Spaces:
Sleeping
Sleeping
File size: 30,847 Bytes
2aebc50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 |
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Author: [email protected] (Kenton Varda)
// Based on original Protocol Buffers design by
// Sanjay Ghemawat, Jeff Dean, and others.
//
// This implementation is heavily optimized to make reads and writes
// of small values (especially varints) as fast as possible. In
// particular, we optimize for the common case that a read or a write
// will not cross the end of the buffer, since we can avoid a lot
// of branching in this case.
#include <google/protobuf/io/coded_stream.h>
#include <limits.h>
#include <algorithm>
#include <cstring>
#include <utility>
#include <google/protobuf/stubs/logging.h>
#include <google/protobuf/stubs/common.h>
#include <google/protobuf/arena.h>
#include <google/protobuf/io/zero_copy_stream.h>
#include <google/protobuf/io/zero_copy_stream_impl_lite.h>
#include <google/protobuf/stubs/stl_util.h>
#include <google/protobuf/port_def.inc>
namespace google {
namespace protobuf {
namespace io {
namespace {
static const int kMaxVarintBytes = 10;
static const int kMaxVarint32Bytes = 5;
inline bool NextNonEmpty(ZeroCopyInputStream* input, const void** data,
int* size) {
bool success;
do {
success = input->Next(data, size);
} while (success && *size == 0);
return success;
}
} // namespace
// CodedInputStream ==================================================
CodedInputStream::~CodedInputStream() {
if (input_ != NULL) {
BackUpInputToCurrentPosition();
}
}
// Static.
int CodedInputStream::default_recursion_limit_ = 100;
void CodedInputStream::BackUpInputToCurrentPosition() {
int backup_bytes = BufferSize() + buffer_size_after_limit_ + overflow_bytes_;
if (backup_bytes > 0) {
input_->BackUp(backup_bytes);
// total_bytes_read_ doesn't include overflow_bytes_.
total_bytes_read_ -= BufferSize() + buffer_size_after_limit_;
buffer_end_ = buffer_;
buffer_size_after_limit_ = 0;
overflow_bytes_ = 0;
}
}
inline void CodedInputStream::RecomputeBufferLimits() {
buffer_end_ += buffer_size_after_limit_;
int closest_limit = std::min(current_limit_, total_bytes_limit_);
if (closest_limit < total_bytes_read_) {
// The limit position is in the current buffer. We must adjust
// the buffer size accordingly.
buffer_size_after_limit_ = total_bytes_read_ - closest_limit;
buffer_end_ -= buffer_size_after_limit_;
} else {
buffer_size_after_limit_ = 0;
}
}
CodedInputStream::Limit CodedInputStream::PushLimit(int byte_limit) {
// Current position relative to the beginning of the stream.
int current_position = CurrentPosition();
Limit old_limit = current_limit_;
// security: byte_limit is possibly evil, so check for negative values
// and overflow. Also check that the new requested limit is before the
// previous limit; otherwise we continue to enforce the previous limit.
if (PROTOBUF_PREDICT_TRUE(byte_limit >= 0 &&
byte_limit <= INT_MAX - current_position &&
byte_limit < current_limit_ - current_position)) {
current_limit_ = current_position + byte_limit;
RecomputeBufferLimits();
}
return old_limit;
}
void CodedInputStream::PopLimit(Limit limit) {
// The limit passed in is actually the *old* limit, which we returned from
// PushLimit().
current_limit_ = limit;
RecomputeBufferLimits();
// We may no longer be at a legitimate message end. ReadTag() needs to be
// called again to find out.
legitimate_message_end_ = false;
}
std::pair<CodedInputStream::Limit, int>
CodedInputStream::IncrementRecursionDepthAndPushLimit(int byte_limit) {
return std::make_pair(PushLimit(byte_limit), --recursion_budget_);
}
CodedInputStream::Limit CodedInputStream::ReadLengthAndPushLimit() {
uint32 length;
return PushLimit(ReadVarint32(&length) ? length : 0);
}
bool CodedInputStream::DecrementRecursionDepthAndPopLimit(Limit limit) {
bool result = ConsumedEntireMessage();
PopLimit(limit);
GOOGLE_DCHECK_LT(recursion_budget_, recursion_limit_);
++recursion_budget_;
return result;
}
bool CodedInputStream::CheckEntireMessageConsumedAndPopLimit(Limit limit) {
bool result = ConsumedEntireMessage();
PopLimit(limit);
return result;
}
int CodedInputStream::BytesUntilLimit() const {
if (current_limit_ == INT_MAX) return -1;
int current_position = CurrentPosition();
return current_limit_ - current_position;
}
void CodedInputStream::SetTotalBytesLimit(int total_bytes_limit) {
// Make sure the limit isn't already past, since this could confuse other
// code.
int current_position = CurrentPosition();
total_bytes_limit_ = std::max(current_position, total_bytes_limit);
RecomputeBufferLimits();
}
int CodedInputStream::BytesUntilTotalBytesLimit() const {
if (total_bytes_limit_ == INT_MAX) return -1;
return total_bytes_limit_ - CurrentPosition();
}
void CodedInputStream::PrintTotalBytesLimitError() {
GOOGLE_LOG(ERROR)
<< "A protocol message was rejected because it was too "
"big (more than "
<< total_bytes_limit_
<< " bytes). To increase the limit (or to disable these "
"warnings), see CodedInputStream::SetTotalBytesLimit() "
"in third_party/protobuf/src/google/protobuf/io/coded_stream.h.";
}
bool CodedInputStream::SkipFallback(int count, int original_buffer_size) {
if (buffer_size_after_limit_ > 0) {
// We hit a limit inside this buffer. Advance to the limit and fail.
Advance(original_buffer_size);
return false;
}
count -= original_buffer_size;
buffer_ = NULL;
buffer_end_ = buffer_;
// Make sure this skip doesn't try to skip past the current limit.
int closest_limit = std::min(current_limit_, total_bytes_limit_);
int bytes_until_limit = closest_limit - total_bytes_read_;
if (bytes_until_limit < count) {
// We hit the limit. Skip up to it then fail.
if (bytes_until_limit > 0) {
total_bytes_read_ = closest_limit;
input_->Skip(bytes_until_limit);
}
return false;
}
if (!input_->Skip(count)) {
total_bytes_read_ = input_->ByteCount();
return false;
}
total_bytes_read_ += count;
return true;
}
bool CodedInputStream::GetDirectBufferPointer(const void** data, int* size) {
if (BufferSize() == 0 && !Refresh()) return false;
*data = buffer_;
*size = BufferSize();
return true;
}
bool CodedInputStream::ReadRaw(void* buffer, int size) {
int current_buffer_size;
while ((current_buffer_size = BufferSize()) < size) {
// Reading past end of buffer. Copy what we have, then refresh.
memcpy(buffer, buffer_, current_buffer_size);
buffer = reinterpret_cast<uint8*>(buffer) + current_buffer_size;
size -= current_buffer_size;
Advance(current_buffer_size);
if (!Refresh()) return false;
}
memcpy(buffer, buffer_, size);
Advance(size);
return true;
}
bool CodedInputStream::ReadString(std::string* buffer, int size) {
if (size < 0) return false; // security: size is often user-supplied
if (BufferSize() >= size) {
STLStringResizeUninitialized(buffer, size);
std::pair<char*, bool> z = as_string_data(buffer);
if (z.second) {
// Oddly enough, memcpy() requires its first two args to be non-NULL even
// if we copy 0 bytes. So, we have ensured that z.first is non-NULL here.
GOOGLE_DCHECK(z.first != NULL);
memcpy(z.first, buffer_, size);
Advance(size);
}
return true;
}
return ReadStringFallback(buffer, size);
}
bool CodedInputStream::ReadStringFallback(std::string* buffer, int size) {
if (!buffer->empty()) {
buffer->clear();
}
int closest_limit = std::min(current_limit_, total_bytes_limit_);
if (closest_limit != INT_MAX) {
int bytes_to_limit = closest_limit - CurrentPosition();
if (bytes_to_limit > 0 && size > 0 && size <= bytes_to_limit) {
buffer->reserve(size);
}
}
int current_buffer_size;
while ((current_buffer_size = BufferSize()) < size) {
// Some STL implementations "helpfully" crash on buffer->append(NULL, 0).
if (current_buffer_size != 0) {
// Note: string1.append(string2) is O(string2.size()) (as opposed to
// O(string1.size() + string2.size()), which would be bad).
buffer->append(reinterpret_cast<const char*>(buffer_),
current_buffer_size);
}
size -= current_buffer_size;
Advance(current_buffer_size);
if (!Refresh()) return false;
}
buffer->append(reinterpret_cast<const char*>(buffer_), size);
Advance(size);
return true;
}
bool CodedInputStream::ReadLittleEndian32Fallback(uint32* value) {
uint8 bytes[sizeof(*value)];
const uint8* ptr;
if (BufferSize() >= sizeof(*value)) {
// Fast path: Enough bytes in the buffer to read directly.
ptr = buffer_;
Advance(sizeof(*value));
} else {
// Slow path: Had to read past the end of the buffer.
if (!ReadRaw(bytes, sizeof(*value))) return false;
ptr = bytes;
}
ReadLittleEndian32FromArray(ptr, value);
return true;
}
bool CodedInputStream::ReadLittleEndian64Fallback(uint64* value) {
uint8 bytes[sizeof(*value)];
const uint8* ptr;
if (BufferSize() >= sizeof(*value)) {
// Fast path: Enough bytes in the buffer to read directly.
ptr = buffer_;
Advance(sizeof(*value));
} else {
// Slow path: Had to read past the end of the buffer.
if (!ReadRaw(bytes, sizeof(*value))) return false;
ptr = bytes;
}
ReadLittleEndian64FromArray(ptr, value);
return true;
}
namespace {
// Decodes varint64 with known size, N, and returns next pointer. Knowing N at
// compile time, compiler can generate optimal code. For example, instead of
// subtracting 0x80 at each iteration, it subtracts properly shifted mask once.
template <size_t N>
const uint8* DecodeVarint64KnownSize(const uint8* buffer, uint64* value) {
GOOGLE_DCHECK_GT(N, 0);
uint64 result = static_cast<uint64>(buffer[N - 1]) << (7 * (N - 1));
for (int i = 0, offset = 0; i < N - 1; i++, offset += 7) {
result += static_cast<uint64>(buffer[i] - 0x80) << offset;
}
*value = result;
return buffer + N;
}
// Read a varint from the given buffer, write it to *value, and return a pair.
// The first part of the pair is true iff the read was successful. The second
// part is buffer + (number of bytes read). This function is always inlined,
// so returning a pair is costless.
PROTOBUF_ALWAYS_INLINE
::std::pair<bool, const uint8*> ReadVarint32FromArray(uint32 first_byte,
const uint8* buffer,
uint32* value);
inline ::std::pair<bool, const uint8*> ReadVarint32FromArray(
uint32 first_byte, const uint8* buffer, uint32* value) {
// Fast path: We have enough bytes left in the buffer to guarantee that
// this read won't cross the end, so we can skip the checks.
GOOGLE_DCHECK_EQ(*buffer, first_byte);
GOOGLE_DCHECK_EQ(first_byte & 0x80, 0x80) << first_byte;
const uint8* ptr = buffer;
uint32 b;
uint32 result = first_byte - 0x80;
++ptr; // We just processed the first byte. Move on to the second.
b = *(ptr++);
result += b << 7;
if (!(b & 0x80)) goto done;
result -= 0x80 << 7;
b = *(ptr++);
result += b << 14;
if (!(b & 0x80)) goto done;
result -= 0x80 << 14;
b = *(ptr++);
result += b << 21;
if (!(b & 0x80)) goto done;
result -= 0x80 << 21;
b = *(ptr++);
result += b << 28;
if (!(b & 0x80)) goto done;
// "result -= 0x80 << 28" is irrevelant.
// If the input is larger than 32 bits, we still need to read it all
// and discard the high-order bits.
for (int i = 0; i < kMaxVarintBytes - kMaxVarint32Bytes; i++) {
b = *(ptr++);
if (!(b & 0x80)) goto done;
}
// We have overrun the maximum size of a varint (10 bytes). Assume
// the data is corrupt.
return std::make_pair(false, ptr);
done:
*value = result;
return std::make_pair(true, ptr);
}
PROTOBUF_ALWAYS_INLINE::std::pair<bool, const uint8*> ReadVarint64FromArray(
const uint8* buffer, uint64* value);
inline ::std::pair<bool, const uint8*> ReadVarint64FromArray(
const uint8* buffer, uint64* value) {
// Assumes varint64 is at least 2 bytes.
GOOGLE_DCHECK_GE(buffer[0], 128);
const uint8* next;
if (buffer[1] < 128) {
next = DecodeVarint64KnownSize<2>(buffer, value);
} else if (buffer[2] < 128) {
next = DecodeVarint64KnownSize<3>(buffer, value);
} else if (buffer[3] < 128) {
next = DecodeVarint64KnownSize<4>(buffer, value);
} else if (buffer[4] < 128) {
next = DecodeVarint64KnownSize<5>(buffer, value);
} else if (buffer[5] < 128) {
next = DecodeVarint64KnownSize<6>(buffer, value);
} else if (buffer[6] < 128) {
next = DecodeVarint64KnownSize<7>(buffer, value);
} else if (buffer[7] < 128) {
next = DecodeVarint64KnownSize<8>(buffer, value);
} else if (buffer[8] < 128) {
next = DecodeVarint64KnownSize<9>(buffer, value);
} else if (buffer[9] < 128) {
next = DecodeVarint64KnownSize<10>(buffer, value);
} else {
// We have overrun the maximum size of a varint (10 bytes). Assume
// the data is corrupt.
return std::make_pair(false, buffer + 11);
}
return std::make_pair(true, next);
}
} // namespace
bool CodedInputStream::ReadVarint32Slow(uint32* value) {
// Directly invoke ReadVarint64Fallback, since we already tried to optimize
// for one-byte varints.
std::pair<uint64, bool> p = ReadVarint64Fallback();
*value = static_cast<uint32>(p.first);
return p.second;
}
int64 CodedInputStream::ReadVarint32Fallback(uint32 first_byte_or_zero) {
if (BufferSize() >= kMaxVarintBytes ||
// Optimization: We're also safe if the buffer is non-empty and it ends
// with a byte that would terminate a varint.
(buffer_end_ > buffer_ && !(buffer_end_[-1] & 0x80))) {
GOOGLE_DCHECK_NE(first_byte_or_zero, 0)
<< "Caller should provide us with *buffer_ when buffer is non-empty";
uint32 temp;
::std::pair<bool, const uint8*> p =
ReadVarint32FromArray(first_byte_or_zero, buffer_, &temp);
if (!p.first) return -1;
buffer_ = p.second;
return temp;
} else {
// Really slow case: we will incur the cost of an extra function call here,
// but moving this out of line reduces the size of this function, which
// improves the common case. In micro benchmarks, this is worth about 10-15%
uint32 temp;
return ReadVarint32Slow(&temp) ? static_cast<int64>(temp) : -1;
}
}
int CodedInputStream::ReadVarintSizeAsIntSlow() {
// Directly invoke ReadVarint64Fallback, since we already tried to optimize
// for one-byte varints.
std::pair<uint64, bool> p = ReadVarint64Fallback();
if (!p.second || p.first > static_cast<uint64>(INT_MAX)) return -1;
return p.first;
}
int CodedInputStream::ReadVarintSizeAsIntFallback() {
if (BufferSize() >= kMaxVarintBytes ||
// Optimization: We're also safe if the buffer is non-empty and it ends
// with a byte that would terminate a varint.
(buffer_end_ > buffer_ && !(buffer_end_[-1] & 0x80))) {
uint64 temp;
::std::pair<bool, const uint8*> p = ReadVarint64FromArray(buffer_, &temp);
if (!p.first || temp > static_cast<uint64>(INT_MAX)) return -1;
buffer_ = p.second;
return temp;
} else {
// Really slow case: we will incur the cost of an extra function call here,
// but moving this out of line reduces the size of this function, which
// improves the common case. In micro benchmarks, this is worth about 10-15%
return ReadVarintSizeAsIntSlow();
}
}
uint32 CodedInputStream::ReadTagSlow() {
if (buffer_ == buffer_end_) {
// Call refresh.
if (!Refresh()) {
// Refresh failed. Make sure that it failed due to EOF, not because
// we hit total_bytes_limit_, which, unlike normal limits, is not a
// valid place to end a message.
int current_position = total_bytes_read_ - buffer_size_after_limit_;
if (current_position >= total_bytes_limit_) {
// Hit total_bytes_limit_. But if we also hit the normal limit,
// we're still OK.
legitimate_message_end_ = current_limit_ == total_bytes_limit_;
} else {
legitimate_message_end_ = true;
}
return 0;
}
}
// For the slow path, just do a 64-bit read. Try to optimize for one-byte tags
// again, since we have now refreshed the buffer.
uint64 result = 0;
if (!ReadVarint64(&result)) return 0;
return static_cast<uint32>(result);
}
uint32 CodedInputStream::ReadTagFallback(uint32 first_byte_or_zero) {
const int buf_size = BufferSize();
if (buf_size >= kMaxVarintBytes ||
// Optimization: We're also safe if the buffer is non-empty and it ends
// with a byte that would terminate a varint.
(buf_size > 0 && !(buffer_end_[-1] & 0x80))) {
GOOGLE_DCHECK_EQ(first_byte_or_zero, buffer_[0]);
if (first_byte_or_zero == 0) {
++buffer_;
return 0;
}
uint32 tag;
::std::pair<bool, const uint8*> p =
ReadVarint32FromArray(first_byte_or_zero, buffer_, &tag);
if (!p.first) {
return 0;
}
buffer_ = p.second;
return tag;
} else {
// We are commonly at a limit when attempting to read tags. Try to quickly
// detect this case without making another function call.
if ((buf_size == 0) &&
((buffer_size_after_limit_ > 0) ||
(total_bytes_read_ == current_limit_)) &&
// Make sure that the limit we hit is not total_bytes_limit_, since
// in that case we still need to call Refresh() so that it prints an
// error.
total_bytes_read_ - buffer_size_after_limit_ < total_bytes_limit_) {
// We hit a byte limit.
legitimate_message_end_ = true;
return 0;
}
return ReadTagSlow();
}
}
bool CodedInputStream::ReadVarint64Slow(uint64* value) {
// Slow path: This read might cross the end of the buffer, so we
// need to check and refresh the buffer if and when it does.
uint64 result = 0;
int count = 0;
uint32 b;
do {
if (count == kMaxVarintBytes) {
*value = 0;
return false;
}
while (buffer_ == buffer_end_) {
if (!Refresh()) {
*value = 0;
return false;
}
}
b = *buffer_;
result |= static_cast<uint64>(b & 0x7F) << (7 * count);
Advance(1);
++count;
} while (b & 0x80);
*value = result;
return true;
}
std::pair<uint64, bool> CodedInputStream::ReadVarint64Fallback() {
if (BufferSize() >= kMaxVarintBytes ||
// Optimization: We're also safe if the buffer is non-empty and it ends
// with a byte that would terminate a varint.
(buffer_end_ > buffer_ && !(buffer_end_[-1] & 0x80))) {
uint64 temp;
::std::pair<bool, const uint8*> p = ReadVarint64FromArray(buffer_, &temp);
if (!p.first) {
return std::make_pair(0, false);
}
buffer_ = p.second;
return std::make_pair(temp, true);
} else {
uint64 temp;
bool success = ReadVarint64Slow(&temp);
return std::make_pair(temp, success);
}
}
bool CodedInputStream::Refresh() {
GOOGLE_DCHECK_EQ(0, BufferSize());
if (buffer_size_after_limit_ > 0 || overflow_bytes_ > 0 ||
total_bytes_read_ == current_limit_) {
// We've hit a limit. Stop.
int current_position = total_bytes_read_ - buffer_size_after_limit_;
if (current_position >= total_bytes_limit_ &&
total_bytes_limit_ != current_limit_) {
// Hit total_bytes_limit_.
PrintTotalBytesLimitError();
}
return false;
}
const void* void_buffer;
int buffer_size;
if (NextNonEmpty(input_, &void_buffer, &buffer_size)) {
buffer_ = reinterpret_cast<const uint8*>(void_buffer);
buffer_end_ = buffer_ + buffer_size;
GOOGLE_CHECK_GE(buffer_size, 0);
if (total_bytes_read_ <= INT_MAX - buffer_size) {
total_bytes_read_ += buffer_size;
} else {
// Overflow. Reset buffer_end_ to not include the bytes beyond INT_MAX.
// We can't get that far anyway, because total_bytes_limit_ is guaranteed
// to be less than it. We need to keep track of the number of bytes
// we discarded, though, so that we can call input_->BackUp() to back
// up over them on destruction.
// The following line is equivalent to:
// overflow_bytes_ = total_bytes_read_ + buffer_size - INT_MAX;
// except that it avoids overflows. Signed integer overflow has
// undefined results according to the C standard.
overflow_bytes_ = total_bytes_read_ - (INT_MAX - buffer_size);
buffer_end_ -= overflow_bytes_;
total_bytes_read_ = INT_MAX;
}
RecomputeBufferLimits();
return true;
} else {
buffer_ = NULL;
buffer_end_ = NULL;
return false;
}
}
// CodedOutputStream =================================================
void EpsCopyOutputStream::EnableAliasing(bool enabled) {
aliasing_enabled_ = enabled && stream_->AllowsAliasing();
}
int64 EpsCopyOutputStream::ByteCount(uint8* ptr) const {
// Calculate the current offset relative to the end of the stream buffer.
int delta = (end_ - ptr) + (buffer_end_ ? 0 : kSlopBytes);
return stream_->ByteCount() - delta;
}
// Flushes what's written out to the underlying ZeroCopyOutputStream buffers.
// Returns the size remaining in the buffer and sets buffer_end_ to the start
// of the remaining buffer, ie. [buffer_end_, buffer_end_ + return value)
int EpsCopyOutputStream::Flush(uint8* ptr) {
while (buffer_end_ && ptr > end_) {
int overrun = ptr - end_;
GOOGLE_DCHECK(!had_error_);
GOOGLE_DCHECK(overrun <= kSlopBytes); // NOLINT
ptr = Next() + overrun;
if (had_error_) return 0;
}
int s;
if (buffer_end_) {
std::memcpy(buffer_end_, buffer_, ptr - buffer_);
buffer_end_ += ptr - buffer_;
s = end_ - ptr;
} else {
// The stream is writing directly in the ZeroCopyOutputStream buffer.
s = end_ + kSlopBytes - ptr;
buffer_end_ = ptr;
}
GOOGLE_DCHECK(s >= 0); // NOLINT
return s;
}
uint8* EpsCopyOutputStream::Trim(uint8* ptr) {
if (had_error_) return ptr;
int s = Flush(ptr);
if (s) stream_->BackUp(s);
// Reset to initial state (expecting new buffer)
buffer_end_ = end_ = buffer_;
return buffer_;
}
uint8* EpsCopyOutputStream::FlushAndResetBuffer(uint8* ptr) {
if (had_error_) return buffer_;
int s = Flush(ptr);
if (had_error_) return buffer_;
return SetInitialBuffer(buffer_end_, s);
}
bool EpsCopyOutputStream::Skip(int count, uint8** pp) {
if (count < 0) return false;
if (had_error_) {
*pp = buffer_;
return false;
}
int size = Flush(*pp);
if (had_error_) {
*pp = buffer_;
return false;
}
void* data = buffer_end_;
while (count > size) {
count -= size;
if (!stream_->Next(&data, &size)) {
*pp = Error();
return false;
}
}
*pp = SetInitialBuffer(static_cast<uint8*>(data) + count, size - count);
return true;
}
bool EpsCopyOutputStream::GetDirectBufferPointer(void** data, int* size,
uint8** pp) {
if (had_error_) {
*pp = buffer_;
return false;
}
*size = Flush(*pp);
if (had_error_) {
*pp = buffer_;
return false;
}
*data = buffer_end_;
while (*size == 0) {
if (!stream_->Next(data, size)) {
*pp = Error();
return false;
}
}
*pp = SetInitialBuffer(*data, *size);
return true;
}
uint8* EpsCopyOutputStream::GetDirectBufferForNBytesAndAdvance(int size,
uint8** pp) {
if (had_error_) {
*pp = buffer_;
return nullptr;
}
int s = Flush(*pp);
if (had_error_) {
*pp = buffer_;
return nullptr;
}
if (s >= size) {
auto res = buffer_end_;
*pp = SetInitialBuffer(buffer_end_ + size, s - size);
return res;
} else {
*pp = SetInitialBuffer(buffer_end_, s);
return nullptr;
}
}
uint8* EpsCopyOutputStream::Next() {
GOOGLE_DCHECK(!had_error_); // NOLINT
if (PROTOBUF_PREDICT_FALSE(stream_ == nullptr)) return Error();
if (buffer_end_) {
// We're in the patch buffer and need to fill up the previous buffer.
std::memcpy(buffer_end_, buffer_, end_ - buffer_);
uint8* ptr;
int size;
do {
void* data;
if (PROTOBUF_PREDICT_FALSE(!stream_->Next(&data, &size))) {
// Stream has an error, we use the patch buffer to continue to be
// able to write.
return Error();
}
ptr = static_cast<uint8*>(data);
} while (size == 0);
if (PROTOBUF_PREDICT_TRUE(size > kSlopBytes)) {
std::memcpy(ptr, end_, kSlopBytes);
end_ = ptr + size - kSlopBytes;
buffer_end_ = nullptr;
return ptr;
} else {
GOOGLE_DCHECK(size > 0); // NOLINT
// Buffer to small
std::memmove(buffer_, end_, kSlopBytes);
buffer_end_ = ptr;
end_ = buffer_ + size;
return buffer_;
}
} else {
std::memcpy(buffer_, end_, kSlopBytes);
buffer_end_ = end_;
end_ = buffer_ + kSlopBytes;
return buffer_;
}
}
uint8* EpsCopyOutputStream::EnsureSpaceFallback(uint8* ptr) {
do {
if (PROTOBUF_PREDICT_FALSE(had_error_)) return buffer_;
int overrun = ptr - end_;
GOOGLE_DCHECK(overrun >= 0); // NOLINT
GOOGLE_DCHECK(overrun <= kSlopBytes); // NOLINT
ptr = Next() + overrun;
} while (ptr >= end_);
GOOGLE_DCHECK(ptr < end_); // NOLINT
return ptr;
}
uint8* EpsCopyOutputStream::WriteRawFallback(const void* data, int size,
uint8* ptr) {
int s = GetSize(ptr);
while (s < size) {
std::memcpy(ptr, data, s);
size -= s;
data = static_cast<const uint8*>(data) + s;
ptr = EnsureSpaceFallback(ptr + s);
s = GetSize(ptr);
}
std::memcpy(ptr, data, size);
return ptr + size;
}
uint8* EpsCopyOutputStream::WriteAliasedRaw(const void* data, int size,
uint8* ptr) {
if (size < GetSize(ptr)
) {
return WriteRaw(data, size, ptr);
} else {
ptr = Trim(ptr);
if (stream_->WriteAliasedRaw(data, size)) return ptr;
return Error();
}
}
#ifndef PROTOBUF_LITTLE_ENDIAN
uint8* EpsCopyOutputStream::WriteRawLittleEndian32(const void* data, int size,
uint8* ptr) {
auto p = static_cast<const uint8*>(data);
auto end = p + size;
while (end - p >= kSlopBytes) {
ptr = EnsureSpace(ptr);
uint32 buffer[4];
static_assert(sizeof(buffer) == kSlopBytes, "Buffer must be kSlopBytes");
std::memcpy(buffer, p, kSlopBytes);
p += kSlopBytes;
for (auto x : buffer)
ptr = CodedOutputStream::WriteLittleEndian32ToArray(x, ptr);
}
while (p < end) {
ptr = EnsureSpace(ptr);
uint32 buffer;
std::memcpy(&buffer, p, 4);
p += 4;
ptr = CodedOutputStream::WriteLittleEndian32ToArray(buffer, ptr);
}
return ptr;
}
uint8* EpsCopyOutputStream::WriteRawLittleEndian64(const void* data, int size,
uint8* ptr) {
auto p = static_cast<const uint8*>(data);
auto end = p + size;
while (end - p >= kSlopBytes) {
ptr = EnsureSpace(ptr);
uint64 buffer[2];
static_assert(sizeof(buffer) == kSlopBytes, "Buffer must be kSlopBytes");
std::memcpy(buffer, p, kSlopBytes);
p += kSlopBytes;
for (auto x : buffer)
ptr = CodedOutputStream::WriteLittleEndian64ToArray(x, ptr);
}
while (p < end) {
ptr = EnsureSpace(ptr);
uint64 buffer;
std::memcpy(&buffer, p, 8);
p += 8;
ptr = CodedOutputStream::WriteLittleEndian64ToArray(buffer, ptr);
}
return ptr;
}
#endif
uint8* EpsCopyOutputStream::WriteStringMaybeAliasedOutline(uint32 num,
const std::string& s,
uint8* ptr) {
ptr = EnsureSpace(ptr);
uint32 size = s.size();
ptr = WriteLengthDelim(num, size, ptr);
return WriteRawMaybeAliased(s.data(), size, ptr);
}
uint8* EpsCopyOutputStream::WriteStringOutline(uint32 num, const std::string& s,
uint8* ptr) {
ptr = EnsureSpace(ptr);
uint32 size = s.size();
ptr = WriteLengthDelim(num, size, ptr);
return WriteRaw(s.data(), size, ptr);
}
std::atomic<bool> CodedOutputStream::default_serialization_deterministic_{
false};
CodedOutputStream::CodedOutputStream(ZeroCopyOutputStream* stream,
bool do_eager_refresh)
: impl_(stream, IsDefaultSerializationDeterministic(), &cur_),
start_count_(stream->ByteCount()) {
if (do_eager_refresh) {
void* data;
int size;
if (!stream->Next(&data, &size) || size == 0) return;
cur_ = impl_.SetInitialBuffer(data, size);
}
}
CodedOutputStream::~CodedOutputStream() { Trim(); }
uint8* CodedOutputStream::WriteStringWithSizeToArray(const std::string& str,
uint8* target) {
GOOGLE_DCHECK_LE(str.size(), kuint32max);
target = WriteVarint32ToArray(str.size(), target);
return WriteStringToArray(str, target);
}
} // namespace io
} // namespace protobuf
} // namespace google
|