str(first_clip_path), str(second_clip_path) except asyncio.CancelledError: # Cleanup both files if either was cancelled for path in [first_clip_path, second_clip_path]: if path.exists(): path.unlink() raise ################################################# # Video Processing Loop ################################################# def process_freeplay(process_id: str, freeplay_video: str) -> float: """ Sample one frame per second from the freeplay clip, compute body‐movement metrics and return the average. """ PROGRESS_STORE[process_id].update({"message": "Processing freeplay"}) cap = cv2.VideoCapture(freeplay_video) if not cap.isOpened(): raise RuntimeError(f"Failed to open freeplay video at {freeplay_video}") # Determine clip duration in seconds fps = cap.get(cv2.CAP_PROP_FPS) or 1.0 total_frames = cap.get(cv2.CAP_PROP_FRAME_COUNT) or 0 duration = total_frames / fps movements = [] prev_pose = None for sec in range(int(duration)): if PROGRESS_STORE.get(process_id, {}).get('status') == 'cancelled': raise asyncio.CancelledError("Processing cancelled") print(f"Processing freeplay frame {sec}") if PROGRESS_STORE[process_id]["status"] == "cancelled": break # Seek by time (ms) cap.set(cv2.CAP_PROP_POS_MSEC, sec * 1000) ret, frame = cap.read() if not ret or frame is None or frame.size == 0: logger.warning(f"Freeplay: no frame at {sec}s") continue PROGRESS_STORE[process_id].update({ "current": sec, "percent": 10 + int((sec + 1) / duration * 30) }) try: child_roi = detect_child_and_crop(frame) pose_kps = process_pose(child_roi) mv = calculate_body_movement(pose_kps, prev_pose) movements.append(mv) prev_pose = pose_kps except Exception as e: logger.error(f"Freeplay error at {sec}s: {e}", exc_info=True) cap.release() return float(np.mean(movements)) if movements else 0.0 def process_experiment(process_id: str, experiment_video: str, freeplay_movement: float) -> pd.DataFrame: """ Sample one frame per second from the experiment clip, compute all metrics, and return a DataFrame. """ PROGRESS_STORE[process_id].update({"message": "Analyzing experiment"}) cap = cv2.VideoCapture(experiment_video) if not cap.isOpened(): raise RuntimeError(f"Failed to open experiment video at {experiment_video}") fps = cap.get(cv2.CAP_PROP_FPS) or 1.0 total_frames = cap.get(cv2.CAP_PROP_FRAME_COUNT) or 0 duration = total_frames / fps PROGRESS_STORE[process_id].update({"total": int(duration)}) results = [] prev_landmarks = None prev_pose = None for sec in range(int(duration)): if PROGRESS_STORE.get(process_id, {}).get('status') == 'cancelled': raise asyncio.CancelledError("Processing cancelled") print(f"Processing experiment frame {sec}") if PROGRESS_STORE[process_id]["status"] == "cancelled": break cap.set(cv2.CAP_PROP_POS_MSEC, sec * 1000) ret, frame = cap.read() if not ret or frame is None or frame.size == 0: logger.warning(f"Experiment: no frame at {sec}s") results.append({ "second": sec, "parent_dist": None, "stranger_dist": None, "face_movement": None, "body_movement": None }) continue PROGRESS_STORE[process_id].update({ "current": sec, "percent": 40 + int((sec + 1) / duration * 60) }) try: child_roi = detect_child_and_crop(frame) face_score, curr_landmarks = facial_keypoints(child_roi, prev_landmarks) pose_kps = process_pose(child_roi) body_mv = calculate_body_movement(pose_kps, prev_pose) mov_ratio = body_mv / freeplay_movement if freeplay_movement else 0.0 parent_dist = calculate_distance_between_objects(frame, "Child", "Adult") stranger_dist = calculate_distance_between_objects(frame, "Child", "Stranger") results.append({ "second": sec, "distance_adult": parent_dist, "distance_stranger": stranger_dist, "facial_movement": face_score, "body_movement": mov_ratio }) prev_landmarks = curr_landmarks prev_pose = pose_kps except Exception as e: logger.error(f"Experiment error at {sec}s: {e}", exc_info=True) # still append a row so CSV timestamps remain aligned results.append({ "second": sec, "distance_adult": None, "distance_stranger": None, "facial_movement": None, "body_movement": None }) cap.release() return pd.DataFrame(results) def apply_classes(df, timestamp_start, timestamp_end, distance_model_name='distance_classifier.pkl', fear_model_name='fear_classifier.pkl', freeze_model_name='freeze_classifier.pkl'): distance_tree_path = Path(__file__).parent / 'models' / distance_model_name fear_tree_path = Path(__file__).parent / 'models' / fear_model_name freeze_tree_path = Path(__file__).parent / 'models' / freeze_model_name # Load models distance_clf = joblib.load(distance_tree_path) fear_clf = joblib.load(fear_tree_path) freeze_clf = joblib.load(freeze_tree_path) # 1) Initialize outputs df['proximity to parent'] = None df['proximity to stranger'] = None df['fear'] = None df['freeze'] = pd.Series([pd.NA] * len(df), dtype="Int64") # 2) Distance → proximity classes valid_mask = df[['distance_adult','body_movement','facial_movement']].notnull().all(axis=1) preds_parent = distance_clf.predict(df.loc[valid_mask, ['distance_adult']]) df.loc[valid_mask, 'proximity to parent'] = preds_parent df.loc[valid_mask, 'proximity to stranger'] = pd.Series(preds_parent).map({0:2, 1:1, 2:0}).values # 3) Fear classifier fear_cols = ['proximity to parent','proximity to stranger','body_movement','facial_movement'] fear_mask = df[fear_cols].notnull().all(axis=1) df.loc[fear_mask, 'fear'] = fear_clf.predict(df.loc[fear_mask, fear_cols]) # 4) Build pairwise DataFrame (includes 'second') df1 = df.iloc[:-1].reset_index(drop=True).add_suffix('_1') df2 = df.iloc[1:].reset_index(drop=True).add_suffix('_2') df_pairs = pd.concat([df1, df2], axis=1) # 5) Filter pairs where both fears > 0 mask = (df_pairs['fear_1'] > 0) & (df_pairs['fear_2'] > 0) df_filtered = df_pairs[mask].copy() df_filtered['body_movement_avg'] = (df_filtered['body_movement_1'] + df_filtered['body_movement_2']) / 2 # 6) Predict freeze and backfill to both seconds if not df_filtered.empty: df_filtered['freeze'] = freeze_clf.predict(df_filtered[['body_movement_avg']]) for _, row in df_filtered.iterrows(): for sec_col in ('second_1', 'second_2'): sec = int(row[sec_col]) idx = df.index[df['second'] == sec][0] current = df.at[idx, 'freeze'] if not (pd.notna(current) and current == 1): df.at[idx, 'freeze'] = row['freeze'] # 7) Add timestamps column based on timestamp_start and 'second' time_format = '%H:%M:%S' ts_start = datetime.datetime.strptime(timestamp_start, time_format) df['timestamp'] = df['second'].apply( lambda x: (ts_start + datetime.timedelta(seconds=int(x))).time().strftime(time_format) ) # 8) Return only the final columns return df[['timestamp', 'second', 'proximity to parent', 'proximity to stranger', 'fear', 'freeze']] async def process_video_async(process_id: str, video_path: Path, session_dir: Path, timestamp1: str, timestamp2: str, timestamp3: str, temp_dir: Path): if PROGRESS_STORE.get(process_id, {}).get("started"): return # Initialize progress tracking PROGRESS_STORE[process_id] = { "started": True, "status": "processing", "percent": 0, "message": "Initializing", "result": None, "error": None } # Validate timestamps def validate_timestamp(t): parts = t.split(':') return (len(parts) == 3 and all(p.isdigit() for p in parts)) if not all(validate_timestamp(ts) for ts in [timestamp1, timestamp2, timestamp3]): raise ValueError("Invalid timestamp format") # Crop video PROGRESS_STORE[process_id].update({ "message": "Cropping video segments", "percent": 5 }) try: freeplay_video, experiment_video = await asyncio.to_thread( crop_video, process_id, str(video_path), timestamp1, timestamp2, timestamp3, str(temp_dir) ) # Process freeplay segment PROGRESS_STORE[process_id].update({ "message": "Analyzing freeplay movement", "percent": 10 }) freeplay_movement = await asyncio.to_thread( process_freeplay, process_id, freeplay_video ) # Process experiment segment in a thread PROGRESS_STORE[process_id].update({ "message": "Analyzing experiment", "percent": 40 }) result_df = await asyncio.to_thread( process_experiment, process_id, experiment_video, freeplay_movement ) final_df = apply_classes(result_df, timestamp2, timestamp3) result_path = session_dir / "analysis.csv" final_df.to_csv(result_path, index=False) os.sync() PROGRESS_STORE[process_id].update({ "status": "completed", "result": str(result_path), "percent": 100, "message": "Analysis complete" }) except Exception as e: logger.error(f"Processing error: {str(e)}", exc_info=True) PROGRESS_STORE[process_id].update({ "status": "error", "error": str(e), "percent": 100 }) finally: if video_path.exists(): video_path.unlink() ################################################# # API Endpoints ################################################# @app.post("/api/process-video") async def start_processing( video: UploadFile = File(...), timestamp1: str = Form(...), timestamp2: str = Form(...), timestamp3: str = Form(...) ): # 1) Generate IDs & dirs process_id = str(uuid.uuid4()) temp_dir = Path(tempfile.mkdtemp()) session_dir = OUTPUT_DIR / f"session_{process_id}" session_dir.mkdir(exist_ok=True) # 2) Seed progress (so /api/progress can pick it up immediately) PROGRESS_STORE[process_id] = { "started": False, "status": "queued", "percent": 0, "message": "Queued for processing", "result": None, "error": None } # 3) Save the upload video_path = temp_dir / video.filename with open(video_path, "wb") as f: f.write(await video.read()) # 4) Kick off the async worker on the loop directly asyncio.create_task( process_video_async( process_id, video_path, session_dir, timestamp1, timestamp2, timestamp3, temp_dir ) ) # 5) Return the process_id immediately return {"process_id": process_id} @app.get("/api/progress/{process_id}") async def progress_stream(process_id: str): async def event_generator(): last = {} while True: if process_id in PROGRESS_STORE: current = PROGRESS_STORE[process_id] if current != last: last = current.copy() # snapshot instead of alias yield f"data: {json.dumps(current)}\n\n" if current["status"] in ["completed", "error", "cancelled"]: break await asyncio.sleep(0.5) return StreamingResponse( event_generator(), media_type="text/event-stream", headers={ "Cache-Control": "no-cache", "Connection": "keep-alive" # ensure the stream stays open } ) @app.get("/api/results/{process_id}") async def results(process_id: str): if process_id not in PROGRESS_STORE: raise HTTPException(404, detail="Process ID not found") status = PROGRESS_STORE[process_id] if status["status"] == "completed": csv_path = Path(status["result"]) try: # Validate file exists and is readable if not csv_path.exists() or csv_path.stat().st_size == 0: raise FileNotFoundError("Result file missing or empty") return FileResponse( csv_path, media_type="text/csv", filename="stranger_danger_analysis.csv", headers={"X-Analysis-Complete": "true"} ) except Exception as e: logger.error(f"Results delivery failed: {str(e)}") raise HTTPException(500, detail="Results generation failed") raise HTTPException(425, detail="Analysis not complete yet") @app.post("/api/cancel-analysis") async def cancel_analysis(process_id: str = Form(...)): if process_id in PROGRESS_STORE: PROGRESS_STORE[process_id].update({"status": "cancelled", "message": "Cancelled by user"}) return {"status": "cancelled"} @app.post("/api/delete-video") async def delete_video(process_id: str = Form(...)): if process_id in PROGRESS_STORE: PROGRESS_STORE.pop(process_id, None) return {"status": "deleted"} raise HTTPException(404, detail="Video not found") @app.get("/{full_path:path}") async def serve_frontend(full_path: str): if full_path.startswith(("api/", "static/")): raise HTTPException(status_code=404) frontend = Path("frontend/index.html") if not frontend.exists(): raise HTTPException(status_code=404, detail="Frontend not found") return FileResponse(frontend) if __name__ == "__main__": import uvicorn uvicorn.run("main:app", host="0.0.0.0", port=8000, reload=True)