Spaces:
Paused
Paused
| #!/usr/bin/python3 | |
| # Copyright (c) Facebook, Inc. and its affiliates. | |
| # All rights reserved. | |
| # | |
| # This source code is licensed under the BSD-style license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| # | |
| # LASER Language-Agnostic SEntence Representations | |
| # is a toolkit to calculate multilingual sentence embeddings | |
| # and to use them for document classification, bitext filtering | |
| # and mining | |
| # | |
| # -------------------------------------------------------- | |
| # | |
| # XNLI | |
| import os | |
| import sys | |
| import argparse | |
| import pdb | |
| import faiss | |
| import numpy as np | |
| # get environment | |
| assert os.environ.get('LASER'), 'Please set the enviornment variable LASER' | |
| LASER = os.environ['LASER'] | |
| sys.path.append(LASER + '/source') | |
| sys.path.append(LASER + '/source/tools') | |
| from embed import SentenceEncoder, EncodeLoad, EncodeFile | |
| from text_processing import Token, BPEfastApply | |
| ################################################################################ | |
| parser = argparse.ArgumentParser('LASER: training and evaluation for XNLI') | |
| parser.add_argument('--tsv', type=str, default='tsv', | |
| help='Directory of the TSV file') | |
| parser.add_argument('--data_dir', type=str, default='.', | |
| help='Base directory for created files') | |
| parser.add_argument('--bpe_codes', type=str, required=True, | |
| help='Directory of the tokenized data') | |
| parser.add_argument('--verbose', action='store_true', | |
| help='Detailed output') | |
| # options for encoder | |
| parser.add_argument('--encoder', type=str, required=True, | |
| help='encoder to be used') | |
| parser.add_argument( | |
| '--lang', '-L', nargs='+', default=None, | |
| help="List of languages to test on") | |
| parser.add_argument('--buffer-size', type=int, default=10000, | |
| help='Buffer size (sentences)') | |
| parser.add_argument('--max-tokens', type=int, default=12000, | |
| help='Maximum number of tokens to process in a batch') | |
| parser.add_argument('--max-sentences', type=int, default=None, | |
| help='Maximum number of sentences to process in a batch') | |
| parser.add_argument('--cpu', action='store_true', | |
| help='Use CPU instead of GPU') | |
| args = parser.parse_args() | |
| print('LASER: training and evaluation for XNLI') | |
| if not os.path.exists(args.data_dir): | |
| os.mkdir(args.data_dir) | |
| enc = EncodeLoad(args) | |
| languages_train = ('en',) | |
| languages = ('en', 'ar', 'bg', 'de', 'el', 'es', 'fr', 'hi', 'ru', 'sw', 'th', 'tr', 'ur', 'vi', 'zh') | |
| print('\nProcessing train:') | |
| for lang in languages_train: | |
| for part in ('prem', 'hyp'): | |
| cfname = os.path.join(args.data_dir, 'xnli.train.' + part + '.') | |
| Token(cfname + lang, | |
| cfname + 'tok.' + lang, | |
| lang=lang, | |
| romanize=True if lang=='el' else False, | |
| lower_case=True, gzip=True, | |
| verbose=args.verbose, over_write=False) | |
| BPEfastApply(cfname + 'tok.' + lang, | |
| cfname + 'bpe.' + lang, | |
| args.bpe_codes, | |
| verbose=args.verbose, over_write=False) | |
| EncodeFile(enc, | |
| cfname + 'bpe.' + lang, | |
| cfname + 'enc.' + lang, | |
| verbose=args.verbose, over_write=False, | |
| buffer_size=args.buffer_size) | |
| for corpus in ('xnli.dev', 'xnli.test'): | |
| print('\nProcessing {}:'.format(corpus)) | |
| for part in ('prem', 'hyp'): | |
| cfname = os.path.join(args.data_dir, corpus + '.' + part + '.') | |
| for lang in languages: | |
| Token(cfname + lang, | |
| cfname + 'tok.' + lang, | |
| lang=lang, | |
| romanize=True if lang=='el' else False, | |
| lower_case=True, gzip=False, | |
| verbose=args.verbose, over_write=False) | |
| BPEfastApply(cfname + 'tok.' + lang, | |
| cfname + 'bpe.' + lang, | |
| args.bpe_codes, | |
| verbose=args.verbose, over_write=False) | |
| EncodeFile(enc, | |
| cfname + 'bpe.' + lang, | |
| cfname + 'enc.' + lang, | |
| verbose=args.verbose, over_write=False, | |
| buffer_size=args.buffer_size) | |