Spaces:
Sleeping
Sleeping
File size: 10,168 Bytes
2aebc50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
#include <google/protobuf/stubs/time.h>
#include <ctime>
#include <google/protobuf/stubs/stringprintf.h>
#include <google/protobuf/stubs/strutil.h>
namespace google {
namespace protobuf {
namespace internal {
namespace {
static const int64 kSecondsPerMinute = 60;
static const int64 kSecondsPerHour = 3600;
static const int64 kSecondsPerDay = kSecondsPerHour * 24;
static const int64 kSecondsPer400Years =
kSecondsPerDay * (400 * 365 + 400 / 4 - 3);
// Seconds from 0001-01-01T00:00:00 to 1970-01-01T:00:00:00
static const int64 kSecondsFromEraToEpoch = 62135596800LL;
// The range of timestamp values we support.
static const int64 kMinTime = -62135596800LL; // 0001-01-01T00:00:00
static const int64 kMaxTime = 253402300799LL; // 9999-12-31T23:59:59
static const int kNanosPerMillisecond = 1000000;
static const int kNanosPerMicrosecond = 1000;
// Count the seconds from the given year (start at Jan 1, 00:00) to 100 years
// after.
int64 SecondsPer100Years(int year) {
if (year % 400 == 0 || year % 400 > 300) {
return kSecondsPerDay * (100 * 365 + 100 / 4);
} else {
return kSecondsPerDay * (100 * 365 + 100 / 4 - 1);
}
}
// Count the seconds from the given year (start at Jan 1, 00:00) to 4 years
// after.
int64 SecondsPer4Years(int year) {
if ((year % 100 == 0 || year % 100 > 96) &&
!(year % 400 == 0 || year % 400 > 396)) {
// No leap years.
return kSecondsPerDay * (4 * 365);
} else {
// One leap years.
return kSecondsPerDay * (4 * 365 + 1);
}
}
bool IsLeapYear(int year) {
return year % 400 == 0 || (year % 4 == 0 && year % 100 != 0);
}
int64 SecondsPerYear(int year) {
return kSecondsPerDay * (IsLeapYear(year) ? 366 : 365);
}
static const int kDaysInMonth[13] = {
0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
};
int64 SecondsPerMonth(int month, bool leap) {
if (month == 2 && leap) {
return kSecondsPerDay * (kDaysInMonth[month] + 1);
}
return kSecondsPerDay * kDaysInMonth[month];
}
static const int kDaysSinceJan[13] = {
0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334,
};
bool ValidateDateTime(const DateTime& time) {
if (time.year < 1 || time.year > 9999 ||
time.month < 1 || time.month > 12 ||
time.day < 1 || time.day > 31 ||
time.hour < 0 || time.hour > 23 ||
time.minute < 0 || time.minute > 59 ||
time.second < 0 || time.second > 59) {
return false;
}
if (time.month == 2 && IsLeapYear(time.year)) {
return time.day <= kDaysInMonth[time.month] + 1;
} else {
return time.day <= kDaysInMonth[time.month];
}
}
// Count the number of seconds elapsed from 0001-01-01T00:00:00 to the given
// time.
int64 SecondsSinceCommonEra(const DateTime& time) {
int64 result = 0;
// Years should be between 1 and 9999.
assert(time.year >= 1 && time.year <= 9999);
int year = 1;
if ((time.year - year) >= 400) {
int count_400years = (time.year - year) / 400;
result += kSecondsPer400Years * count_400years;
year += count_400years * 400;
}
while ((time.year - year) >= 100) {
result += SecondsPer100Years(year);
year += 100;
}
while ((time.year - year) >= 4) {
result += SecondsPer4Years(year);
year += 4;
}
while (time.year > year) {
result += SecondsPerYear(year);
++year;
}
// Months should be between 1 and 12.
assert(time.month >= 1 && time.month <= 12);
int month = time.month;
result += kSecondsPerDay * kDaysSinceJan[month];
if (month > 2 && IsLeapYear(year)) {
result += kSecondsPerDay;
}
assert(time.day >= 1 &&
time.day <= (month == 2 && IsLeapYear(year)
? kDaysInMonth[month] + 1
: kDaysInMonth[month]));
result += kSecondsPerDay * (time.day - 1);
result += kSecondsPerHour * time.hour +
kSecondsPerMinute * time.minute +
time.second;
return result;
}
// Format nanoseconds with either 3, 6, or 9 digits depending on the required
// precision to represent the exact value.
std::string FormatNanos(int32 nanos) {
if (nanos % kNanosPerMillisecond == 0) {
return StringPrintf("%03d", nanos / kNanosPerMillisecond);
} else if (nanos % kNanosPerMicrosecond == 0) {
return StringPrintf("%06d", nanos / kNanosPerMicrosecond);
} else {
return StringPrintf("%09d", nanos);
}
}
// Parses an integer from a null-terminated char sequence. The method
// consumes at most "width" chars. Returns a pointer after the consumed
// integer, or nullptr if the data does not start with an integer or the
// integer value does not fall in the range of [min_value, max_value].
const char* ParseInt(const char* data, int width, int min_value,
int max_value, int* result) {
if (!ascii_isdigit(*data)) {
return nullptr;
}
int value = 0;
for (int i = 0; i < width; ++i, ++data) {
if (ascii_isdigit(*data)) {
value = value * 10 + (*data - '0');
} else {
break;
}
}
if (value >= min_value && value <= max_value) {
*result = value;
return data;
} else {
return nullptr;
}
}
// Consumes the fractional parts of a second into nanos. For example,
// "010" will be parsed to 10000000 nanos.
const char* ParseNanos(const char* data, int32* nanos) {
if (!ascii_isdigit(*data)) {
return nullptr;
}
int value = 0;
int len = 0;
// Consume as many digits as there are but only take the first 9 into
// account.
while (ascii_isdigit(*data)) {
if (len < 9) {
value = value * 10 + *data - '0';
}
++len;
++data;
}
while (len < 9) {
value = value * 10;
++len;
}
*nanos = value;
return data;
}
const char* ParseTimezoneOffset(const char* data, int64* offset) {
// Accept format "HH:MM". E.g., "08:00"
int hour;
if ((data = ParseInt(data, 2, 0, 23, &hour)) == nullptr) {
return nullptr;
}
if (*data++ != ':') {
return nullptr;
}
int minute;
if ((data = ParseInt(data, 2, 0, 59, &minute)) == nullptr) {
return nullptr;
}
*offset = (hour * 60 + minute) * 60;
return data;
}
} // namespace
bool SecondsToDateTime(int64 seconds, DateTime* time) {
if (seconds < kMinTime || seconds > kMaxTime) {
return false;
}
// It's easier to calculate the DateTime starting from 0001-01-01T00:00:00
seconds = seconds + kSecondsFromEraToEpoch;
int year = 1;
if (seconds >= kSecondsPer400Years) {
int count_400years = seconds / kSecondsPer400Years;
year += 400 * count_400years;
seconds %= kSecondsPer400Years;
}
while (seconds >= SecondsPer100Years(year)) {
seconds -= SecondsPer100Years(year);
year += 100;
}
while (seconds >= SecondsPer4Years(year)) {
seconds -= SecondsPer4Years(year);
year += 4;
}
while (seconds >= SecondsPerYear(year)) {
seconds -= SecondsPerYear(year);
year += 1;
}
bool leap = IsLeapYear(year);
int month = 1;
while (seconds >= SecondsPerMonth(month, leap)) {
seconds -= SecondsPerMonth(month, leap);
++month;
}
int day = 1 + seconds / kSecondsPerDay;
seconds %= kSecondsPerDay;
int hour = seconds / kSecondsPerHour;
seconds %= kSecondsPerHour;
int minute = seconds / kSecondsPerMinute;
seconds %= kSecondsPerMinute;
time->year = year;
time->month = month;
time->day = day;
time->hour = hour;
time->minute = minute;
time->second = static_cast<int>(seconds);
return true;
}
bool DateTimeToSeconds(const DateTime& time, int64* seconds) {
if (!ValidateDateTime(time)) {
return false;
}
*seconds = SecondsSinceCommonEra(time) - kSecondsFromEraToEpoch;
return true;
}
void GetCurrentTime(int64* seconds, int32* nanos) {
// TODO(xiaofeng): Improve the accuracy of this implementation (or just
// remove this method from protobuf).
*seconds = time(nullptr);
*nanos = 0;
}
std::string FormatTime(int64 seconds, int32 nanos) {
DateTime time;
if (nanos < 0 || nanos > 999999999 || !SecondsToDateTime(seconds, &time)) {
return "InvalidTime";
}
std::string result =
StringPrintf("%04d-%02d-%02dT%02d:%02d:%02d", time.year, time.month,
time.day, time.hour, time.minute, time.second);
if (nanos != 0) {
result += "." + FormatNanos(nanos);
}
return result + "Z";
}
bool ParseTime(const std::string& value, int64* seconds, int32* nanos) {
DateTime time;
const char* data = value.c_str();
// We only accept:
// Z-normalized: 2015-05-20T13:29:35.120Z
// With UTC offset: 2015-05-20T13:29:35.120-08:00
// Parse year
if ((data = ParseInt(data, 4, 1, 9999, &time.year)) == nullptr) {
return false;
}
// Expect '-'
if (*data++ != '-') return false;
// Parse month
if ((data = ParseInt(data, 2, 1, 12, &time.month)) == nullptr) {
return false;
}
// Expect '-'
if (*data++ != '-') return false;
// Parse day
if ((data = ParseInt(data, 2, 1, 31, &time.day)) == nullptr) {
return false;
}
// Expect 'T'
if (*data++ != 'T') return false;
// Parse hour
if ((data = ParseInt(data, 2, 0, 23, &time.hour)) == nullptr) {
return false;
}
// Expect ':'
if (*data++ != ':') return false;
// Parse minute
if ((data = ParseInt(data, 2, 0, 59, &time.minute)) == nullptr) {
return false;
}
// Expect ':'
if (*data++ != ':') return false;
// Parse second
if ((data = ParseInt(data, 2, 0, 59, &time.second)) == nullptr) {
return false;
}
if (!DateTimeToSeconds(time, seconds)) {
return false;
}
// Parse nanoseconds.
if (*data == '.') {
++data;
// Parse nanoseconds.
if ((data = ParseNanos(data, nanos)) == nullptr) {
return false;
}
} else {
*nanos = 0;
}
// Parse UTC offsets.
if (*data == 'Z') {
++data;
} else if (*data == '+') {
++data;
int64 offset;
if ((data = ParseTimezoneOffset(data, &offset)) == nullptr) {
return false;
}
*seconds -= offset;
} else if (*data == '-') {
++data;
int64 offset;
if ((data = ParseTimezoneOffset(data, &offset)) == nullptr) {
return false;
}
*seconds += offset;
} else {
return false;
}
// Done with parsing.
return *data == 0;
}
} // namespace internal
} // namespace protobuf
} // namespace google
|