File size: 18,959 Bytes
7222c68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
import json
import re
import math
from collections import OrderedDict
from pathlib import Path
from typing import Union

import torch
import numpy as np
import torch.nn.functional as F
from whisper.tokenizer import get_tokenizer
from whisper_live.transcriber.tensorrt_utils import (
    mel_filters, 
    load_audio_wav_format, 
    pad_or_trim, 
    load_audio
)

import tensorrt_llm
import tensorrt_llm.logger as logger
from tensorrt_llm._utils import (str_dtype_to_torch, str_dtype_to_trt,
                                 trt_dtype_to_torch)
from tensorrt_llm.bindings import GptJsonConfig, KVCacheType
from tensorrt_llm.runtime import PYTHON_BINDINGS, ModelConfig, SamplingConfig
from tensorrt_llm.runtime.session import Session, TensorInfo
if PYTHON_BINDINGS:
    from tensorrt_llm.runtime import ModelRunnerCpp

SAMPLE_RATE = 16000
N_FFT = 400
HOP_LENGTH = 160
CHUNK_LENGTH = 30
N_SAMPLES = CHUNK_LENGTH * SAMPLE_RATE  # 480000 samples in a 30-second chunk

def read_config(component, engine_dir):
    config_path = engine_dir / component / 'config.json'
    with open(config_path, 'r') as f:
        config = json.load(f)
    model_config = OrderedDict()
    model_config.update(config['pretrained_config'])
    model_config.update(config['build_config'])
    return model_config


def remove_tensor_padding(input_tensor,
                          input_tensor_lengths=None,
                          pad_value=None):
    if pad_value:
        assert input_tensor_lengths is None, "input_tensor_lengths should be None when pad_value is provided"
        # Text tensor case: batch, seq_len
        assert torch.all(
            input_tensor[:, 0] != pad_value
        ), "First token in each sequence should not be pad_value"
        assert input_tensor_lengths is None

        # Create a mask for all non-pad tokens
        mask = input_tensor != pad_value

        # Apply the mask to input_tensor to remove pad tokens
        output_tensor = input_tensor[mask].view(1, -1)

    else:
        # Audio tensor case: batch, seq_len, feature_len
        # position_ids case: batch, seq_len
        assert input_tensor_lengths is not None, "input_tensor_lengths must be provided for 3D input_tensor"

        # Initialize a list to collect valid sequences
        valid_sequences = []

        for i in range(input_tensor.shape[0]):
            valid_length = input_tensor_lengths[i]
            valid_sequences.append(input_tensor[i, :valid_length])

        # Concatenate all valid sequences along the batch dimension
        output_tensor = torch.cat(valid_sequences, dim=0)
    return output_tensor


class WhisperEncoding:

    def __init__(self, engine_dir):
        self.session = self.get_session(engine_dir)
        config = read_config('encoder', engine_dir)
        self.n_mels = config['n_mels']
        self.dtype = config['dtype']
        self.num_languages = config['num_languages']
        self.encoder_config = config

    def get_session(self, engine_dir):
        serialize_path = engine_dir / 'encoder' / 'rank0.engine'
        with open(serialize_path, 'rb') as f:
            session = Session.from_serialized_engine(f.read())
        return session

    def get_audio_features(self,
                           mel,
                           mel_input_lengths,
                           encoder_downsampling_factor=2):
        if isinstance(mel, list):
            longest_mel = max([f.shape[-1] for f in mel])
            mel = [
                torch.nn.functional.pad(f, (0, longest_mel - f.shape[-1]),
                                        mode='constant') for f in mel
            ]
            mel = torch.cat(mel, dim=0).type(
                str_dtype_to_torch("float16")).contiguous()
        bsz, seq_len = mel.shape[0], mel.shape[2]
        position_ids = torch.arange(
            math.ceil(seq_len / encoder_downsampling_factor),
            dtype=torch.int32,
            device=mel.device).expand(bsz, -1).contiguous()
        if self.encoder_config['plugin_config']['remove_input_padding']:
            # mel B,D,T -> B,T,D -> BxT, D
            mel = mel.transpose(1, 2)
            mel = remove_tensor_padding(mel, mel_input_lengths)
            position_ids = remove_tensor_padding(
                position_ids, mel_input_lengths // encoder_downsampling_factor)
        inputs = OrderedDict()
        inputs['input_features'] = mel
        inputs['input_lengths'] = mel_input_lengths
        inputs['position_ids'] = position_ids

        output_list = [
            TensorInfo('input_features', str_dtype_to_trt(self.dtype),
                       mel.shape),
            TensorInfo('input_lengths', str_dtype_to_trt('int32'),
                       mel_input_lengths.shape),
            TensorInfo('position_ids', str_dtype_to_trt('int32'),
                       inputs['position_ids'].shape)
        ]

        output_info = (self.session).infer_shapes(output_list)

        logger.debug(f'output info {output_info}')
        outputs = {
            t.name: torch.empty(tuple(t.shape),
                                dtype=trt_dtype_to_torch(t.dtype),
                                device='cuda')
            for t in output_info
        }
        stream = torch.cuda.current_stream()
        ok = self.session.run(inputs=inputs,
                              outputs=outputs,
                              stream=stream.cuda_stream)
        assert ok, 'Engine execution failed'
        stream.synchronize()
        encoder_output = outputs['encoder_output']
        encoder_output_lengths = mel_input_lengths // encoder_downsampling_factor
        return encoder_output, encoder_output_lengths


class WhisperDecoding:

    def __init__(self, engine_dir, runtime_mapping, debug_mode=False):

        self.decoder_config = read_config('decoder', engine_dir)
        self.decoder_generation_session = self.get_session(
            engine_dir, runtime_mapping, debug_mode)

    def get_session(self, engine_dir, runtime_mapping, debug_mode=False):
        serialize_path = engine_dir / 'decoder' / 'rank0.engine'
        with open(serialize_path, "rb") as f:
            decoder_engine_buffer = f.read()

        decoder_model_config = ModelConfig(
            max_batch_size=self.decoder_config['max_batch_size'],
            max_beam_width=self.decoder_config['max_beam_width'],
            num_heads=self.decoder_config['num_attention_heads'],
            num_kv_heads=self.decoder_config['num_attention_heads'],
            hidden_size=self.decoder_config['hidden_size'],
            vocab_size=self.decoder_config['vocab_size'],
            cross_attention=True,
            num_layers=self.decoder_config['num_hidden_layers'],
            gpt_attention_plugin=self.decoder_config['plugin_config']
            ['gpt_attention_plugin'],
            remove_input_padding=self.decoder_config['plugin_config']
            ['remove_input_padding'],
            kv_cache_type=KVCacheType.PAGED
            if self.decoder_config['plugin_config']['paged_kv_cache'] == True
            else KVCacheType.CONTINUOUS,
            has_position_embedding=self.
            decoder_config['has_position_embedding'],
            dtype=self.decoder_config['dtype'],
            has_token_type_embedding=False,
        )
        decoder_generation_session = tensorrt_llm.runtime.GenerationSession(
            decoder_model_config,
            decoder_engine_buffer,
            runtime_mapping,
            debug_mode=debug_mode)

        return decoder_generation_session

    def generate(self,
                 decoder_input_ids,
                 encoder_outputs,
                 encoder_max_input_length,
                 encoder_input_lengths,
                 eot_id,
                 max_new_tokens=40,
                 num_beams=1):
        batch_size = decoder_input_ids.shape[0]
        decoder_input_lengths = torch.tensor([
            decoder_input_ids.shape[-1]
            for _ in range(decoder_input_ids.shape[0])
        ],
                                             dtype=torch.int32,
                                             device='cuda')
        decoder_max_input_length = torch.max(decoder_input_lengths).item()

        cross_attention_mask = torch.ones([
            batch_size, decoder_max_input_length + max_new_tokens,
            encoder_max_input_length
        ]).int().cuda()
        # generation config
        sampling_config = SamplingConfig(end_id=eot_id,
                                         pad_id=eot_id,
                                         num_beams=num_beams)
        self.decoder_generation_session.setup(
            decoder_input_lengths.size(0),
            decoder_max_input_length,
            max_new_tokens,
            beam_width=num_beams,
            encoder_max_input_length=encoder_max_input_length)

        torch.cuda.synchronize()

        decoder_input_ids = decoder_input_ids.type(torch.int32).cuda()
        if self.decoder_config['plugin_config']['remove_input_padding']:
            # 50256 is the index of <pad> for all whisper models' decoder
            WHISPER_PAD_TOKEN_ID = 50256
            decoder_input_ids = remove_tensor_padding(
                decoder_input_ids, pad_value=WHISPER_PAD_TOKEN_ID)
            if encoder_outputs.dim() == 3:
                encoder_output_lens = torch.full((encoder_outputs.shape[0], ),
                                                 encoder_outputs.shape[1],
                                                 dtype=torch.int32,
                                                 device='cuda')

                encoder_outputs = remove_tensor_padding(encoder_outputs,
                                                        encoder_output_lens)
        output_ids = self.decoder_generation_session.decode(
            decoder_input_ids,
            decoder_input_lengths,
            sampling_config,
            encoder_output=encoder_outputs,
            encoder_input_lengths=encoder_input_lengths,
            cross_attention_mask=cross_attention_mask,
        )
        torch.cuda.synchronize()

        # get the list of int from output_ids tensor
        output_ids = output_ids.cpu().numpy().tolist()
        return output_ids


class WhisperTRTLLM(object):

    def __init__(self, 
                 engine_dir,
                 assets_dir=None,
                 device=None,
                 is_multilingual=False,
                 language="en",
                 task="transcribe",
                 use_py_session=False,
                 num_beams=1,
                 debug_mode=False,
                 max_output_len=96):
        world_size = 1
        runtime_rank = tensorrt_llm.mpi_rank()
        runtime_mapping = tensorrt_llm.Mapping(world_size, runtime_rank)
        torch.cuda.set_device(runtime_rank % runtime_mapping.gpus_per_node)
        engine_dir = Path(engine_dir)
        encoder_config = read_config('encoder', engine_dir)
        decoder_config = read_config('decoder', engine_dir)
        self.n_mels = encoder_config['n_mels']
        self.num_languages = encoder_config['num_languages']
        is_multilingual = (decoder_config['vocab_size'] >= 51865)

        self.device = device
        self.tokenizer = get_tokenizer(
            is_multilingual,
            num_languages=self.num_languages,
            language=language,
            task=task,
        )

        if use_py_session:
            self.encoder = WhisperEncoding(engine_dir)
            self.decoder = WhisperDecoding(engine_dir,
                                        runtime_mapping,
                                        debug_mode=False)
        else:
            json_config = GptJsonConfig.parse_file(engine_dir / 'decoder' /
                                                   'config.json')
            assert json_config.model_config.supports_inflight_batching
            runner_kwargs = dict(engine_dir=engine_dir,
                                 is_enc_dec=True,
                                 max_batch_size=1,
                                 max_input_len=3000,
                                 max_output_len=max_output_len,
                                 max_beam_width=num_beams,
                                 debug_mode=debug_mode,
                                 kv_cache_free_gpu_memory_fraction=0.9,
                                 cross_kv_cache_fraction=0.5)
            self.model_runner_cpp = ModelRunnerCpp.from_dir(**runner_kwargs)
        self.filters = mel_filters(self.device, self.n_mels, assets_dir)
        self.use_py_session = use_py_session

    def log_mel_spectrogram(
        self,
        audio: Union[str, np.ndarray, torch.Tensor],
        padding: int = 0,
        return_duration=True
    ):
        """
        Compute the log-Mel spectrogram of

        Parameters
        ----------
        audio: Union[str, np.ndarray, torch.Tensor], shape = (*)
            The path to audio or either a NumPy array or Tensor containing the audio waveform in 16 kHz

        n_mels: int
            The number of Mel-frequency filters, only 80 and 128 are supported

        padding: int
            Number of zero samples to pad to the right

        device: Optional[Union[str, torch.device]]
            If given, the audio tensor is moved to this device before STFT

        Returns
        -------
        torch.Tensor, shape = (80 or 128, n_frames)
            A Tensor that contains the Mel spectrogram
        """
        if not torch.is_tensor(audio):
            if isinstance(audio, str):
                if audio.endswith('.wav'):
                    audio, _ = load_audio_wav_format(audio)
                else:
                    audio = load_audio(audio)
            assert isinstance(audio, np.ndarray), f"Unsupported audio type: {type(audio)}"
            duration = audio.shape[-1] / SAMPLE_RATE
            audio = pad_or_trim(audio, N_SAMPLES)
            audio = audio.astype(np.float32)
            audio = torch.from_numpy(audio)

        if self.device is not None:
            audio = audio.to(self.device)
        if padding > 0:
            audio = F.pad(audio, (0, padding))
        window = torch.hann_window(N_FFT).to(audio.device)
        stft = torch.stft(audio, N_FFT, HOP_LENGTH, window=window, return_complex=True)
        magnitudes = stft[..., :-1].abs()**2

        mel_spec = self.filters @ magnitudes

        log_spec = torch.clamp(mel_spec, min=1e-10).log10()
        log_spec = torch.maximum(log_spec, log_spec.max() - 8.0)
        log_spec = (log_spec + 4.0) / 4.0
        if return_duration:
            return log_spec, duration
        else:
            return log_spec

    def process_batch(
            self,
            mel,
            mel_input_lengths,
            text_prefix="<|startoftranscript|><|en|><|transcribe|><|notimestamps|>",
            num_beams=1,
            max_new_tokens=96):
        prompt_id = self.tokenizer.encode(
            text_prefix, allowed_special=set(self.tokenizer.special_tokens.keys()))

        prompt_id = torch.tensor(prompt_id)
        batch_size = mel.shape[0]
        decoder_input_ids = prompt_id.repeat(batch_size, 1)
        if self.use_py_session:
            encoder_output, encoder_output_lengths = self.encoder.get_audio_features(mel, mel_input_lengths)
            encoder_max_input_length = torch.max(encoder_output_lengths).item()
            output_ids = self.decoder.generate(decoder_input_ids,
                                            encoder_output,
                                            encoder_max_input_length,
                                            encoder_output_lengths,
                                            self.tokenizer.eot,
                                            max_new_tokens=max_new_tokens,
                                            num_beams=num_beams)
        else:
            with torch.no_grad():
                if isinstance(mel, list):
                    mel = [
                        m.transpose(1, 2).type(
                            str_dtype_to_torch("float16")).squeeze(0)
                        for m in mel
                    ]
                else:
                    mel = mel.transpose(1, 2)
                outputs = self.model_runner_cpp.generate(
                    batch_input_ids=decoder_input_ids,
                    encoder_input_features=mel,
                    encoder_output_lengths=mel_input_lengths // 2,
                    max_new_tokens=max_new_tokens,
                    end_id=self.tokenizer.eot,
                    pad_id=self.tokenizer.eot,
                    num_beams=num_beams,
                    output_sequence_lengths=True,
                    return_dict=True)
                torch.cuda.synchronize()
                output_ids = outputs['output_ids'].cpu().numpy().tolist()
        texts = []
        for i in range(len(output_ids)):
            text = self.tokenizer.decode(output_ids[i][0]).strip()
            texts.append(text)
        return texts

    def transcribe(
            self,
            mel,
            text_prefix="<|startoftranscript|><|en|><|transcribe|><|notimestamps|>",
            dtype='float16',
            batch_size=1,
            num_beams=1,
            padding_strategy="max",
            max_new_tokens=96,
        ):
        mel = mel.type(str_dtype_to_torch(dtype))
        mel = mel.unsqueeze(0)
        # repeat the mel spectrogram to match the batch size
        mel = mel.repeat(batch_size, 1, 1)
        if padding_strategy == "longest":
            pass
        else:
            mel = torch.nn.functional.pad(mel, (0, 3000 - mel.shape[2]))
        features_input_lengths = torch.full((mel.shape[0], ),
                                             mel.shape[2],
                                             dtype=torch.int32,
                                             device=mel.device)

        predictions = self.process_batch(
            mel,
            features_input_lengths,
            text_prefix,
            num_beams,
            max_new_tokens=max_new_tokens
        )
        prediction = predictions[0]

        # remove all special tokens in the prediction
        prediction = re.sub(r'<\|.*?\|>', '', prediction)
        return prediction.strip()


def decode_wav_file(
        model,
        mel,
        text_prefix="<|startoftranscript|><|en|><|transcribe|><|notimestamps|>",
        dtype='float16',
        batch_size=1,
        num_beams=1,
        normalizer=None,
        mel_filters_dir=None):

    mel = mel.type(str_dtype_to_torch(dtype))
    mel = mel.unsqueeze(0)
    # repeat the mel spectrogram to match the batch size
    mel = mel.repeat(batch_size, 1, 1)
    predictions = model.process_batch(mel, text_prefix, num_beams)
    prediction = predictions[0]

    # remove all special tokens in the prediction
    prediction = re.sub(r'<\|.*?\|>', '', prediction)
    if normalizer:
        prediction = normalizer(prediction)

    return prediction.strip()