nuernie
initial commit
7222c68
import os
import subprocess
import torch
import numpy as np
import onnxruntime
import warnings
class VoiceActivityDetection():
def __init__(self, force_onnx_cpu=True):
path = self.download()
opts = onnxruntime.SessionOptions()
opts.log_severity_level = 3
opts.inter_op_num_threads = 1
opts.intra_op_num_threads = 1
if force_onnx_cpu and 'CPUExecutionProvider' in onnxruntime.get_available_providers():
self.session = onnxruntime.InferenceSession(path, providers=['CPUExecutionProvider'], sess_options=opts)
else:
self.session = onnxruntime.InferenceSession(path, providers=['CUDAExecutionProvider'], sess_options=opts)
self.reset_states()
if '16k' in path:
warnings.warn('This model support only 16000 sampling rate!')
self.sample_rates = [16000]
else:
self.sample_rates = [8000, 16000]
def _validate_input(self, x, sr: int):
if x.dim() == 1:
x = x.unsqueeze(0)
if x.dim() > 2:
raise ValueError(f"Too many dimensions for input audio chunk {x.dim()}")
if sr != 16000 and (sr % 16000 == 0):
step = sr // 16000
x = x[:,::step]
sr = 16000
if sr not in self.sample_rates:
raise ValueError(f"Supported sampling rates: {self.sample_rates} (or multiply of 16000)")
if sr / x.shape[1] > 31.25:
raise ValueError("Input audio chunk is too short")
return x, sr
def reset_states(self, batch_size=1):
self._state = torch.zeros((2, batch_size, 128)).float()
self._context = torch.zeros(0)
self._last_sr = 0
self._last_batch_size = 0
def __call__(self, x, sr: int):
x, sr = self._validate_input(x, sr)
num_samples = 512 if sr == 16000 else 256
if x.shape[-1] != num_samples:
raise ValueError(f"Provided number of samples is {x.shape[-1]} (Supported values: 256 for 8000 sample rate, 512 for 16000)")
batch_size = x.shape[0]
context_size = 64 if sr == 16000 else 32
if not self._last_batch_size:
self.reset_states(batch_size)
if (self._last_sr) and (self._last_sr != sr):
self.reset_states(batch_size)
if (self._last_batch_size) and (self._last_batch_size != batch_size):
self.reset_states(batch_size)
if not len(self._context):
self._context = torch.zeros(batch_size, context_size)
x = torch.cat([self._context, x], dim=1)
if sr in [8000, 16000]:
ort_inputs = {'input': x.numpy(), 'state': self._state.numpy(), 'sr': np.array(sr, dtype='int64')}
ort_outs = self.session.run(None, ort_inputs)
out, state = ort_outs
self._state = torch.from_numpy(state)
else:
raise ValueError()
self._context = x[..., -context_size:]
self._last_sr = sr
self._last_batch_size = batch_size
out = torch.from_numpy(out)
return out
def audio_forward(self, x, sr: int):
outs = []
x, sr = self._validate_input(x, sr)
self.reset_states()
num_samples = 512 if sr == 16000 else 256
if x.shape[1] % num_samples:
pad_num = num_samples - (x.shape[1] % num_samples)
x = torch.nn.functional.pad(x, (0, pad_num), 'constant', value=0.0)
for i in range(0, x.shape[1], num_samples):
wavs_batch = x[:, i:i+num_samples]
out_chunk = self.__call__(wavs_batch, sr)
outs.append(out_chunk)
stacked = torch.cat(outs, dim=1)
return stacked.cpu()
@staticmethod
def download(model_url="https://github.com/snakers4/silero-vad/raw/v5.0/files/silero_vad.onnx"):
target_dir = os.path.expanduser("~/.cache/whisper-live/")
# Ensure the target directory exists
os.makedirs(target_dir, exist_ok=True)
# Define the target file path
model_filename = os.path.join(target_dir, "silero_vad.onnx")
# Check if the model file already exists
if not os.path.exists(model_filename):
# If it doesn't exist, download the model using wget
try:
subprocess.run(["wget", "-O", model_filename, model_url], check=True)
except subprocess.CalledProcessError:
print("Failed to download the model using wget.")
return model_filename
class VoiceActivityDetector:
def __init__(self, threshold=0.5, frame_rate=16000):
"""
Initializes the VoiceActivityDetector with a voice activity detection model and a threshold.
Args:
threshold (float, optional): The probability threshold for detecting voice activity. Defaults to 0.5.
"""
self.model = VoiceActivityDetection()
self.threshold = threshold
self.frame_rate = frame_rate
def __call__(self, audio_frame):
"""
Determines if the given audio frame contains speech by comparing the detected speech probability against
the threshold.
Args:
audio_frame (np.ndarray): The audio frame to be analyzed for voice activity. It is expected to be a
NumPy array of audio samples.
Returns:
bool: True if the speech probability exceeds the threshold, indicating the presence of voice activity;
False otherwise.
"""
speech_probs = self.model.audio_forward(torch.from_numpy(audio_frame.copy()), self.frame_rate)[0]
return torch.any(speech_probs > self.threshold).item()