File size: 3,591 Bytes
6d24925 8e17b80 6d24925 989b675 6d24925 69210b9 6d24925 8e17b80 6d24925 8e17b80 6d24925 8e17b80 6d24925 8e17b80 6d24925 8e17b80 6d24925 8e17b80 6d24925 8e17b80 6d24925 8e17b80 6d24925 8e17b80 6d24925 8e17b80 6d24925 8e17b80 989b675 6d24925 69210b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
import sys
import os
import json
from typing import List, Dict
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
from components.indexers.news_indexer import get_or_build_index_from_docs
from components.fetchers.google_search import fetch_google_news
from components.fetchers.scraper import scrape_url
from components.generators.daily_feed import generate_and_cache_daily_feed
from llama_index.core.settings import Settings
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core.schema import Document
# β
Set up local embedding model
Settings.embed_model = HuggingFaceEmbedding(model_name="sentence-transformers/paraphrase-MiniLM-L3-v2")
# π Environment variables
API_KEY = os.environ.get("GOOGLE_API_KEY")
CSE_ID = os.environ.get("GOOGLE_CX_ID") # β
fixed typo
# β
News topics to fetch
QUERIES = [
"India news", "World news", "Tech news", "Finance news", "Sports news"
]
# β
Paths
INDEX_DIR = "storage/index"
DATA_DIR = "data/news"
RAW_JSON = os.path.join(DATA_DIR, "news.jsonl")
def write_articles_jsonl(articles: List[Dict], file_path: str):
os.makedirs(os.path.dirname(file_path), exist_ok=True)
with open(file_path, "w", encoding="utf-8") as f:
for article in articles:
f.write(json.dumps(article, ensure_ascii=False) + "\n")
def build_documents(data: List[Dict]) -> List[Document]:
return [
Document(
text=entry["content"],
metadata={
"title": entry["title"],
"url": entry["url"],
"topic": entry["topic"],
"source": entry["source"]
}
)
for entry in data
]
if __name__ == "__main__":
if not API_KEY or not CSE_ID:
raise EnvironmentError("Missing GOOGLE_API_KEY or GOOGLE_CX_ID in environment.")
print("\U0001F30D Fetching news URLs from Google...")
all_articles = []
for query in QUERIES:
print(f"\U0001F50D Searching for: {query}")
try:
results = fetch_google_news(query, API_KEY, CSE_ID, num_results=10)
print(f" β Found {len(results)} links for '{query}'.")
for item in results:
url = item.get("link", "").strip()
title = item.get("title", "").strip()
source = item.get("displayLink", "").strip()
if not url or not title:
continue
print(f"\U0001F310 Scraping: {url}")
article_text = scrape_url(url)
if article_text:
all_articles.append({
"topic": query,
"title": title,
"url": url,
"source": source,
"content": article_text
})
else:
print(f"β οΈ Skipped: {url}")
except Exception as e:
print(f"β Error fetching '{query}': {e}")
if not all_articles:
print("β οΈ No content scraped. Exiting.")
else:
print(f"π Writing {len(all_articles)} articles to {RAW_JSON}...")
write_articles_jsonl(all_articles, RAW_JSON)
print("π§ Building index...")
documents = build_documents(all_articles)
get_or_build_index_from_docs(documents)
print("β‘ Generating daily feed...")
generate_and_cache_daily_feed(documents) # π CALLS HEADLINE BUILDER
print(f"β
Indexed, headlines generated, and stored at: {INDEX_DIR}")
|