#!/bin/bash download_and_build_model() { local model_name="$1" local model_url="" case "$model_name" in "tiny.en") model_url="https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt" ;; "tiny") model_url="https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt" ;; "base.en") model_url="https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt" ;; "base") model_url="https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt" ;; "small.en") model_url="https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt" ;; "small") model_url="https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt" ;; "medium.en") model_url="https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt" ;; "medium") model_url="https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt" ;; "large-v1") model_url="https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large-v1.pt" ;; "large-v2") model_url="https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt" ;; "large-v3" | "large") model_url="https://openaipublic.azureedge.net/main/whisper/models/e5b1a55b89c1367dacf97e3e19bfd829a01529dbfdeefa8caeb59b3f1b81dadb/large-v3.pt" ;; "large-v3-turbo" | "turbo") model_url="https://openaipublic.azureedge.net/main/whisper/models/aff26ae408abcba5fbf8813c21e62b0941638c5f6eebfb145be0c9839262a19a/large-v3-turbo.pt" ;; *) echo "Invalid model name: $model_name" exit 1 ;; esac if [ "$model_name" == "turbo" ]; then model_name="large-v3-turbo" fi local inference_precision="float16" local weight_only_precision="${2:-float16}" local max_beam_width=4 local max_batch_size=4 echo "Downloading $model_name..." # wget --directory-prefix=assets "$model_url" # echo "Download completed: ${model_name}.pt" if [ ! -f "assets/${model_name}.pt" ]; then wget --directory-prefix=assets "$model_url" echo "Download completed: ${model_name}.pt" else echo "${model_name}.pt already exists in assets directory." fi local sanitized_model_name="${model_name//./_}" local checkpoint_dir="whisper_${sanitized_model_name}_weights_${weight_only_precision}" local output_dir="whisper_${sanitized_model_name}_${weight_only_precision}" echo "$output_dir" echo "Converting model weights for $model_name..." python3 convert_checkpoint.py \ $( [[ "$weight_only_precision" == "int8" || "$weight_only_precision" == "int4" ]] && echo "--use_weight_only --weight_only_precision $weight_only_precision" ) \ --output_dir "$checkpoint_dir" --model_name "$model_name" echo "Building encoder for $model_name..." trtllm-build \ --checkpoint_dir "${checkpoint_dir}/encoder" \ --output_dir "${output_dir}/encoder" \ --moe_plugin disable \ --max_batch_size "$max_batch_size" \ --gemm_plugin disable \ --bert_attention_plugin "$inference_precision" \ --max_input_len 3000 \ --max_seq_len 3000 echo "Building decoder for $model_name..." trtllm-build \ --checkpoint_dir "${checkpoint_dir}/decoder" \ --output_dir "${output_dir}/decoder" \ --moe_plugin disable \ --max_beam_width "$max_beam_width" \ --max_batch_size "$max_batch_size" \ --max_seq_len 225 \ --max_input_len 32 \ --max_encoder_input_len 3000 \ --gemm_plugin "$inference_precision" \ --bert_attention_plugin "$inference_precision" \ --gpt_attention_plugin "$inference_precision" echo "TensorRT LLM engine built for $model_name." echo "=========================================" echo "Model is located at: $(pwd)/$output_dir" } if [ "$#" -lt 1 ]; then echo "Usage: $0 [model-name]" exit 1 fi tensorrt_examples_dir="$1" model_name="${2:-small.en}" weight_only_precision="${3:-float16}" # Default to float16 if not provided cd $tensorrt_examples_dir/whisper pip install --no-deps -r requirements.txt download_and_build_model "$model_name" "$weight_only_precision"