nuernie
initial commit
7222c68
import os
import shutil
import wave
import logging
import numpy as np
import pyaudio
import threading
import json
import websocket
import uuid
import time
import av
import whisper_live.utils as utils
class Client:
"""
Handles communication with a server using WebSocket.
"""
INSTANCES = {}
END_OF_AUDIO = "END_OF_AUDIO"
def __init__(
self,
host=None,
port=None,
lang=None,
translate=False,
model="small",
srt_file_path="output.srt",
use_vad=True,
use_wss=False,
log_transcription=True,
max_clients=4,
max_connection_time=600,
send_last_n_segments=10,
no_speech_thresh=0.45,
clip_audio=False,
same_output_threshold=10,
transcription_callback=None,
):
"""
Initializes a Client instance for audio recording and streaming to a server.
If host and port are not provided, the WebSocket connection will not be established.
When translate is True, the task will be set to "translate" instead of "transcribe".
he audio recording starts immediately upon initialization.
Args:
host (str): The hostname or IP address of the server.
port (int): The port number for the WebSocket server.
lang (str, optional): The selected language for transcription. Default is None.
translate (bool, optional): Specifies if the task is translation. Default is False.
model (str, optional): The whisper model to use (e.g., "small", "medium", "large"). Default is "small".
srt_file_path (str, optional): The file path to save the output SRT file. Default is "output.srt".
use_vad (bool, optional): Whether to enable voice activity detection. Default is True.
log_transcription (bool, optional): Whether to log transcription output to the console. Default is True.
max_clients (int, optional): Maximum number of client connections allowed. Default is 4.
max_connection_time (int, optional): Maximum allowed connection time in seconds. Default is 600.
send_last_n_segments (int, optional): Number of most recent segments to send to the client. Defaults to 10.
no_speech_thresh (float, optional): Segments with no speech probability above this threshold will be discarded. Defaults to 0.45.
clip_audio (bool, optional): Whether to clip audio with no valid segments. Defaults to False.
same_output_threshold (int, optional): Number of repeated outputs before considering it as a valid segment. Defaults to 10.
transcription_callback (callable, optional): A callback function to handle transcription results. Default is None.
"""
self.recording = False
self.task = "transcribe"
self.uid = str(uuid.uuid4())
self.waiting = False
self.last_response_received = None
self.disconnect_if_no_response_for = 15
self.language = lang
self.model = model
self.server_error = False
self.srt_file_path = srt_file_path
self.use_vad = use_vad
self.use_wss = use_wss
self.last_segment = None
self.last_received_segment = None
self.log_transcription = log_transcription
self.max_clients = max_clients
self.max_connection_time = max_connection_time
self.send_last_n_segments = send_last_n_segments
self.no_speech_thresh = no_speech_thresh
self.clip_audio = clip_audio
self.same_output_threshold = same_output_threshold
self.transcription_callback = transcription_callback
if translate:
self.task = "translate"
self.audio_bytes = None
if host is not None and port is not None:
socket_protocol = 'wss' if self.use_wss else "ws"
socket_url = f"{socket_protocol}://{host}:{port}"
self.client_socket = websocket.WebSocketApp(
socket_url,
on_open=lambda ws: self.on_open(ws),
on_message=lambda ws, message: self.on_message(ws, message),
on_error=lambda ws, error: self.on_error(ws, error),
on_close=lambda ws, close_status_code, close_msg: self.on_close(
ws, close_status_code, close_msg
),
)
else:
print("[ERROR]: No host or port specified.")
return
Client.INSTANCES[self.uid] = self
# start websocket client in a thread
self.ws_thread = threading.Thread(target=self.client_socket.run_forever)
self.ws_thread.daemon = True
self.ws_thread.start()
self.transcript = []
print("[INFO]: * recording")
def handle_status_messages(self, message_data):
"""Handles server status messages."""
status = message_data["status"]
if status == "WAIT":
self.waiting = True
print(f"[INFO]: Server is full. Estimated wait time {round(message_data['message'])} minutes.")
elif status == "ERROR":
print(f"Message from Server: {message_data['message']}")
self.server_error = True
elif status == "WARNING":
print(f"Message from Server: {message_data['message']}")
def process_segments(self, segments):
"""Processes transcript segments."""
text = []
for i, seg in enumerate(segments):
if not text or text[-1] != seg["text"]:
text.append(seg["text"])
if i == len(segments) - 1 and not seg.get("completed", False):
self.last_segment = seg
elif (self.server_backend == "faster_whisper" and seg.get("completed", False) and
(not self.transcript or
float(seg['start']) >= float(self.transcript[-1]['end']))):
self.transcript.append(seg)
# update last received segment and last valid response time
if self.last_received_segment is None or self.last_received_segment != segments[-1]["text"]:
self.last_response_received = time.time()
self.last_received_segment = segments[-1]["text"]
# call the transcription callback if provided
if self.transcription_callback and callable(self.transcription_callback):
try:
self.transcription_callback(" ".join(text), segments) # string, list
except Exception as e:
print(f"[WARN] transcription_callback raised: {e}")
return
if self.log_transcription:
# Truncate to last 3 entries for brevity.
text = text[-3:]
utils.clear_screen()
utils.print_transcript(text)
def on_message(self, ws, message):
"""
Callback function called when a message is received from the server.
It updates various attributes of the client based on the received message, including
recording status, language detection, and server messages. If a disconnect message
is received, it sets the recording status to False.
Args:
ws (websocket.WebSocketApp): The WebSocket client instance.
message (str): The received message from the server.
"""
message = json.loads(message)
if self.uid != message.get("uid"):
print("[ERROR]: invalid client uid")
return
if "status" in message.keys():
self.handle_status_messages(message)
return
if "message" in message.keys() and message["message"] == "DISCONNECT":
print("[INFO]: Server disconnected due to overtime.")
self.recording = False
if "message" in message.keys() and message["message"] == "SERVER_READY":
self.last_response_received = time.time()
self.recording = True
self.server_backend = message["backend"]
print(f"[INFO]: Server Running with backend {self.server_backend}")
return
if "language" in message.keys():
self.language = message.get("language")
lang_prob = message.get("language_prob")
print(
f"[INFO]: Server detected language {self.language} with probability {lang_prob}"
)
return
if "segments" in message.keys():
self.process_segments(message["segments"])
def on_error(self, ws, error):
print(f"[ERROR] WebSocket Error: {error}")
self.server_error = True
self.error_message = error
def on_close(self, ws, close_status_code, close_msg):
print(f"[INFO]: Websocket connection closed: {close_status_code}: {close_msg}")
self.recording = False
self.waiting = False
def on_open(self, ws):
"""
Callback function called when the WebSocket connection is successfully opened.
Sends an initial configuration message to the server, including client UID,
language selection, and task type.
Args:
ws (websocket.WebSocketApp): The WebSocket client instance.
"""
print("[INFO]: Opened connection")
ws.send(
json.dumps(
{
"uid": self.uid,
"language": self.language,
"task": self.task,
"model": self.model,
"use_vad": self.use_vad,
"max_clients": self.max_clients,
"max_connection_time": self.max_connection_time,
"send_last_n_segments": self.send_last_n_segments,
"no_speech_thresh": self.no_speech_thresh,
"clip_audio": self.clip_audio,
"same_output_threshold": self.same_output_threshold,
}
)
)
def send_packet_to_server(self, message):
"""
Send an audio packet to the server using WebSocket.
Args:
message (bytes): The audio data packet in bytes to be sent to the server.
"""
try:
self.client_socket.send(message, websocket.ABNF.OPCODE_BINARY)
except Exception as e:
print(e)
def close_websocket(self):
"""
Close the WebSocket connection and join the WebSocket thread.
First attempts to close the WebSocket connection using `self.client_socket.close()`. After
closing the connection, it joins the WebSocket thread to ensure proper termination.
"""
try:
self.client_socket.close()
except Exception as e:
print("[ERROR]: Error closing WebSocket:", e)
try:
self.ws_thread.join()
except Exception as e:
print("[ERROR:] Error joining WebSocket thread:", e)
def get_client_socket(self):
"""
Get the WebSocket client socket instance.
Returns:
WebSocketApp: The WebSocket client socket instance currently in use by the client.
"""
return self.client_socket
def write_srt_file(self, output_path="output.srt"):
"""
Writes out the transcript in .srt format.
Args:
message (output_path, optional): The path to the target file. Default is "output.srt".
"""
if self.server_backend == "faster_whisper":
if not self.transcript and self.last_segment is not None:
self.transcript.append(self.last_segment)
elif self.last_segment and self.transcript[-1]["text"] != self.last_segment["text"]:
self.transcript.append(self.last_segment)
utils.create_srt_file(self.transcript, output_path)
def wait_before_disconnect(self):
"""Waits a bit before disconnecting in order to process pending responses."""
assert self.last_response_received
while time.time() - self.last_response_received < self.disconnect_if_no_response_for:
continue
class TranscriptionTeeClient:
"""
Client for handling audio recording, streaming, and transcription tasks via one or more
WebSocket connections.
Acts as a high-level client for audio transcription tasks using a WebSocket connection. It can be used
to send audio data for transcription to one or more servers, and receive transcribed text segments.
Args:
clients (list): one or more previously initialized Client instances
Attributes:
clients (list): the underlying Client instances responsible for handling WebSocket connections.
"""
def __init__(self, clients, save_output_recording=False, output_recording_filename="./output_recording.wav", mute_audio_playback=False):
self.clients = clients
if not self.clients:
raise Exception("At least one client is required.")
self.chunk = 4096
self.format = pyaudio.paInt16
self.channels = 1
self.rate = 16000
self.record_seconds = 60000
self.save_output_recording = save_output_recording
self.output_recording_filename = output_recording_filename
self.mute_audio_playback = mute_audio_playback
self.frames = b""
self.p = pyaudio.PyAudio()
try:
self.stream = self.p.open(
format=self.format,
channels=self.channels,
rate=self.rate,
input=True,
frames_per_buffer=self.chunk,
)
except OSError as error:
print(f"[WARN]: Unable to access microphone. {error}")
self.stream = None
def __call__(self, audio=None, rtsp_url=None, hls_url=None, save_file=None):
"""
Start the transcription process.
Initiates the transcription process by connecting to the server via a WebSocket. It waits for the server
to be ready to receive audio data and then sends audio for transcription. If an audio file is provided, it
will be played and streamed to the server; otherwise, it will perform live recording.
Args:
audio (str, optional): Path to an audio file for transcription. Default is None, which triggers live recording.
"""
assert sum(
source is not None for source in [audio, rtsp_url, hls_url]
) <= 1, 'You must provide only one selected source'
print("[INFO]: Waiting for server ready ...")
for client in self.clients:
while not client.recording:
if client.waiting or client.server_error:
self.close_all_clients()
return
print("[INFO]: Server Ready!")
if hls_url is not None:
self.process_hls_stream(hls_url, save_file)
elif audio is not None:
resampled_file = utils.resample(audio)
self.play_file(resampled_file)
elif rtsp_url is not None:
self.process_rtsp_stream(rtsp_url)
else:
self.record()
def close_all_clients(self):
"""Closes all client websockets."""
for client in self.clients:
client.close_websocket()
def write_all_clients_srt(self):
"""Writes out .srt files for all clients."""
for client in self.clients:
client.write_srt_file(client.srt_file_path)
def multicast_packet(self, packet, unconditional=False):
"""
Sends an identical packet via all clients.
Args:
packet (bytes): The audio data packet in bytes to be sent.
unconditional (bool, optional): If true, send regardless of whether clients are recording. Default is False.
"""
for client in self.clients:
if (unconditional or client.recording):
client.send_packet_to_server(packet)
def play_file(self, filename):
"""
Play an audio file and send it to the server for processing.
Reads an audio file, plays it through the audio output, and simultaneously sends
the audio data to the server for processing. It uses PyAudio to create an audio
stream for playback. The audio data is read from the file in chunks, converted to
floating-point format, and sent to the server using WebSocket communication.
This method is typically used when you want to process pre-recorded audio and send it
to the server in real-time.
Args:
filename (str): The path to the audio file to be played and sent to the server.
"""
# read audio and create pyaudio stream
with wave.open(filename, "rb") as wavfile:
self.stream = self.p.open(
format=self.p.get_format_from_width(wavfile.getsampwidth()),
channels=wavfile.getnchannels(),
rate=wavfile.getframerate(),
input=True,
output=True,
frames_per_buffer=self.chunk,
)
chunk_duration = self.chunk / float(wavfile.getframerate())
try:
while any(client.recording for client in self.clients):
data = wavfile.readframes(self.chunk)
if data == b"":
break
audio_array = self.bytes_to_float_array(data)
self.multicast_packet(audio_array.tobytes())
if self.mute_audio_playback:
time.sleep(chunk_duration)
else:
self.stream.write(data)
wavfile.close()
for client in self.clients:
client.wait_before_disconnect()
self.multicast_packet(Client.END_OF_AUDIO.encode('utf-8'), True)
self.write_all_clients_srt()
self.stream.close()
self.close_all_clients()
except KeyboardInterrupt:
wavfile.close()
self.stream.stop_stream()
self.stream.close()
self.p.terminate()
self.close_all_clients()
self.write_all_clients_srt()
print("[INFO]: Keyboard interrupt.")
def process_rtsp_stream(self, rtsp_url):
"""
Connect to an RTSP source, process the audio stream, and send it for transcription.
Args:
rtsp_url (str): The URL of the RTSP stream source.
"""
print("[INFO]: Connecting to RTSP stream...")
try:
container = av.open(rtsp_url, format="rtsp", options={"rtsp_transport": "tcp"})
self.process_av_stream(container, stream_type="RTSP")
except Exception as e:
print(f"[ERROR]: Failed to process RTSP stream: {e}")
finally:
for client in self.clients:
client.wait_before_disconnect()
self.multicast_packet(Client.END_OF_AUDIO.encode('utf-8'), True)
self.close_all_clients()
self.write_all_clients_srt()
print("[INFO]: RTSP stream processing finished.")
def process_hls_stream(self, hls_url, save_file=None):
"""
Connect to an HLS source, process the audio stream, and send it for transcription.
Args:
hls_url (str): The URL of the HLS stream source.
save_file (str, optional): Local path to save the network stream.
"""
print("[INFO]: Connecting to HLS stream...")
try:
container = av.open(hls_url, format="hls")
self.process_av_stream(container, stream_type="HLS", save_file=save_file)
except Exception as e:
print(f"[ERROR]: Failed to process HLS stream: {e}")
finally:
for client in self.clients:
client.wait_before_disconnect()
self.multicast_packet(Client.END_OF_AUDIO.encode('utf-8'), True)
self.close_all_clients()
self.write_all_clients_srt()
print("[INFO]: HLS stream processing finished.")
def process_av_stream(self, container, stream_type, save_file=None):
"""
Process an AV container stream and send audio packets to the server.
Args:
container (av.container.InputContainer): The input container to process.
stream_type (str): The type of stream being processed ("RTSP" or "HLS").
save_file (str, optional): Local path to save the stream. Default is None.
"""
audio_stream = next((s for s in container.streams if s.type == "audio"), None)
if not audio_stream:
print(f"[ERROR]: No audio stream found in {stream_type} source.")
return
output_container = None
if save_file:
output_container = av.open(save_file, mode="w")
output_audio_stream = output_container.add_stream(codec_name="pcm_s16le", rate=self.rate)
try:
for packet in container.demux(audio_stream):
for frame in packet.decode():
audio_data = frame.to_ndarray().tobytes()
self.multicast_packet(audio_data)
if save_file:
output_container.mux(frame)
except Exception as e:
print(f"[ERROR]: Error during {stream_type} stream processing: {e}")
finally:
# Wait for server to send any leftover transcription.
time.sleep(5)
self.multicast_packet(Client.END_OF_AUDIO.encode('utf-8'), True)
if output_container:
output_container.close()
container.close()
def save_chunk(self, n_audio_file):
"""
Saves the current audio frames to a WAV file in a separate thread.
Args:
n_audio_file (int): The index of the audio file which determines the filename.
This helps in maintaining the order and uniqueness of each chunk.
"""
t = threading.Thread(
target=self.write_audio_frames_to_file,
args=(self.frames[:], f"chunks/{n_audio_file}.wav",),
)
t.start()
def finalize_recording(self, n_audio_file):
"""
Finalizes the recording process by saving any remaining audio frames,
closing the audio stream, and terminating the process.
Args:
n_audio_file (int): The file index to be used if there are remaining audio frames to be saved.
This index is incremented before use if the last chunk is saved.
"""
if self.save_output_recording and len(self.frames):
self.write_audio_frames_to_file(
self.frames[:], f"chunks/{n_audio_file}.wav"
)
n_audio_file += 1
self.stream.stop_stream()
self.stream.close()
self.p.terminate()
self.close_all_clients()
if self.save_output_recording:
self.write_output_recording(n_audio_file)
self.write_all_clients_srt()
def record(self):
"""
Record audio data from the input stream and save it to a WAV file.
Continuously records audio data from the input stream, sends it to the server via a WebSocket
connection, and simultaneously saves it to multiple WAV files in chunks. It stops recording when
the `RECORD_SECONDS` duration is reached or when the `RECORDING` flag is set to `False`.
Audio data is saved in chunks to the "chunks" directory. Each chunk is saved as a separate WAV file.
The recording will continue until the specified duration is reached or until the `RECORDING` flag is set to `False`.
The recording process can be interrupted by sending a KeyboardInterrupt (e.g., pressing Ctrl+C). After recording,
the method combines all the saved audio chunks into the specified `out_file`.
"""
n_audio_file = 0
if self.save_output_recording:
if os.path.exists("chunks"):
shutil.rmtree("chunks")
os.makedirs("chunks")
try:
for _ in range(0, int(self.rate / self.chunk * self.record_seconds)):
if not any(client.recording for client in self.clients):
break
data = self.stream.read(self.chunk, exception_on_overflow=False)
self.frames += data
audio_array = self.bytes_to_float_array(data)
self.multicast_packet(audio_array.tobytes())
# save frames if more than a minute
if len(self.frames) > 60 * self.rate:
if self.save_output_recording:
self.save_chunk(n_audio_file)
n_audio_file += 1
self.frames = b""
self.write_all_clients_srt()
except KeyboardInterrupt:
self.finalize_recording(n_audio_file)
def write_audio_frames_to_file(self, frames, file_name):
"""
Write audio frames to a WAV file.
The WAV file is created or overwritten with the specified name. The audio frames should be
in the correct format and match the specified channel, sample width, and sample rate.
Args:
frames (bytes): The audio frames to be written to the file.
file_name (str): The name of the WAV file to which the frames will be written.
"""
with wave.open(file_name, "wb") as wavfile:
wavfile: wave.Wave_write
wavfile.setnchannels(self.channels)
wavfile.setsampwidth(2)
wavfile.setframerate(self.rate)
wavfile.writeframes(frames)
def write_output_recording(self, n_audio_file):
"""
Combine and save recorded audio chunks into a single WAV file.
The individual audio chunk files are expected to be located in the "chunks" directory. Reads each chunk
file, appends its audio data to the final recording, and then deletes the chunk file. After combining
and saving, the final recording is stored in the specified `out_file`.
Args:
n_audio_file (int): The number of audio chunk files to combine.
out_file (str): The name of the output WAV file to save the final recording.
"""
input_files = [
f"chunks/{i}.wav"
for i in range(n_audio_file)
if os.path.exists(f"chunks/{i}.wav")
]
with wave.open(self.output_recording_filename, "wb") as wavfile:
wavfile: wave.Wave_write
wavfile.setnchannels(self.channels)
wavfile.setsampwidth(2)
wavfile.setframerate(self.rate)
for in_file in input_files:
with wave.open(in_file, "rb") as wav_in:
while True:
data = wav_in.readframes(self.chunk)
if data == b"":
break
wavfile.writeframes(data)
# remove this file
os.remove(in_file)
wavfile.close()
# clean up temporary directory to store chunks
if os.path.exists("chunks"):
shutil.rmtree("chunks")
@staticmethod
def bytes_to_float_array(audio_bytes):
"""
Convert audio data from bytes to a NumPy float array.
It assumes that the audio data is in 16-bit PCM format. The audio data is normalized to
have values between -1 and 1.
Args:
audio_bytes (bytes): Audio data in bytes.
Returns:
np.ndarray: A NumPy array containing the audio data as float values normalized between -1 and 1.
"""
raw_data = np.frombuffer(buffer=audio_bytes, dtype=np.int16)
return raw_data.astype(np.float32) / 32768.0
class TranscriptionClient(TranscriptionTeeClient):
"""
Client for handling audio transcription tasks via a single WebSocket connection.
Acts as a high-level client for audio transcription tasks using a WebSocket connection. It can be used
to send audio data for transcription to a server and receive transcribed text segments.
Args:
host (str): The hostname or IP address of the server.
port (int): The port number to connect to on the server.
lang (str, optional): The primary language for transcription. Default is None, which defaults to English ('en').
translate (bool, optional): If True, the task will be translation instead of transcription. Default is False.
model (str, optional): The whisper model to use (e.g., "small", "base"). Default is "small".
use_vad (bool, optional): Whether to enable voice activity detection. Default is True.
save_output_recording (bool, optional): Whether to save the microphone recording. Default is False.
output_recording_filename (str, optional): Path to save the output recording WAV file. Default is "./output_recording.wav".
output_transcription_path (str, optional): File path to save the output transcription (SRT file). Default is "./output.srt".
log_transcription (bool, optional): Whether to log transcription output to the console. Default is True.
max_clients (int, optional): Maximum number of client connections allowed. Default is 4.
max_connection_time (int, optional): Maximum allowed connection time in seconds. Default is 600.
mute_audio_playback (bool, optional): If True, mutes audio playback during file playback. Default is False.
send_last_n_segments (int, optional): Number of most recent segments to send to the client. Defaults to 10.
no_speech_thresh (float, optional): Segments with no speech probability above this threshold will be discarded. Defaults to 0.45.
clip_audio (bool, optional): Whether to clip audio with no valid segments. Defaults to False.
same_output_threshold (int, optional): Number of repeated outputs before considering it as a valid segment. Defaults to 10.
transcription_callback (callable, optional): A callback function to handle transcription results. Default is None.
Attributes:
client (Client): An instance of the underlying Client class responsible for handling the WebSocket connection.
Example:
To create a TranscriptionClient and start transcription on microphone audio:
```python
transcription_client = TranscriptionClient(host="localhost", port=9090)
transcription_client()
```
"""
def __init__(
self,
host,
port,
lang=None,
translate=False,
model="small",
use_vad=True,
use_wss=False,
save_output_recording=False,
output_recording_filename="./output_recording.wav",
output_transcription_path="./output.srt",
log_transcription=True,
max_clients=4,
max_connection_time=600,
mute_audio_playback=False,
send_last_n_segments=10,
no_speech_thresh=0.45,
clip_audio=False,
same_output_threshold=10,
transcription_callback=None,
):
self.client = Client(
host,
port,
lang,
translate,
model,
srt_file_path=output_transcription_path,
use_vad=use_vad,
use_wss=use_wss,
log_transcription=log_transcription,
max_clients=max_clients,
max_connection_time=max_connection_time,
send_last_n_segments=send_last_n_segments,
no_speech_thresh=no_speech_thresh,
clip_audio=clip_audio,
same_output_threshold=same_output_threshold,
transcription_callback=transcription_callback,
)
if save_output_recording and not output_recording_filename.endswith(".wav"):
raise ValueError(f"Please provide a valid `output_recording_filename`: {output_recording_filename}")
if not output_transcription_path.endswith(".srt"):
raise ValueError(f"Please provide a valid `output_transcription_path`: {output_transcription_path}. The file extension should be `.srt`.")
TranscriptionTeeClient.__init__(
self,
[self.client],
save_output_recording=save_output_recording,
output_recording_filename=output_recording_filename,
mute_audio_playback=mute_audio_playback
)