HugCode / app.py
nuojohnchen's picture
Update app.py
6359d57 verified
raw
history blame
5.08 kB
import gradio as gr
import os
import spaces
from transformers import GemmaTokenizer, AutoModelForCausalLM
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
# Set an environment variable
HF_TOKEN = os.environ.get("HF_TOKEN", None)
DESCRIPTION = '''
<div>
<h1 style="text-align: center;">HugCode</h1>
<p>CodeLLaMA sfted on [HugCode](https://huggingface.co/datasets/nuojohnchen/hugcode-codesft) data. Made in 2023.9. <a href="https://huggingface.co/FreedomIntelligence/Apollo-7B"><b>Meta Llama3 8b Chat</b></a></p>
</div>
'''
# LICENSE = """
# <p/>
# ---
# Built with Meta Llama 3
# """
PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
<img src="https://ysharma-dummy-chat-app.hf.space/file=/tmp/gradio/8e75e61cc9bab22b7ce3dec85ab0e6db1da5d107/Meta_lockup_positive%20primary_RGB.jpg" style="width: 80%; max-width: 550px; height: auto; opacity: 0.55; ">
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">HugCode</h1>
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Ask me code questions (English/Chinese).</p>
</div>
"""
css = """
h1 {
text-align: center;
display: block;
}
#duplicate-button {
margin: auto;
color: white;
background: #1565c0;
border-radius: 100vh;
}
"""
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nuojohnchen/codellama-7b-sft-v1.3")
model = AutoModelForCausalLM.from_pretrained("nuojohnchen/codellama-7b-sft-v1.3", device_map="auto") # to("cuda:0")
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
@spaces.GPU(duration=120)
def chat_llama3_8b(message: str,
history: list,
temperature: float,
max_new_tokens: int
) -> str:
"""
Generate a streaming response using the llama3-8b model.
Args:
message (str): The input message.
history (list): The conversation history used by ChatInterface.
temperature (float): The temperature for generating the response.
max_new_tokens (int): The maximum number of new tokens to generate.
Returns:
str: The generated response.
"""
# Build conversation as pure array format
history_messages = []
for user, assistant in history:
history_messages.extend(assistant)
# conversation = [
# message, # ε½“ε‰ζΆˆζ―
# history_messages # εŽ†ε²ζΆˆζ―ζ•°η»„
# ]
conversation = ""
for user, assistant in history:
conversation += f"User: {user}\nAssistant: {assistant}<|endoftext|>\n"
conversation += f"User: {message}\nAssistant: "
tokenizer.chat_template = "User:{query}\nAssistant:{response}<|endoftext|>"
input_ids = tokenizer.encode(conversation, return_tensors="pt").to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids= input_ids,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
eos_token_id=terminators,
)
# This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash.
if temperature == 0:
generate_kwargs['do_sample'] = False
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
#print(outputs)
yield "".join(outputs)
# Gradio block
chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')
with gr.Blocks(fill_height=True, css=css) as demo:
gr.Markdown(DESCRIPTION)
# gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
gr.ChatInterface(
fn=chat_llama3_8b,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="βš™οΈ Parameters", open=False, render=False),
additional_inputs=[
gr.Slider(minimum=0,
maximum=1,
step=0.1,
value=0.95,
label="Temperature",
render=False),
gr.Slider(minimum=128,
maximum=4096,
step=1,
value=512,
label="Max new tokens",
render=False ),
],
examples=[
['Build a REST API that allows users to manage their to-do lists.'],
['Implement a machine learning model to predict stock prices based on historical data.'],
['Develop a web application that allows users to upload images and apply various filters.']
],
cache_examples=False,
)
# gr.Markdown(LICENSE)
if __name__ == "__main__":
demo.launch()