File size: 18,959 Bytes
7222c68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 |
import json
import re
import math
from collections import OrderedDict
from pathlib import Path
from typing import Union
import torch
import numpy as np
import torch.nn.functional as F
from whisper.tokenizer import get_tokenizer
from whisper_live.transcriber.tensorrt_utils import (
mel_filters,
load_audio_wav_format,
pad_or_trim,
load_audio
)
import tensorrt_llm
import tensorrt_llm.logger as logger
from tensorrt_llm._utils import (str_dtype_to_torch, str_dtype_to_trt,
trt_dtype_to_torch)
from tensorrt_llm.bindings import GptJsonConfig, KVCacheType
from tensorrt_llm.runtime import PYTHON_BINDINGS, ModelConfig, SamplingConfig
from tensorrt_llm.runtime.session import Session, TensorInfo
if PYTHON_BINDINGS:
from tensorrt_llm.runtime import ModelRunnerCpp
SAMPLE_RATE = 16000
N_FFT = 400
HOP_LENGTH = 160
CHUNK_LENGTH = 30
N_SAMPLES = CHUNK_LENGTH * SAMPLE_RATE # 480000 samples in a 30-second chunk
def read_config(component, engine_dir):
config_path = engine_dir / component / 'config.json'
with open(config_path, 'r') as f:
config = json.load(f)
model_config = OrderedDict()
model_config.update(config['pretrained_config'])
model_config.update(config['build_config'])
return model_config
def remove_tensor_padding(input_tensor,
input_tensor_lengths=None,
pad_value=None):
if pad_value:
assert input_tensor_lengths is None, "input_tensor_lengths should be None when pad_value is provided"
# Text tensor case: batch, seq_len
assert torch.all(
input_tensor[:, 0] != pad_value
), "First token in each sequence should not be pad_value"
assert input_tensor_lengths is None
# Create a mask for all non-pad tokens
mask = input_tensor != pad_value
# Apply the mask to input_tensor to remove pad tokens
output_tensor = input_tensor[mask].view(1, -1)
else:
# Audio tensor case: batch, seq_len, feature_len
# position_ids case: batch, seq_len
assert input_tensor_lengths is not None, "input_tensor_lengths must be provided for 3D input_tensor"
# Initialize a list to collect valid sequences
valid_sequences = []
for i in range(input_tensor.shape[0]):
valid_length = input_tensor_lengths[i]
valid_sequences.append(input_tensor[i, :valid_length])
# Concatenate all valid sequences along the batch dimension
output_tensor = torch.cat(valid_sequences, dim=0)
return output_tensor
class WhisperEncoding:
def __init__(self, engine_dir):
self.session = self.get_session(engine_dir)
config = read_config('encoder', engine_dir)
self.n_mels = config['n_mels']
self.dtype = config['dtype']
self.num_languages = config['num_languages']
self.encoder_config = config
def get_session(self, engine_dir):
serialize_path = engine_dir / 'encoder' / 'rank0.engine'
with open(serialize_path, 'rb') as f:
session = Session.from_serialized_engine(f.read())
return session
def get_audio_features(self,
mel,
mel_input_lengths,
encoder_downsampling_factor=2):
if isinstance(mel, list):
longest_mel = max([f.shape[-1] for f in mel])
mel = [
torch.nn.functional.pad(f, (0, longest_mel - f.shape[-1]),
mode='constant') for f in mel
]
mel = torch.cat(mel, dim=0).type(
str_dtype_to_torch("float16")).contiguous()
bsz, seq_len = mel.shape[0], mel.shape[2]
position_ids = torch.arange(
math.ceil(seq_len / encoder_downsampling_factor),
dtype=torch.int32,
device=mel.device).expand(bsz, -1).contiguous()
if self.encoder_config['plugin_config']['remove_input_padding']:
# mel B,D,T -> B,T,D -> BxT, D
mel = mel.transpose(1, 2)
mel = remove_tensor_padding(mel, mel_input_lengths)
position_ids = remove_tensor_padding(
position_ids, mel_input_lengths // encoder_downsampling_factor)
inputs = OrderedDict()
inputs['input_features'] = mel
inputs['input_lengths'] = mel_input_lengths
inputs['position_ids'] = position_ids
output_list = [
TensorInfo('input_features', str_dtype_to_trt(self.dtype),
mel.shape),
TensorInfo('input_lengths', str_dtype_to_trt('int32'),
mel_input_lengths.shape),
TensorInfo('position_ids', str_dtype_to_trt('int32'),
inputs['position_ids'].shape)
]
output_info = (self.session).infer_shapes(output_list)
logger.debug(f'output info {output_info}')
outputs = {
t.name: torch.empty(tuple(t.shape),
dtype=trt_dtype_to_torch(t.dtype),
device='cuda')
for t in output_info
}
stream = torch.cuda.current_stream()
ok = self.session.run(inputs=inputs,
outputs=outputs,
stream=stream.cuda_stream)
assert ok, 'Engine execution failed'
stream.synchronize()
encoder_output = outputs['encoder_output']
encoder_output_lengths = mel_input_lengths // encoder_downsampling_factor
return encoder_output, encoder_output_lengths
class WhisperDecoding:
def __init__(self, engine_dir, runtime_mapping, debug_mode=False):
self.decoder_config = read_config('decoder', engine_dir)
self.decoder_generation_session = self.get_session(
engine_dir, runtime_mapping, debug_mode)
def get_session(self, engine_dir, runtime_mapping, debug_mode=False):
serialize_path = engine_dir / 'decoder' / 'rank0.engine'
with open(serialize_path, "rb") as f:
decoder_engine_buffer = f.read()
decoder_model_config = ModelConfig(
max_batch_size=self.decoder_config['max_batch_size'],
max_beam_width=self.decoder_config['max_beam_width'],
num_heads=self.decoder_config['num_attention_heads'],
num_kv_heads=self.decoder_config['num_attention_heads'],
hidden_size=self.decoder_config['hidden_size'],
vocab_size=self.decoder_config['vocab_size'],
cross_attention=True,
num_layers=self.decoder_config['num_hidden_layers'],
gpt_attention_plugin=self.decoder_config['plugin_config']
['gpt_attention_plugin'],
remove_input_padding=self.decoder_config['plugin_config']
['remove_input_padding'],
kv_cache_type=KVCacheType.PAGED
if self.decoder_config['plugin_config']['paged_kv_cache'] == True
else KVCacheType.CONTINUOUS,
has_position_embedding=self.
decoder_config['has_position_embedding'],
dtype=self.decoder_config['dtype'],
has_token_type_embedding=False,
)
decoder_generation_session = tensorrt_llm.runtime.GenerationSession(
decoder_model_config,
decoder_engine_buffer,
runtime_mapping,
debug_mode=debug_mode)
return decoder_generation_session
def generate(self,
decoder_input_ids,
encoder_outputs,
encoder_max_input_length,
encoder_input_lengths,
eot_id,
max_new_tokens=40,
num_beams=1):
batch_size = decoder_input_ids.shape[0]
decoder_input_lengths = torch.tensor([
decoder_input_ids.shape[-1]
for _ in range(decoder_input_ids.shape[0])
],
dtype=torch.int32,
device='cuda')
decoder_max_input_length = torch.max(decoder_input_lengths).item()
cross_attention_mask = torch.ones([
batch_size, decoder_max_input_length + max_new_tokens,
encoder_max_input_length
]).int().cuda()
# generation config
sampling_config = SamplingConfig(end_id=eot_id,
pad_id=eot_id,
num_beams=num_beams)
self.decoder_generation_session.setup(
decoder_input_lengths.size(0),
decoder_max_input_length,
max_new_tokens,
beam_width=num_beams,
encoder_max_input_length=encoder_max_input_length)
torch.cuda.synchronize()
decoder_input_ids = decoder_input_ids.type(torch.int32).cuda()
if self.decoder_config['plugin_config']['remove_input_padding']:
# 50256 is the index of <pad> for all whisper models' decoder
WHISPER_PAD_TOKEN_ID = 50256
decoder_input_ids = remove_tensor_padding(
decoder_input_ids, pad_value=WHISPER_PAD_TOKEN_ID)
if encoder_outputs.dim() == 3:
encoder_output_lens = torch.full((encoder_outputs.shape[0], ),
encoder_outputs.shape[1],
dtype=torch.int32,
device='cuda')
encoder_outputs = remove_tensor_padding(encoder_outputs,
encoder_output_lens)
output_ids = self.decoder_generation_session.decode(
decoder_input_ids,
decoder_input_lengths,
sampling_config,
encoder_output=encoder_outputs,
encoder_input_lengths=encoder_input_lengths,
cross_attention_mask=cross_attention_mask,
)
torch.cuda.synchronize()
# get the list of int from output_ids tensor
output_ids = output_ids.cpu().numpy().tolist()
return output_ids
class WhisperTRTLLM(object):
def __init__(self,
engine_dir,
assets_dir=None,
device=None,
is_multilingual=False,
language="en",
task="transcribe",
use_py_session=False,
num_beams=1,
debug_mode=False,
max_output_len=96):
world_size = 1
runtime_rank = tensorrt_llm.mpi_rank()
runtime_mapping = tensorrt_llm.Mapping(world_size, runtime_rank)
torch.cuda.set_device(runtime_rank % runtime_mapping.gpus_per_node)
engine_dir = Path(engine_dir)
encoder_config = read_config('encoder', engine_dir)
decoder_config = read_config('decoder', engine_dir)
self.n_mels = encoder_config['n_mels']
self.num_languages = encoder_config['num_languages']
is_multilingual = (decoder_config['vocab_size'] >= 51865)
self.device = device
self.tokenizer = get_tokenizer(
is_multilingual,
num_languages=self.num_languages,
language=language,
task=task,
)
if use_py_session:
self.encoder = WhisperEncoding(engine_dir)
self.decoder = WhisperDecoding(engine_dir,
runtime_mapping,
debug_mode=False)
else:
json_config = GptJsonConfig.parse_file(engine_dir / 'decoder' /
'config.json')
assert json_config.model_config.supports_inflight_batching
runner_kwargs = dict(engine_dir=engine_dir,
is_enc_dec=True,
max_batch_size=1,
max_input_len=3000,
max_output_len=max_output_len,
max_beam_width=num_beams,
debug_mode=debug_mode,
kv_cache_free_gpu_memory_fraction=0.9,
cross_kv_cache_fraction=0.5)
self.model_runner_cpp = ModelRunnerCpp.from_dir(**runner_kwargs)
self.filters = mel_filters(self.device, self.n_mels, assets_dir)
self.use_py_session = use_py_session
def log_mel_spectrogram(
self,
audio: Union[str, np.ndarray, torch.Tensor],
padding: int = 0,
return_duration=True
):
"""
Compute the log-Mel spectrogram of
Parameters
----------
audio: Union[str, np.ndarray, torch.Tensor], shape = (*)
The path to audio or either a NumPy array or Tensor containing the audio waveform in 16 kHz
n_mels: int
The number of Mel-frequency filters, only 80 and 128 are supported
padding: int
Number of zero samples to pad to the right
device: Optional[Union[str, torch.device]]
If given, the audio tensor is moved to this device before STFT
Returns
-------
torch.Tensor, shape = (80 or 128, n_frames)
A Tensor that contains the Mel spectrogram
"""
if not torch.is_tensor(audio):
if isinstance(audio, str):
if audio.endswith('.wav'):
audio, _ = load_audio_wav_format(audio)
else:
audio = load_audio(audio)
assert isinstance(audio, np.ndarray), f"Unsupported audio type: {type(audio)}"
duration = audio.shape[-1] / SAMPLE_RATE
audio = pad_or_trim(audio, N_SAMPLES)
audio = audio.astype(np.float32)
audio = torch.from_numpy(audio)
if self.device is not None:
audio = audio.to(self.device)
if padding > 0:
audio = F.pad(audio, (0, padding))
window = torch.hann_window(N_FFT).to(audio.device)
stft = torch.stft(audio, N_FFT, HOP_LENGTH, window=window, return_complex=True)
magnitudes = stft[..., :-1].abs()**2
mel_spec = self.filters @ magnitudes
log_spec = torch.clamp(mel_spec, min=1e-10).log10()
log_spec = torch.maximum(log_spec, log_spec.max() - 8.0)
log_spec = (log_spec + 4.0) / 4.0
if return_duration:
return log_spec, duration
else:
return log_spec
def process_batch(
self,
mel,
mel_input_lengths,
text_prefix="<|startoftranscript|><|en|><|transcribe|><|notimestamps|>",
num_beams=1,
max_new_tokens=96):
prompt_id = self.tokenizer.encode(
text_prefix, allowed_special=set(self.tokenizer.special_tokens.keys()))
prompt_id = torch.tensor(prompt_id)
batch_size = mel.shape[0]
decoder_input_ids = prompt_id.repeat(batch_size, 1)
if self.use_py_session:
encoder_output, encoder_output_lengths = self.encoder.get_audio_features(mel, mel_input_lengths)
encoder_max_input_length = torch.max(encoder_output_lengths).item()
output_ids = self.decoder.generate(decoder_input_ids,
encoder_output,
encoder_max_input_length,
encoder_output_lengths,
self.tokenizer.eot,
max_new_tokens=max_new_tokens,
num_beams=num_beams)
else:
with torch.no_grad():
if isinstance(mel, list):
mel = [
m.transpose(1, 2).type(
str_dtype_to_torch("float16")).squeeze(0)
for m in mel
]
else:
mel = mel.transpose(1, 2)
outputs = self.model_runner_cpp.generate(
batch_input_ids=decoder_input_ids,
encoder_input_features=mel,
encoder_output_lengths=mel_input_lengths // 2,
max_new_tokens=max_new_tokens,
end_id=self.tokenizer.eot,
pad_id=self.tokenizer.eot,
num_beams=num_beams,
output_sequence_lengths=True,
return_dict=True)
torch.cuda.synchronize()
output_ids = outputs['output_ids'].cpu().numpy().tolist()
texts = []
for i in range(len(output_ids)):
text = self.tokenizer.decode(output_ids[i][0]).strip()
texts.append(text)
return texts
def transcribe(
self,
mel,
text_prefix="<|startoftranscript|><|en|><|transcribe|><|notimestamps|>",
dtype='float16',
batch_size=1,
num_beams=1,
padding_strategy="max",
max_new_tokens=96,
):
mel = mel.type(str_dtype_to_torch(dtype))
mel = mel.unsqueeze(0)
# repeat the mel spectrogram to match the batch size
mel = mel.repeat(batch_size, 1, 1)
if padding_strategy == "longest":
pass
else:
mel = torch.nn.functional.pad(mel, (0, 3000 - mel.shape[2]))
features_input_lengths = torch.full((mel.shape[0], ),
mel.shape[2],
dtype=torch.int32,
device=mel.device)
predictions = self.process_batch(
mel,
features_input_lengths,
text_prefix,
num_beams,
max_new_tokens=max_new_tokens
)
prediction = predictions[0]
# remove all special tokens in the prediction
prediction = re.sub(r'<\|.*?\|>', '', prediction)
return prediction.strip()
def decode_wav_file(
model,
mel,
text_prefix="<|startoftranscript|><|en|><|transcribe|><|notimestamps|>",
dtype='float16',
batch_size=1,
num_beams=1,
normalizer=None,
mel_filters_dir=None):
mel = mel.type(str_dtype_to_torch(dtype))
mel = mel.unsqueeze(0)
# repeat the mel spectrogram to match the batch size
mel = mel.repeat(batch_size, 1, 1)
predictions = model.process_batch(mel, text_prefix, num_beams)
prediction = predictions[0]
# remove all special tokens in the prediction
prediction = re.sub(r'<\|.*?\|>', '', prediction)
if normalizer:
prediction = normalizer(prediction)
return prediction.strip()
|