Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,54 +1,89 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
import torch
|
| 4 |
import re
|
|
|
|
| 5 |
from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel
|
| 6 |
|
| 7 |
-
# def greet(name):
|
| 8 |
-
# return "Hello " + name + "!!"
|
| 9 |
-
|
| 10 |
-
# iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
| 11 |
-
# iface.launch()
|
| 12 |
-
|
| 13 |
device='cpu'
|
| 14 |
-
encoder_checkpoint = "
|
| 15 |
-
decoder_checkpoint = "
|
| 16 |
-
model_checkpoint = "
|
| 17 |
feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint)
|
| 18 |
tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint)
|
| 19 |
model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint).to(device)
|
| 20 |
|
| 21 |
|
| 22 |
def predict(image,max_length=64, num_beams=4):
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
return preds[0]
|
| 31 |
-
|
| 32 |
-
# image = image.convert('RGB')
|
| 33 |
-
# image = feature_extractor(image, return_tensors="pt").pixel_values.to(device)
|
| 34 |
-
# clean_text = lambda x: x.replace('<|endoftext|>','').split('\n')[0]
|
| 35 |
-
# caption_ids = model.generate(image, max_length = max_length)[0]
|
| 36 |
-
# caption_text = clean_text(tokenizer.decode(caption_ids))
|
| 37 |
-
# return caption_text
|
| 38 |
|
| 39 |
-
# st.title("Image to Text using Lora")
|
| 40 |
|
| 41 |
-
|
| 42 |
-
output = gr.outputs.Textbox(type="
|
| 43 |
-
|
| 44 |
-
title = "Image to Text using Lora"
|
| 45 |
|
|
|
|
|
|
|
| 46 |
interface = gr.Interface(
|
|
|
|
| 47 |
fn=predict,
|
| 48 |
description=description,
|
| 49 |
-
inputs =
|
| 50 |
theme="grass",
|
| 51 |
outputs=output,
|
|
|
|
| 52 |
title=title,
|
| 53 |
)
|
| 54 |
interface.launch(debug=True)
|
|
|
|
| 1 |
+
# import gradio as gr
|
| 2 |
+
# import streamlit as st
|
| 3 |
+
# import torch
|
| 4 |
+
# import re
|
| 5 |
+
# from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel
|
| 6 |
+
|
| 7 |
+
# device='cpu'
|
| 8 |
+
# encoder_checkpoint = "ydshieh/vit-gpt2-coco-en"
|
| 9 |
+
# decoder_checkpoint = "ydshieh/vit-gpt2-coco-en"
|
| 10 |
+
# model_checkpoint = "ydshieh/vit-gpt2-coco-eng"
|
| 11 |
+
# feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint)
|
| 12 |
+
# tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint)
|
| 13 |
+
# model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint).to(device)
|
| 14 |
+
|
| 15 |
+
# def predict(image,max_length=64, num_beams=4):
|
| 16 |
+
# input_image = Image.open(image)
|
| 17 |
+
# model.eval()
|
| 18 |
+
# pixel_values = feature_extractor(images=[input_image], return_tensors="pt").pixel_values
|
| 19 |
+
# with torch.no_grad():
|
| 20 |
+
# output_ids = model.generate(pixel_values, max_length=16, num_beams=4, return_dict_in_generate=True).sequences
|
| 21 |
+
# preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
| 22 |
+
# preds = [pred.strip() for pred in preds]
|
| 23 |
+
# return preds[0]
|
| 24 |
+
|
| 25 |
+
# # image = image.convert('RGB')
|
| 26 |
+
# # image = feature_extractor(image, return_tensors="pt").pixel_values.to(device)
|
| 27 |
+
# # clean_text = lambda x: x.replace('<|endoftext|>','').split('\n')[0]
|
| 28 |
+
# # caption_ids = model.generate(image, max_length = max_length)[0]
|
| 29 |
+
# # caption_text = clean_text(tokenizer.decode(caption_ids))
|
| 30 |
+
# # return caption_text
|
| 31 |
+
|
| 32 |
+
# # st.title("Image to Text using Lora")
|
| 33 |
+
|
| 34 |
+
# inputs = gr.inputs.Image(label="Upload any Image", type = 'pil', optional=True)
|
| 35 |
+
# output = gr.outputs.Textbox(type="text",label="Captions")
|
| 36 |
+
# description = "NTT Data Bilbao team"
|
| 37 |
+
# title = "Image to Text using Lora"
|
| 38 |
+
|
| 39 |
+
# interface = gr.Interface(
|
| 40 |
+
# fn=predict,
|
| 41 |
+
# description=description,
|
| 42 |
+
# inputs = inputs,
|
| 43 |
+
# theme="grass",
|
| 44 |
+
# outputs=output,
|
| 45 |
+
# title=title,
|
| 46 |
+
# )
|
| 47 |
+
# interface.launch(debug=True)
|
| 48 |
+
|
| 49 |
import torch
|
| 50 |
import re
|
| 51 |
+
import gradio as gr
|
| 52 |
from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel
|
| 53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
device='cpu'
|
| 55 |
+
encoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
|
| 56 |
+
decoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
|
| 57 |
+
model_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
|
| 58 |
feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint)
|
| 59 |
tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint)
|
| 60 |
model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint).to(device)
|
| 61 |
|
| 62 |
|
| 63 |
def predict(image,max_length=64, num_beams=4):
|
| 64 |
+
image = image.convert('RGB')
|
| 65 |
+
image = feature_extractor(image, return_tensors="pt").pixel_values.to(device)
|
| 66 |
+
clean_text = lambda x: x.replace('<|endoftext|>','').split('\n')[0]
|
| 67 |
+
caption_ids = model.generate(image, max_length = max_length)[0]
|
| 68 |
+
caption_text = clean_text(tokenizer.decode(caption_ids))
|
| 69 |
+
return caption_text
|
| 70 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
|
|
|
|
| 72 |
|
| 73 |
+
input = gr.inputs.Image(label="Upload any Image", type = 'pil', optional=True)
|
| 74 |
+
output = gr.outputs.Textbox(type="auto",label="Captions")
|
| 75 |
+
examples = [f"example{i}.jpg" for i in range(1,7)]
|
|
|
|
| 76 |
|
| 77 |
+
title = "Image Captioning "
|
| 78 |
+
description = "Made by : shreyasdixit.tech"
|
| 79 |
interface = gr.Interface(
|
| 80 |
+
|
| 81 |
fn=predict,
|
| 82 |
description=description,
|
| 83 |
+
inputs = input,
|
| 84 |
theme="grass",
|
| 85 |
outputs=output,
|
| 86 |
+
examples = examples,
|
| 87 |
title=title,
|
| 88 |
)
|
| 89 |
interface.launch(debug=True)
|