Spaces:
Sleeping
Sleeping
File size: 30,000 Bytes
2aebc50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 |
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Author: [email protected] (Kenton Varda)
// Based on original Protocol Buffers design by
// Sanjay Ghemawat, Jeff Dean, and others.
#include <google/protobuf/generated_message_util.h>
#include <limits>
#ifndef GOOGLE_PROTOBUF_SUPPORT_WINDOWS_XP
// We're only using this as a standard way for getting the thread id.
// We're not using any thread functionality.
#include <thread> // NOLINT
#endif // #ifndef GOOGLE_PROTOBUF_SUPPORT_WINDOWS_XP
#include <vector>
#include <google/protobuf/io/coded_stream.h>
#include <google/protobuf/io/zero_copy_stream_impl_lite.h>
#include <google/protobuf/arenastring.h>
#include <google/protobuf/extension_set.h>
#include <google/protobuf/generated_message_table_driven.h>
#include <google/protobuf/message_lite.h>
#include <google/protobuf/metadata_lite.h>
#include <google/protobuf/stubs/mutex.h>
#include <google/protobuf/port_def.inc>
#include <google/protobuf/repeated_field.h>
#include <google/protobuf/wire_format_lite.h>
namespace google {
namespace protobuf {
namespace internal {
void DestroyMessage(const void* message) {
static_cast<const MessageLite*>(message)->~MessageLite();
}
void DestroyString(const void* s) {
static_cast<const std::string*>(s)->~basic_string();
}
PROTOBUF_ATTRIBUTE_NO_DESTROY PROTOBUF_CONSTINIT EmptyString
fixed_address_empty_string; // NOLINT
PROTOBUF_CONSTINIT std::atomic<bool> init_protobuf_defaults_state{false};
static bool InitProtobufDefaultsImpl() {
::new (static_cast<void*>(&fixed_address_empty_string.value)) std::string();
OnShutdownDestroyString(&fixed_address_empty_string.value);
// Verify that we can indeed get the address during constant evaluation.
PROTOBUF_CONSTINIT static const std::string& fixed_address_empty_string_test =
GetEmptyStringAlreadyInited();
(void)fixed_address_empty_string_test;
init_protobuf_defaults_state.store(true, std::memory_order_release);
return true;
}
void InitProtobufDefaultsSlow() {
static bool is_inited = InitProtobufDefaultsImpl();
(void)is_inited;
}
size_t StringSpaceUsedExcludingSelfLong(const std::string& str) {
const void* start = &str;
const void* end = &str + 1;
if (start <= str.data() && str.data() < end) {
// The string's data is stored inside the string object itself.
return 0;
} else {
return str.capacity();
}
}
template <typename T>
const T& Get(const void* ptr) {
return *static_cast<const T*>(ptr);
}
// PrimitiveTypeHelper is a wrapper around the interface of WireFormatLite.
// WireFormatLite has a very inconvenient interface with respect to template
// meta-programming. This class wraps the different named functions into
// a single Serialize / SerializeToArray interface.
template <int type>
struct PrimitiveTypeHelper;
template <>
struct PrimitiveTypeHelper<WireFormatLite::TYPE_BOOL> {
typedef bool Type;
static void Serialize(const void* ptr, io::CodedOutputStream* output) {
WireFormatLite::WriteBoolNoTag(Get<bool>(ptr), output);
}
static uint8* SerializeToArray(const void* ptr, uint8* buffer) {
return WireFormatLite::WriteBoolNoTagToArray(Get<Type>(ptr), buffer);
}
};
template <>
struct PrimitiveTypeHelper<WireFormatLite::TYPE_INT32> {
typedef int32 Type;
static void Serialize(const void* ptr, io::CodedOutputStream* output) {
WireFormatLite::WriteInt32NoTag(Get<int32>(ptr), output);
}
static uint8* SerializeToArray(const void* ptr, uint8* buffer) {
return WireFormatLite::WriteInt32NoTagToArray(Get<Type>(ptr), buffer);
}
};
template <>
struct PrimitiveTypeHelper<WireFormatLite::TYPE_SINT32> {
typedef int32 Type;
static void Serialize(const void* ptr, io::CodedOutputStream* output) {
WireFormatLite::WriteSInt32NoTag(Get<int32>(ptr), output);
}
static uint8* SerializeToArray(const void* ptr, uint8* buffer) {
return WireFormatLite::WriteSInt32NoTagToArray(Get<Type>(ptr), buffer);
}
};
template <>
struct PrimitiveTypeHelper<WireFormatLite::TYPE_UINT32> {
typedef uint32 Type;
static void Serialize(const void* ptr, io::CodedOutputStream* output) {
WireFormatLite::WriteUInt32NoTag(Get<uint32>(ptr), output);
}
static uint8* SerializeToArray(const void* ptr, uint8* buffer) {
return WireFormatLite::WriteUInt32NoTagToArray(Get<Type>(ptr), buffer);
}
};
template <>
struct PrimitiveTypeHelper<WireFormatLite::TYPE_INT64> {
typedef int64 Type;
static void Serialize(const void* ptr, io::CodedOutputStream* output) {
WireFormatLite::WriteInt64NoTag(Get<int64>(ptr), output);
}
static uint8* SerializeToArray(const void* ptr, uint8* buffer) {
return WireFormatLite::WriteInt64NoTagToArray(Get<Type>(ptr), buffer);
}
};
template <>
struct PrimitiveTypeHelper<WireFormatLite::TYPE_SINT64> {
typedef int64 Type;
static void Serialize(const void* ptr, io::CodedOutputStream* output) {
WireFormatLite::WriteSInt64NoTag(Get<int64>(ptr), output);
}
static uint8* SerializeToArray(const void* ptr, uint8* buffer) {
return WireFormatLite::WriteSInt64NoTagToArray(Get<Type>(ptr), buffer);
}
};
template <>
struct PrimitiveTypeHelper<WireFormatLite::TYPE_UINT64> {
typedef uint64 Type;
static void Serialize(const void* ptr, io::CodedOutputStream* output) {
WireFormatLite::WriteUInt64NoTag(Get<uint64>(ptr), output);
}
static uint8* SerializeToArray(const void* ptr, uint8* buffer) {
return WireFormatLite::WriteUInt64NoTagToArray(Get<Type>(ptr), buffer);
}
};
template <>
struct PrimitiveTypeHelper<WireFormatLite::TYPE_FIXED32> {
typedef uint32 Type;
static void Serialize(const void* ptr, io::CodedOutputStream* output) {
WireFormatLite::WriteFixed32NoTag(Get<uint32>(ptr), output);
}
static uint8* SerializeToArray(const void* ptr, uint8* buffer) {
return WireFormatLite::WriteFixed32NoTagToArray(Get<Type>(ptr), buffer);
}
};
template <>
struct PrimitiveTypeHelper<WireFormatLite::TYPE_FIXED64> {
typedef uint64 Type;
static void Serialize(const void* ptr, io::CodedOutputStream* output) {
WireFormatLite::WriteFixed64NoTag(Get<uint64>(ptr), output);
}
static uint8* SerializeToArray(const void* ptr, uint8* buffer) {
return WireFormatLite::WriteFixed64NoTagToArray(Get<Type>(ptr), buffer);
}
};
template <>
struct PrimitiveTypeHelper<WireFormatLite::TYPE_ENUM>
: PrimitiveTypeHelper<WireFormatLite::TYPE_INT32> {};
template <>
struct PrimitiveTypeHelper<WireFormatLite::TYPE_SFIXED32>
: PrimitiveTypeHelper<WireFormatLite::TYPE_FIXED32> {
typedef int32 Type;
};
template <>
struct PrimitiveTypeHelper<WireFormatLite::TYPE_SFIXED64>
: PrimitiveTypeHelper<WireFormatLite::TYPE_FIXED64> {
typedef int64 Type;
};
template <>
struct PrimitiveTypeHelper<WireFormatLite::TYPE_FLOAT>
: PrimitiveTypeHelper<WireFormatLite::TYPE_FIXED32> {
typedef float Type;
};
template <>
struct PrimitiveTypeHelper<WireFormatLite::TYPE_DOUBLE>
: PrimitiveTypeHelper<WireFormatLite::TYPE_FIXED64> {
typedef double Type;
};
template <>
struct PrimitiveTypeHelper<WireFormatLite::TYPE_STRING> {
typedef std::string Type;
static void Serialize(const void* ptr, io::CodedOutputStream* output) {
const Type& value = *static_cast<const Type*>(ptr);
output->WriteVarint32(value.size());
output->WriteRawMaybeAliased(value.data(), value.size());
}
static uint8* SerializeToArray(const void* ptr, uint8* buffer) {
const Type& value = *static_cast<const Type*>(ptr);
return io::CodedOutputStream::WriteStringWithSizeToArray(value, buffer);
}
};
template <>
struct PrimitiveTypeHelper<WireFormatLite::TYPE_BYTES>
: PrimitiveTypeHelper<WireFormatLite::TYPE_STRING> {};
// We want to serialize to both CodedOutputStream and directly into byte arrays
// without duplicating the code. In fact we might want extra output channels in
// the future.
template <typename O, int type>
struct OutputHelper;
template <int type, typename O>
void SerializeTo(const void* ptr, O* output) {
OutputHelper<O, type>::Serialize(ptr, output);
}
template <typename O>
void WriteTagTo(uint32 tag, O* output) {
SerializeTo<WireFormatLite::TYPE_UINT32>(&tag, output);
}
template <typename O>
void WriteLengthTo(uint32 length, O* output) {
SerializeTo<WireFormatLite::TYPE_UINT32>(&length, output);
}
// Specialization for coded output stream
template <int type>
struct OutputHelper<io::CodedOutputStream, type> {
static void Serialize(const void* ptr, io::CodedOutputStream* output) {
PrimitiveTypeHelper<type>::Serialize(ptr, output);
}
};
// Specialization for writing into a plain array
struct ArrayOutput {
uint8* ptr;
bool is_deterministic;
};
template <int type>
struct OutputHelper<ArrayOutput, type> {
static void Serialize(const void* ptr, ArrayOutput* output) {
output->ptr = PrimitiveTypeHelper<type>::SerializeToArray(ptr, output->ptr);
}
};
void SerializeMessageNoTable(const MessageLite* msg,
io::CodedOutputStream* output) {
msg->SerializeWithCachedSizes(output);
}
void SerializeMessageNoTable(const MessageLite* msg, ArrayOutput* output) {
io::ArrayOutputStream array_stream(output->ptr, INT_MAX);
io::CodedOutputStream o(&array_stream);
o.SetSerializationDeterministic(output->is_deterministic);
msg->SerializeWithCachedSizes(&o);
output->ptr += o.ByteCount();
}
// Helper to branch to fast path if possible
void SerializeMessageDispatch(const MessageLite& msg,
const FieldMetadata* field_table, int num_fields,
int32 cached_size,
io::CodedOutputStream* output) {
const uint8* base = reinterpret_cast<const uint8*>(&msg);
SerializeInternal(base, field_table, num_fields, output);
}
// Helper to branch to fast path if possible
void SerializeMessageDispatch(const MessageLite& msg,
const FieldMetadata* field_table, int num_fields,
int32 cached_size, ArrayOutput* output) {
const uint8* base = reinterpret_cast<const uint8*>(&msg);
output->ptr = SerializeInternalToArray(base, field_table, num_fields,
output->is_deterministic, output->ptr);
}
// Serializing messages is special as it's not a primitive type and needs an
// explicit overload for each output type.
template <typename O>
void SerializeMessageTo(const MessageLite* msg, const void* table_ptr,
O* output) {
const SerializationTable* table =
static_cast<const SerializationTable*>(table_ptr);
if (!table) {
// Proto1
WriteLengthTo(msg->GetCachedSize(), output);
SerializeMessageNoTable(msg, output);
return;
}
const FieldMetadata* field_table = table->field_table;
const uint8* base = reinterpret_cast<const uint8*>(msg);
int cached_size = *reinterpret_cast<const int32*>(base + field_table->offset);
WriteLengthTo(cached_size, output);
int num_fields = table->num_fields - 1;
SerializeMessageDispatch(*msg, field_table + 1, num_fields, cached_size,
output);
}
// Almost the same as above only it doesn't output the length field.
template <typename O>
void SerializeGroupTo(const MessageLite* msg, const void* table_ptr,
O* output) {
const SerializationTable* table =
static_cast<const SerializationTable*>(table_ptr);
if (!table) {
// Proto1
SerializeMessageNoTable(msg, output);
return;
}
const FieldMetadata* field_table = table->field_table;
const uint8* base = reinterpret_cast<const uint8*>(msg);
int cached_size = *reinterpret_cast<const int32*>(base + field_table->offset);
int num_fields = table->num_fields - 1;
SerializeMessageDispatch(*msg, field_table + 1, num_fields, cached_size,
output);
}
template <int type>
struct SingularFieldHelper {
template <typename O>
static void Serialize(const void* field, const FieldMetadata& md, O* output) {
WriteTagTo(md.tag, output);
SerializeTo<type>(field, output);
}
};
template <>
struct SingularFieldHelper<WireFormatLite::TYPE_STRING> {
template <typename O>
static void Serialize(const void* field, const FieldMetadata& md, O* output) {
WriteTagTo(md.tag, output);
SerializeTo<WireFormatLite::TYPE_STRING>(&Get<ArenaStringPtr>(field).Get(),
output);
}
};
template <>
struct SingularFieldHelper<WireFormatLite::TYPE_BYTES>
: SingularFieldHelper<WireFormatLite::TYPE_STRING> {};
template <>
struct SingularFieldHelper<WireFormatLite::TYPE_GROUP> {
template <typename O>
static void Serialize(const void* field, const FieldMetadata& md, O* output) {
WriteTagTo(md.tag, output);
SerializeGroupTo(Get<const MessageLite*>(field),
static_cast<const SerializationTable*>(md.ptr), output);
WriteTagTo(md.tag + 1, output);
}
};
template <>
struct SingularFieldHelper<WireFormatLite::TYPE_MESSAGE> {
template <typename O>
static void Serialize(const void* field, const FieldMetadata& md, O* output) {
WriteTagTo(md.tag, output);
SerializeMessageTo(Get<const MessageLite*>(field),
static_cast<const SerializationTable*>(md.ptr), output);
}
};
template <int type>
struct RepeatedFieldHelper {
template <typename O>
static void Serialize(const void* field, const FieldMetadata& md, O* output) {
typedef typename PrimitiveTypeHelper<type>::Type T;
const RepeatedField<T>& array = Get<RepeatedField<T> >(field);
for (int i = 0; i < array.size(); i++) {
WriteTagTo(md.tag, output);
SerializeTo<type>(&array[i], output);
}
}
};
// We need to use a helper class to get access to the private members
class AccessorHelper {
public:
static int Size(const RepeatedPtrFieldBase& x) { return x.size(); }
static void const* Get(const RepeatedPtrFieldBase& x, int idx) {
return x.raw_data()[idx];
}
};
template <>
struct RepeatedFieldHelper<WireFormatLite::TYPE_STRING> {
template <typename O>
static void Serialize(const void* field, const FieldMetadata& md, O* output) {
const internal::RepeatedPtrFieldBase& array =
Get<internal::RepeatedPtrFieldBase>(field);
for (int i = 0; i < AccessorHelper::Size(array); i++) {
WriteTagTo(md.tag, output);
SerializeTo<WireFormatLite::TYPE_STRING>(AccessorHelper::Get(array, i),
output);
}
}
};
template <>
struct RepeatedFieldHelper<WireFormatLite::TYPE_BYTES>
: RepeatedFieldHelper<WireFormatLite::TYPE_STRING> {};
template <>
struct RepeatedFieldHelper<WireFormatLite::TYPE_GROUP> {
template <typename O>
static void Serialize(const void* field, const FieldMetadata& md, O* output) {
const internal::RepeatedPtrFieldBase& array =
Get<internal::RepeatedPtrFieldBase>(field);
for (int i = 0; i < AccessorHelper::Size(array); i++) {
WriteTagTo(md.tag, output);
SerializeGroupTo(
static_cast<const MessageLite*>(AccessorHelper::Get(array, i)),
static_cast<const SerializationTable*>(md.ptr), output);
WriteTagTo(md.tag + 1, output);
}
}
};
template <>
struct RepeatedFieldHelper<WireFormatLite::TYPE_MESSAGE> {
template <typename O>
static void Serialize(const void* field, const FieldMetadata& md, O* output) {
const internal::RepeatedPtrFieldBase& array =
Get<internal::RepeatedPtrFieldBase>(field);
for (int i = 0; i < AccessorHelper::Size(array); i++) {
WriteTagTo(md.tag, output);
SerializeMessageTo(
static_cast<const MessageLite*>(AccessorHelper::Get(array, i)),
md.ptr, output);
}
}
};
template <int type>
struct PackedFieldHelper {
template <typename O>
static void Serialize(const void* field, const FieldMetadata& md, O* output) {
typedef typename PrimitiveTypeHelper<type>::Type T;
const RepeatedField<T>& array = Get<RepeatedField<T> >(field);
if (array.empty()) return;
WriteTagTo(md.tag, output);
int cached_size =
Get<int>(static_cast<const uint8*>(field) + sizeof(RepeatedField<T>));
WriteLengthTo(cached_size, output);
for (int i = 0; i < array.size(); i++) {
SerializeTo<type>(&array[i], output);
}
}
};
template <>
struct PackedFieldHelper<WireFormatLite::TYPE_STRING> {
template <typename O>
static void Serialize(const void* field, const FieldMetadata& md, O* output) {
GOOGLE_LOG(FATAL) << "Not implemented field number " << md.tag << " with type "
<< md.type;
}
};
template <>
struct PackedFieldHelper<WireFormatLite::TYPE_BYTES>
: PackedFieldHelper<WireFormatLite::TYPE_STRING> {};
template <>
struct PackedFieldHelper<WireFormatLite::TYPE_GROUP>
: PackedFieldHelper<WireFormatLite::TYPE_STRING> {};
template <>
struct PackedFieldHelper<WireFormatLite::TYPE_MESSAGE>
: PackedFieldHelper<WireFormatLite::TYPE_STRING> {};
template <int type>
struct OneOfFieldHelper {
template <typename O>
static void Serialize(const void* field, const FieldMetadata& md, O* output) {
SingularFieldHelper<type>::Serialize(field, md, output);
}
};
void SerializeNotImplemented(int field) {
GOOGLE_LOG(FATAL) << "Not implemented field number " << field;
}
// When switching to c++11 we should make these constexpr functions
#define SERIALIZE_TABLE_OP(type, type_class) \
((type - 1) + static_cast<int>(type_class) * FieldMetadata::kNumTypes)
int FieldMetadata::CalculateType(int type,
FieldMetadata::FieldTypeClass type_class) {
return SERIALIZE_TABLE_OP(type, type_class);
}
template <int type>
bool IsNull(const void* ptr) {
return *static_cast<const typename PrimitiveTypeHelper<type>::Type*>(ptr) ==
0;
}
template <>
bool IsNull<WireFormatLite::TYPE_STRING>(const void* ptr) {
return static_cast<const ArenaStringPtr*>(ptr)->Get().size() == 0;
}
template <>
bool IsNull<WireFormatLite::TYPE_BYTES>(const void* ptr) {
return static_cast<const ArenaStringPtr*>(ptr)->Get().size() == 0;
}
template <>
bool IsNull<WireFormatLite::TYPE_GROUP>(const void* ptr) {
return Get<const MessageLite*>(ptr) == NULL;
}
template <>
bool IsNull<WireFormatLite::TYPE_MESSAGE>(const void* ptr) {
return Get<const MessageLite*>(ptr) == NULL;
}
#define SERIALIZERS_FOR_TYPE(type) \
case SERIALIZE_TABLE_OP(type, FieldMetadata::kPresence): \
if (!IsPresent(base, field_metadata.has_offset)) continue; \
SingularFieldHelper<type>::Serialize(ptr, field_metadata, output); \
break; \
case SERIALIZE_TABLE_OP(type, FieldMetadata::kNoPresence): \
if (IsNull<type>(ptr)) continue; \
SingularFieldHelper<type>::Serialize(ptr, field_metadata, output); \
break; \
case SERIALIZE_TABLE_OP(type, FieldMetadata::kRepeated): \
RepeatedFieldHelper<type>::Serialize(ptr, field_metadata, output); \
break; \
case SERIALIZE_TABLE_OP(type, FieldMetadata::kPacked): \
PackedFieldHelper<type>::Serialize(ptr, field_metadata, output); \
break; \
case SERIALIZE_TABLE_OP(type, FieldMetadata::kOneOf): \
if (!IsOneofPresent(base, field_metadata.has_offset, field_metadata.tag)) \
continue; \
OneOfFieldHelper<type>::Serialize(ptr, field_metadata, output); \
break
void SerializeInternal(const uint8* base,
const FieldMetadata* field_metadata_table,
int32 num_fields, io::CodedOutputStream* output) {
SpecialSerializer func = nullptr;
for (int i = 0; i < num_fields; i++) {
const FieldMetadata& field_metadata = field_metadata_table[i];
const uint8* ptr = base + field_metadata.offset;
switch (field_metadata.type) {
SERIALIZERS_FOR_TYPE(WireFormatLite::TYPE_DOUBLE);
SERIALIZERS_FOR_TYPE(WireFormatLite::TYPE_FLOAT);
SERIALIZERS_FOR_TYPE(WireFormatLite::TYPE_INT64);
SERIALIZERS_FOR_TYPE(WireFormatLite::TYPE_UINT64);
SERIALIZERS_FOR_TYPE(WireFormatLite::TYPE_INT32);
SERIALIZERS_FOR_TYPE(WireFormatLite::TYPE_FIXED64);
SERIALIZERS_FOR_TYPE(WireFormatLite::TYPE_FIXED32);
SERIALIZERS_FOR_TYPE(WireFormatLite::TYPE_BOOL);
SERIALIZERS_FOR_TYPE(WireFormatLite::TYPE_STRING);
SERIALIZERS_FOR_TYPE(WireFormatLite::TYPE_GROUP);
SERIALIZERS_FOR_TYPE(WireFormatLite::TYPE_MESSAGE);
SERIALIZERS_FOR_TYPE(WireFormatLite::TYPE_BYTES);
SERIALIZERS_FOR_TYPE(WireFormatLite::TYPE_UINT32);
SERIALIZERS_FOR_TYPE(WireFormatLite::TYPE_ENUM);
SERIALIZERS_FOR_TYPE(WireFormatLite::TYPE_SFIXED32);
SERIALIZERS_FOR_TYPE(WireFormatLite::TYPE_SFIXED64);
SERIALIZERS_FOR_TYPE(WireFormatLite::TYPE_SINT32);
SERIALIZERS_FOR_TYPE(WireFormatLite::TYPE_SINT64);
// Special cases
case FieldMetadata::kSpecial:
func = reinterpret_cast<SpecialSerializer>(
const_cast<void*>(field_metadata.ptr));
func(base, field_metadata.offset, field_metadata.tag,
field_metadata.has_offset, output);
break;
default:
// __builtin_unreachable()
SerializeNotImplemented(field_metadata.type);
}
}
}
uint8* SerializeInternalToArray(const uint8* base,
const FieldMetadata* field_metadata_table,
int32 num_fields, bool is_deterministic,
uint8* buffer) {
ArrayOutput array_output = {buffer, is_deterministic};
ArrayOutput* output = &array_output;
SpecialSerializer func = nullptr;
for (int i = 0; i < num_fields; i++) {
const FieldMetadata& field_metadata = field_metadata_table[i];
const uint8* ptr = base + field_metadata.offset;
switch (field_metadata.type) {
SERIALIZERS_FOR_TYPE(WireFormatLite::TYPE_DOUBLE);
SERIALIZERS_FOR_TYPE(WireFormatLite::TYPE_FLOAT);
SERIALIZERS_FOR_TYPE(WireFormatLite::TYPE_INT64);
SERIALIZERS_FOR_TYPE(WireFormatLite::TYPE_UINT64);
SERIALIZERS_FOR_TYPE(WireFormatLite::TYPE_INT32);
SERIALIZERS_FOR_TYPE(WireFormatLite::TYPE_FIXED64);
SERIALIZERS_FOR_TYPE(WireFormatLite::TYPE_FIXED32);
SERIALIZERS_FOR_TYPE(WireFormatLite::TYPE_BOOL);
SERIALIZERS_FOR_TYPE(WireFormatLite::TYPE_STRING);
SERIALIZERS_FOR_TYPE(WireFormatLite::TYPE_GROUP);
SERIALIZERS_FOR_TYPE(WireFormatLite::TYPE_MESSAGE);
SERIALIZERS_FOR_TYPE(WireFormatLite::TYPE_BYTES);
SERIALIZERS_FOR_TYPE(WireFormatLite::TYPE_UINT32);
SERIALIZERS_FOR_TYPE(WireFormatLite::TYPE_ENUM);
SERIALIZERS_FOR_TYPE(WireFormatLite::TYPE_SFIXED32);
SERIALIZERS_FOR_TYPE(WireFormatLite::TYPE_SFIXED64);
SERIALIZERS_FOR_TYPE(WireFormatLite::TYPE_SINT32);
SERIALIZERS_FOR_TYPE(WireFormatLite::TYPE_SINT64);
// Special cases
case FieldMetadata::kSpecial: {
io::ArrayOutputStream array_stream(array_output.ptr, INT_MAX);
io::CodedOutputStream output(&array_stream);
output.SetSerializationDeterministic(is_deterministic);
func = reinterpret_cast<SpecialSerializer>(
const_cast<void*>(field_metadata.ptr));
func(base, field_metadata.offset, field_metadata.tag,
field_metadata.has_offset, &output);
array_output.ptr += output.ByteCount();
} break;
default:
// __builtin_unreachable()
SerializeNotImplemented(field_metadata.type);
}
}
return array_output.ptr;
}
#undef SERIALIZERS_FOR_TYPE
void ExtensionSerializer(const uint8* ptr, uint32 offset, uint32 tag,
uint32 has_offset, io::CodedOutputStream* output) {
reinterpret_cast<const ExtensionSet*>(ptr + offset)
->SerializeWithCachedSizes(tag, has_offset, output);
}
void UnknownFieldSerializerLite(const uint8* ptr, uint32 offset, uint32 tag,
uint32 has_offset,
io::CodedOutputStream* output) {
output->WriteString(
reinterpret_cast<const InternalMetadata*>(ptr + offset)
->unknown_fields<std::string>(&internal::GetEmptyString));
}
MessageLite* DuplicateIfNonNullInternal(MessageLite* message) {
if (message) {
MessageLite* ret = message->New();
ret->CheckTypeAndMergeFrom(*message);
return ret;
} else {
return NULL;
}
}
void GenericSwap(MessageLite* m1, MessageLite* m2) {
std::unique_ptr<MessageLite> tmp(m1->New());
tmp->CheckTypeAndMergeFrom(*m1);
m1->Clear();
m1->CheckTypeAndMergeFrom(*m2);
m2->Clear();
m2->CheckTypeAndMergeFrom(*tmp);
}
// Returns a message owned by this Arena. This may require Own()ing or
// duplicating the message.
MessageLite* GetOwnedMessageInternal(Arena* message_arena,
MessageLite* submessage,
Arena* submessage_arena) {
GOOGLE_DCHECK(submessage->GetArena() == submessage_arena);
GOOGLE_DCHECK(message_arena != submessage_arena);
if (message_arena != NULL && submessage_arena == NULL) {
message_arena->Own(submessage);
return submessage;
} else {
MessageLite* ret = submessage->New(message_arena);
ret->CheckTypeAndMergeFrom(*submessage);
return ret;
}
}
namespace {
void InitSCC_DFS(SCCInfoBase* scc) {
if (scc->visit_status.load(std::memory_order_relaxed) !=
SCCInfoBase::kUninitialized)
return;
scc->visit_status.store(SCCInfoBase::kRunning, std::memory_order_relaxed);
// Each base is followed by an array of void*, containing first pointers to
// SCCInfoBase and then pointers-to-pointers to SCCInfoBase.
auto deps = reinterpret_cast<void**>(scc + 1);
auto strong_deps = reinterpret_cast<SCCInfoBase* const*>(deps);
for (int i = 0; i < scc->num_deps; ++i) {
if (strong_deps[i]) InitSCC_DFS(strong_deps[i]);
}
auto implicit_weak_deps =
reinterpret_cast<SCCInfoBase** const*>(deps + scc->num_deps);
for (int i = 0; i < scc->num_implicit_weak_deps; ++i) {
if (*implicit_weak_deps[i]) {
InitSCC_DFS(*implicit_weak_deps[i]);
}
}
scc->init_func();
// Mark done (note we use memory order release here), other threads could
// now see this as initialized and thus the initialization must have happened
// before.
scc->visit_status.store(SCCInfoBase::kInitialized, std::memory_order_release);
}
} // namespace
void InitSCCImpl(SCCInfoBase* scc) {
static WrappedMutex mu{GOOGLE_PROTOBUF_LINKER_INITIALIZED};
// Either the default in case no initialization is running or the id of the
// thread that is currently initializing.
#ifndef GOOGLE_PROTOBUF_SUPPORT_WINDOWS_XP
static std::atomic<std::thread::id> runner;
auto me = std::this_thread::get_id();
#else
// This is a lightweight replacement for std::thread::id. std::thread does not
// work on Windows XP SP2 with the latest VC++ libraries, because it utilizes
// the Concurrency Runtime that is only supported on Windows XP SP3 and above.
static std::atomic_llong runner(-1);
auto me = ::GetCurrentThreadId();
#endif // #ifndef GOOGLE_PROTOBUF_SUPPORT_WINDOWS_XP
// This will only happen because the constructor will call InitSCC while
// constructing the default instance.
if (runner.load(std::memory_order_relaxed) == me) {
// Because we're in the process of constructing the default instance.
// We can be assured that we're already exploring this SCC.
GOOGLE_CHECK_EQ(scc->visit_status.load(std::memory_order_relaxed),
SCCInfoBase::kRunning);
return;
}
InitProtobufDefaults();
mu.Lock();
runner.store(me, std::memory_order_relaxed);
InitSCC_DFS(scc);
#ifndef GOOGLE_PROTOBUF_SUPPORT_WINDOWS_XP
runner.store(std::thread::id{}, std::memory_order_relaxed);
#else
runner.store(-1, std::memory_order_relaxed);
#endif // #ifndef GOOGLE_PROTOBUF_SUPPORT_WINDOWS_XP
mu.Unlock();
}
} // namespace internal
} // namespace protobuf
} // namespace google
|