File size: 4,185 Bytes
69210b9
 
 
 
 
 
 
a092d54
67fbb52
e465159
69210b9
6716a7e
f312f0d
1804706
0e7d7a3
69210b9
 
27120a6
6716a7e
69210b9
0e7d7a3
69210b9
 
6716a7e
69210b9
 
6716a7e
62a4bec
 
 
 
 
6716a7e
 
 
 
 
5c17060
 
 
 
 
6716a7e
 
 
 
 
 
27120a6
 
 
 
 
69210b9
27120a6
69210b9
27120a6
69210b9
27120a6
69210b9
62a4bec
 
27120a6
6716a7e
27120a6
 
 
 
 
62a4bec
27120a6
 
 
 
236d6c7
27120a6
 
 
71257bd
6716a7e
69210b9
 
6716a7e
69210b9
6716a7e
69210b9
 
 
 
 
 
 
 
 
6716a7e
67fbb52
 
e465159
 
69210b9
 
0e7d7a3
69210b9
 
 
 
0e7d7a3
69210b9
 
 
 
 
 
 
 
 
 
6716a7e
69210b9
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import os
import sys
import json
import requests
import redis
from typing import List, Dict
from llama_index.core import VectorStoreIndex
from llama_index.core.query_engine import RetrieverQueryEngine
from llama_index.core.schema import Document
from llama_index.core.settings import Settings

# βœ… Disable implicit LLM usage
Settings.llm = None

# πŸ” Environment variables
REDIS_URL = os.environ.get("UPSTASH_REDIS_URL", "redis://localhost:6379")
REDIS_KEY = os.environ.get("UPSTASH_REDIS_TOKEN")
MISTRAL_URL = os.environ.get("MISTRAL_URL")
HF_TOKEN = os.environ.get("HF_TOKEN")

# βœ… Redis client
redis_client = redis.Redis.from_url(REDIS_URL, decode_responses=True)

# πŸ“° Topics
TOPICS = ["India news", "World news", "Tech news", "Finance news", "Sports news"]

# πŸ“„ Headers for HF endpoint
HEADERS = {
    "Authorization": f"Bearer {HF_TOKEN}",
    "Content-Type": "application/json"
}

# 🧠 Build Mistral-style instruction prompt
def build_prompt(content: str, topic: str) -> str:
    base_instruction = (
        "You are Nuse’s official news summarizer β€” factual, concise, and engaging.\n"
        "Summarize the following article in 25–30 words with 1–2 emojis.\n"
        "The given content might contain multiple new items, so summarise each news item in 25-30 words and arranage them one line after the other starting them with a -"
        "For example:"
        "   -India wins the biggest...."
        "   -The U.S trade tarrifs...."
        "   -Netanyahu agrees for a ceasefire...."
        "Return only the summary."
    )
    tail = f"Topic: {topic}\n\n{content.strip()}"
    return f"<s>[INST]{base_instruction}\n\n{tail}[/INST]</s>"

# πŸ” Call Mistral using HF Inference Endpoint
def call_mistral(prompt: str) -> Optional[str]:
    headers = {
        "Authorization": f"Bearer {HF_TOKEN}",
        "Content-Type": "application/json"
    }
    payload = {
        "inputs": prompt
    }

    try:
        response = requests.post(MISTRAL_URL, headers=headers, json=payload, timeout=20)
        response.raise_for_status()
        data = response.json()

        # Get the generated text
        if isinstance(data, list) and data:
            raw_output = data[0].get("generated_text", "")
        elif isinstance(data, dict):
            raw_output = data.get("generated_text", "")
        else:
            return None

        # βœ… Extract only the portion after the [/INST]</s> marker
        if "[/INST]</s>" in raw_output:
            return raw_output.split("[/INST]</s>")[-1].strip()
        return raw_output.strip()

    except Exception as e:
        print(f"⚠️ Mistral error: {e}")
        return None

# βœ‚οΈ Summarize top N documents
def summarize_topic(docs: List[str], topic: str) -> List[Dict]:
    feed = []
    for doc in docs[:5]:
        prompt = build_prompt(doc, topic)
        print("\nπŸ“€ Prompt sent to Mistral:\n", prompt[:300], "...\n")
        summary = call_mistral(prompt)
        if summary:
            feed.append({
                "summary": summary,
                "image_url": "https://source.unsplash.com/800x600/?news",
                "article_link": "https://google.com/search?q=" + topic.replace(" ", "+")
            })
    return feed

# ⚑ Generate and cache daily feed
def generate_and_cache_daily_feed(documents: List[Document]):
    index = VectorStoreIndex.from_documents(documents)
    retriever = index.as_retriever()
    query_engine = RetrieverQueryEngine(retriever=retriever)

    final_feed = []

    for topic in TOPICS:
        print(f"\nπŸ” Generating for: {topic}")
        response = query_engine.query(topic)
        docs = [str(node.get_content()) for node in response.source_nodes]

        topic_feed = summarize_topic(docs, topic)
        final_feed.append({
            "topic": topic.lower().replace(" news", ""),
            "feed": topic_feed
        })

    redis_client.set(REDIS_KEY, json.dumps(final_feed, ensure_ascii=False))
    print(f"βœ… Cached daily feed under key '{REDIS_KEY}'")
    return final_feed

# πŸ“¦ For testing or API access
def get_cached_daily_feed():
    cached = redis_client.get(REDIS_KEY)
    return json.loads(cached) if cached else []