Spaces:
Runtime error
Runtime error
| import torch | |
| import re | |
| import gradio as gr | |
| import streamlit as st | |
| # st.title("Image Caption Generator") | |
| from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel | |
| import os | |
| import tensorflow as tf | |
| os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0' | |
| device='cpu' | |
| encoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning" | |
| decoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning" | |
| model_checkpoint = "nlpconnect/vit-gpt2-image-captioning" | |
| feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint) | |
| tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint) | |
| model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint).to(device) | |
| def predict(image, max_length=64, num_beams=4): | |
| image = image.convert('RGB') | |
| image = feature_extractor(image, return_tensors="pt").pixel_values.to(device) | |
| clean_text = lambda x: x.replace('<|endoftext|>','').split('\n')[0] | |
| caption_ids = model.generate(image, max_length = max_length)[0] | |
| caption_text = clean_text(tokenizer.decode(caption_ids)) | |
| return caption_text | |
| input = gr.inputs.Image(label="Upload any Image", type = 'pil', optional=True) | |
| output = gr.outputs.Textbox(type="text",label="Captions") | |
| examples = ["example1.jpg"] | |
| print("------------------------- 6 -------------------------\n") | |
| title = "Image to Text ViT with LORA" | |
| # interface = gr.Interface( | |
| # fn=predict, | |
| # description=description, | |
| # inputs = input, | |
| # theme="grass", | |
| # outputs=output, | |
| # examples=examples, | |
| # title=title, | |
| # ) | |
| # interface.launch(debug=True) | |
| with gr.Blocks() as demo: | |
| gr.HTML( | |
| """ | |
| <div style="text-align: center; max-width: 1200px; margin: 20px auto;"> | |
| <h1 style="font-weight: 900; font-size: 3rem; margin: 0rem"> | |
| ViT Image-to-Text with LORA | |
| </h1> | |
| <h2 style="text-align: left; font-weight: 450; font-size: 1rem; margin-top: 2rem; margin-bottom: 1.5rem"> | |
| In the field of large language models, the challenge of fine-tuning has long perplexed researchers. Microsoft, however, has unveiled an innovative solution called <b>Low-Rank Adaptation (LoRA)</b>. With the emergence of behemoth models like GPT-3 boasting billions of parameters, the cost of fine-tuning them for specific tasks or domains has become exorbitant. | |
| LoRA offers a groundbreaking approach by freezing the weights of pre-trained models and introducing trainable layers known as <b>rank-decomposition matrices in each transformer block</b>. This ingenious technique significantly reduces the number of trainable parameters and minimizes GPU memory requirements, as gradients no longer need to be computed for the majority of model weights. | |
| <br> | |
| <br> | |
| You can find more info here: <a href="https://www.linkedin.com/pulse/fine-tuning-image-to-text-algorithms-with-lora-daniel-puente-viejo" target="_blank";>Linkedin article</a> | |
| </h2> | |
| </div> | |
| """) | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| img = gr.inputs.Image(label="Upload any Image", type = 'pil', optional=True) | |
| button = gr.Button(value="Describe") | |
| with gr.Column(scale=1): | |
| out = gr.outputs.Textbox(type="text",label="Captions") | |
| button.click(predict, inputs=[img], outputs=[out]) | |
| gr.Examples( | |
| examples=[os.path.join(os.path.dirname(__file__), "example1.jpg")], | |
| inputs=img, | |
| outputs=out, | |
| fn=predict, | |
| cache_examples=True, | |
| ) | |
| demo.launch(debug=True) |