Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	| import gradio as gr | |
| import streamlit as st | |
| import torch | |
| import re | |
| from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel | |
| # def greet(name): | |
| # return "Hello " + name + "!!" | |
| # iface = gr.Interface(fn=greet, inputs="text", outputs="text") | |
| # iface.launch() | |
| device='cpu' | |
| encoder_checkpoint = "ydshieh/vit-gpt2-coco-en" | |
| decoder_checkpoint = "ydshieh/vit-gpt2-coco-en" | |
| model_checkpoint = "ydshieh/vit-gpt2-coco-eng" | |
| feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint) | |
| tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint) | |
| model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint).to(device) | |
| def predict(image,max_length=64, num_beams=4): | |
| input_image = Image.open(image) | |
| model.eval() | |
| pixel_values = feature_extractor(images=[input_image], return_tensors="pt").pixel_values | |
| with torch.no_grad(): | |
| output_ids = model.generate(pixel_values, max_length=16, num_beams=4, return_dict_in_generate=True).sequences | |
| preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) | |
| preds = [pred.strip() for pred in preds] | |
| return preds[0] | |
| # image = image.convert('RGB') | |
| # image = feature_extractor(image, return_tensors="pt").pixel_values.to(device) | |
| # clean_text = lambda x: x.replace('<|endoftext|>','').split('\n')[0] | |
| # caption_ids = model.generate(image, max_length = max_length)[0] | |
| # caption_text = clean_text(tokenizer.decode(caption_ids)) | |
| # return caption_text | |
| # st.title("Image to Text using Lora") | |
| inputs = gr.inputs.Image(label="Upload any Image", type = 'pil', optional=True) | |
| output = gr.outputs.Textbox(type="text",label="Captions") | |
| description = "NTT Data Bilbao team" | |
| title = "Image to Text using Lora" | |
| interface = gr.Interface( | |
| fn=predict, | |
| description=description, | |
| inputs = inputs, | |
| theme="grass", | |
| outputs=output, | |
| title=title, | |
| ) | |
| interface.launch(debug=True) | |

