Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,5 +1,8 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
# def greet(name):
|
| 5 |
# return "Hello " + name + "!!"
|
|
@@ -7,6 +10,23 @@ import streamlit as st
|
|
| 7 |
# iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
| 8 |
# iface.launch()
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
st.title("Image to Text using Lora")
|
| 11 |
|
| 12 |
inputs = gr.inputs.Image(label="Upload any Image", type = 'pil', optional=True)
|
|
@@ -15,7 +35,7 @@ description = "NTT Data Bilbao team"
|
|
| 15 |
title = "Image to Text using Lora"
|
| 16 |
|
| 17 |
interface = gr.Interface(
|
| 18 |
-
|
| 19 |
description=description,
|
| 20 |
inputs = inputs,
|
| 21 |
theme="grass",
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import streamlit as st
|
| 3 |
+
import torch
|
| 4 |
+
import re
|
| 5 |
+
from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel
|
| 6 |
|
| 7 |
# def greet(name):
|
| 8 |
# return "Hello " + name + "!!"
|
|
|
|
| 10 |
# iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
| 11 |
# iface.launch()
|
| 12 |
|
| 13 |
+
device='cpu'
|
| 14 |
+
encoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
|
| 15 |
+
decoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
|
| 16 |
+
model_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
|
| 17 |
+
feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint)
|
| 18 |
+
tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint)
|
| 19 |
+
model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint).to(device)
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def predict(image,max_length=64, num_beams=4):
|
| 23 |
+
image = image.convert('RGB')
|
| 24 |
+
image = feature_extractor(image, return_tensors="pt").pixel_values.to(device)
|
| 25 |
+
clean_text = lambda x: x.replace('<|endoftext|>','').split('\n')[0]
|
| 26 |
+
caption_ids = model.generate(image, max_length = max_length)[0]
|
| 27 |
+
caption_text = clean_text(tokenizer.decode(caption_ids))
|
| 28 |
+
return caption_text
|
| 29 |
+
|
| 30 |
st.title("Image to Text using Lora")
|
| 31 |
|
| 32 |
inputs = gr.inputs.Image(label="Upload any Image", type = 'pil', optional=True)
|
|
|
|
| 35 |
title = "Image to Text using Lora"
|
| 36 |
|
| 37 |
interface = gr.Interface(
|
| 38 |
+
fn=predict,
|
| 39 |
description=description,
|
| 40 |
inputs = inputs,
|
| 41 |
theme="grass",
|