Spaces:
Sleeping
Sleeping
// Protocol Buffers - Google's data interchange format | |
// Copyright 2008 Google Inc. All rights reserved. | |
// https://developers.google.com/protocol-buffers/ | |
// | |
// Redistribution and use in source and binary forms, with or without | |
// modification, are permitted provided that the following conditions are | |
// met: | |
// | |
// * Redistributions of source code must retain the above copyright | |
// notice, this list of conditions and the following disclaimer. | |
// * Redistributions in binary form must reproduce the above | |
// copyright notice, this list of conditions and the following disclaimer | |
// in the documentation and/or other materials provided with the | |
// distribution. | |
// * Neither the name of Google Inc. nor the names of its | |
// contributors may be used to endorse or promote products derived from | |
// this software without specific prior written permission. | |
// | |
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
// from google3/strings/strutil.cc | |
// MSVC has only _snprintf, not snprintf. | |
// | |
// MinGW has both snprintf and _snprintf, but they appear to be different | |
// functions. The former is buggy. When invoked like so: | |
// char buffer[32]; | |
// snprintf(buffer, 32, "%.*g\n", FLT_DIG, 1.23e10f); | |
// it prints "1.23000e+10". This is plainly wrong: %g should never print | |
// trailing zeros after the decimal point. For some reason this bug only | |
// occurs with some input values, not all. In any case, _snprintf does the | |
// right thing, so we use it. | |
namespace google { | |
namespace protobuf { | |
// These are defined as macros on some platforms. #undef them so that we can | |
// redefine them. | |
// The definitions of these in ctype.h change based on locale. Since our | |
// string manipulation is all in relation to the protocol buffer and C++ | |
// languages, we always want to use the C locale. So, we re-define these | |
// exactly as we want them. | |
inline bool isxdigit(char c) { | |
return ('0' <= c && c <= '9') || | |
('a' <= c && c <= 'f') || | |
('A' <= c && c <= 'F'); | |
} | |
inline bool isprint(char c) { | |
return c >= 0x20 && c <= 0x7E; | |
} | |
// ---------------------------------------------------------------------- | |
// ReplaceCharacters | |
// Replaces any occurrence of the character 'remove' (or the characters | |
// in 'remove') with the character 'replacewith'. | |
// ---------------------------------------------------------------------- | |
void ReplaceCharacters(std::string *s, const char *remove, char replacewith) { | |
const char *str_start = s->c_str(); | |
const char *str = str_start; | |
for (str = strpbrk(str, remove); | |
str != nullptr; | |
str = strpbrk(str + 1, remove)) { | |
(*s)[str - str_start] = replacewith; | |
} | |
} | |
void StripWhitespace(std::string *str) { | |
int str_length = str->length(); | |
// Strip off leading whitespace. | |
int first = 0; | |
while (first < str_length && ascii_isspace(str->at(first))) { | |
++first; | |
} | |
// If entire string is white space. | |
if (first == str_length) { | |
str->clear(); | |
return; | |
} | |
if (first > 0) { | |
str->erase(0, first); | |
str_length -= first; | |
} | |
// Strip off trailing whitespace. | |
int last = str_length - 1; | |
while (last >= 0 && ascii_isspace(str->at(last))) { | |
--last; | |
} | |
if (last != (str_length - 1) && last >= 0) { | |
str->erase(last + 1, std::string::npos); | |
} | |
} | |
// ---------------------------------------------------------------------- | |
// StringReplace() | |
// Replace the "old" pattern with the "new" pattern in a string, | |
// and append the result to "res". If replace_all is false, | |
// it only replaces the first instance of "old." | |
// ---------------------------------------------------------------------- | |
void StringReplace(const std::string &s, const std::string &oldsub, | |
const std::string &newsub, bool replace_all, | |
std::string *res) { | |
if (oldsub.empty()) { | |
res->append(s); // if empty, append the given string. | |
return; | |
} | |
std::string::size_type start_pos = 0; | |
std::string::size_type pos; | |
do { | |
pos = s.find(oldsub, start_pos); | |
if (pos == std::string::npos) { | |
break; | |
} | |
res->append(s, start_pos, pos - start_pos); | |
res->append(newsub); | |
start_pos = pos + oldsub.size(); // start searching again after the "old" | |
} while (replace_all); | |
res->append(s, start_pos, s.length() - start_pos); | |
} | |
// ---------------------------------------------------------------------- | |
// StringReplace() | |
// Give me a string and two patterns "old" and "new", and I replace | |
// the first instance of "old" in the string with "new", if it | |
// exists. If "global" is true; call this repeatedly until it | |
// fails. RETURN a new string, regardless of whether the replacement | |
// happened or not. | |
// ---------------------------------------------------------------------- | |
std::string StringReplace(const std::string &s, const std::string &oldsub, | |
const std::string &newsub, bool replace_all) { | |
std::string ret; | |
StringReplace(s, oldsub, newsub, replace_all, &ret); | |
return ret; | |
} | |
// ---------------------------------------------------------------------- | |
// SplitStringUsing() | |
// Split a string using a character delimiter. Append the components | |
// to 'result'. | |
// | |
// Note: For multi-character delimiters, this routine will split on *ANY* of | |
// the characters in the string, not the entire string as a single delimiter. | |
// ---------------------------------------------------------------------- | |
template <typename ITR> | |
static inline void SplitStringToIteratorUsing(StringPiece full, | |
const char *delim, ITR &result) { | |
// Optimize the common case where delim is a single character. | |
if (delim[0] != '\0' && delim[1] == '\0') { | |
char c = delim[0]; | |
const char* p = full.data(); | |
const char* end = p + full.size(); | |
while (p != end) { | |
if (*p == c) { | |
++p; | |
} else { | |
const char* start = p; | |
while (++p != end && *p != c); | |
*result++ = std::string(start, p - start); | |
} | |
} | |
return; | |
} | |
std::string::size_type begin_index, end_index; | |
begin_index = full.find_first_not_of(delim); | |
while (begin_index != std::string::npos) { | |
end_index = full.find_first_of(delim, begin_index); | |
if (end_index == std::string::npos) { | |
*result++ = std::string(full.substr(begin_index)); | |
return; | |
} | |
*result++ = | |
std::string(full.substr(begin_index, (end_index - begin_index))); | |
begin_index = full.find_first_not_of(delim, end_index); | |
} | |
} | |
void SplitStringUsing(StringPiece full, const char *delim, | |
std::vector<std::string> *result) { | |
std::back_insert_iterator<std::vector<std::string> > it(*result); | |
SplitStringToIteratorUsing(full, delim, it); | |
} | |
// Split a string using a character delimiter. Append the components | |
// to 'result'. If there are consecutive delimiters, this function | |
// will return corresponding empty strings. The string is split into | |
// at most the specified number of pieces greedily. This means that the | |
// last piece may possibly be split further. To split into as many pieces | |
// as possible, specify 0 as the number of pieces. | |
// | |
// If "full" is the empty string, yields an empty string as the only value. | |
// | |
// If "pieces" is negative for some reason, it returns the whole string | |
// ---------------------------------------------------------------------- | |
template <typename ITR> | |
static inline void SplitStringToIteratorAllowEmpty(StringPiece full, | |
const char *delim, | |
int pieces, ITR &result) { | |
std::string::size_type begin_index, end_index; | |
begin_index = 0; | |
for (int i = 0; (i < pieces-1) || (pieces == 0); i++) { | |
end_index = full.find_first_of(delim, begin_index); | |
if (end_index == std::string::npos) { | |
*result++ = std::string(full.substr(begin_index)); | |
return; | |
} | |
*result++ = | |
std::string(full.substr(begin_index, (end_index - begin_index))); | |
begin_index = end_index + 1; | |
} | |
*result++ = std::string(full.substr(begin_index)); | |
} | |
void SplitStringAllowEmpty(StringPiece full, const char *delim, | |
std::vector<std::string> *result) { | |
std::back_insert_iterator<std::vector<std::string> > it(*result); | |
SplitStringToIteratorAllowEmpty(full, delim, 0, it); | |
} | |
// ---------------------------------------------------------------------- | |
// JoinStrings() | |
// This merges a vector of string components with delim inserted | |
// as separaters between components. | |
// | |
// ---------------------------------------------------------------------- | |
template <class ITERATOR> | |
static void JoinStringsIterator(const ITERATOR &start, const ITERATOR &end, | |
const char *delim, std::string *result) { | |
GOOGLE_CHECK(result != nullptr); | |
result->clear(); | |
int delim_length = strlen(delim); | |
// Precompute resulting length so we can reserve() memory in one shot. | |
int length = 0; | |
for (ITERATOR iter = start; iter != end; ++iter) { | |
if (iter != start) { | |
length += delim_length; | |
} | |
length += iter->size(); | |
} | |
result->reserve(length); | |
// Now combine everything. | |
for (ITERATOR iter = start; iter != end; ++iter) { | |
if (iter != start) { | |
result->append(delim, delim_length); | |
} | |
result->append(iter->data(), iter->size()); | |
} | |
} | |
void JoinStrings(const std::vector<std::string> &components, const char *delim, | |
std::string *result) { | |
JoinStringsIterator(components.begin(), components.end(), delim, result); | |
} | |
// ---------------------------------------------------------------------- | |
// UnescapeCEscapeSequences() | |
// This does all the unescaping that C does: \ooo, \r, \n, etc | |
// Returns length of resulting string. | |
// The implementation of \x parses any positive number of hex digits, | |
// but it is an error if the value requires more than 8 bits, and the | |
// result is truncated to 8 bits. | |
// | |
// The second call stores its errors in a supplied string vector. | |
// If the string vector pointer is nullptr, it reports the errors with LOG(). | |
// ---------------------------------------------------------------------- | |
// Protocol buffers doesn't ever care about errors, but I don't want to remove | |
// the code. | |
int UnescapeCEscapeSequences(const char* source, char* dest) { | |
return UnescapeCEscapeSequences(source, dest, nullptr); | |
} | |
int UnescapeCEscapeSequences(const char *source, char *dest, | |
std::vector<std::string> *errors) { | |
GOOGLE_DCHECK(errors == nullptr) << "Error reporting not implemented."; | |
char* d = dest; | |
const char* p = source; | |
// Small optimization for case where source = dest and there's no escaping | |
while ( p == d && *p != '\0' && *p != '\\' ) | |
p++, d++; | |
while (*p != '\0') { | |
if (*p != '\\') { | |
*d++ = *p++; | |
} else { | |
switch ( *++p ) { // skip past the '\\' | |
case '\0': | |
LOG_STRING(ERROR, errors) << "String cannot end with \\"; | |
*d = '\0'; | |
return d - dest; // we're done with p | |
case 'a': *d++ = '\a'; break; | |
case 'b': *d++ = '\b'; break; | |
case 'f': *d++ = '\f'; break; | |
case 'n': *d++ = '\n'; break; | |
case 'r': *d++ = '\r'; break; | |
case 't': *d++ = '\t'; break; | |
case 'v': *d++ = '\v'; break; | |
case '\\': *d++ = '\\'; break; | |
case '?': *d++ = '\?'; break; // \? Who knew? | |
case '\'': *d++ = '\''; break; | |
case '"': *d++ = '\"'; break; | |
case '0': case '1': case '2': case '3': // octal digit: 1 to 3 digits | |
case '4': case '5': case '6': case '7': { | |
char ch = *p - '0'; | |
if ( IS_OCTAL_DIGIT(p[1]) ) | |
ch = ch * 8 + *++p - '0'; | |
if ( IS_OCTAL_DIGIT(p[1]) ) // safe (and easy) to do this twice | |
ch = ch * 8 + *++p - '0'; // now points at last digit | |
*d++ = ch; | |
break; | |
} | |
case 'x': case 'X': { | |
if (!isxdigit(p[1])) { | |
if (p[1] == '\0') { | |
LOG_STRING(ERROR, errors) << "String cannot end with \\x"; | |
} else { | |
LOG_STRING(ERROR, errors) << | |
"\\x cannot be followed by non-hex digit: \\" << *p << p[1]; | |
} | |
break; | |
} | |
unsigned int ch = 0; | |
const char *hex_start = p; | |
while (isxdigit(p[1])) // arbitrarily many hex digits | |
ch = (ch << 4) + hex_digit_to_int(*++p); | |
if (ch > 0xFF) | |
LOG_STRING(ERROR, errors) | |
<< "Value of " | |
<< "\\" << std::string(hex_start, p + 1 - hex_start) | |
<< " exceeds 8 bits"; | |
*d++ = ch; | |
break; | |
} | |
case 'u': { | |
// \uhhhh => convert 4 hex digits to UTF-8 | |
char32 rune = 0; | |
const char *hex_start = p; | |
for (int i = 0; i < 4; ++i) { | |
if (isxdigit(p[1])) { // Look one char ahead. | |
rune = (rune << 4) + hex_digit_to_int(*++p); // Advance p. | |
} else { | |
LOG_STRING(ERROR, errors) | |
<< "\\u must be followed by 4 hex digits: \\" | |
<< std::string(hex_start, p+1-hex_start); | |
break; | |
} | |
} | |
d += runetochar(d, &rune); | |
break; | |
} | |
case 'U': { | |
// \Uhhhhhhhh => convert 8 hex digits to UTF-8 | |
char32 rune = 0; | |
const char *hex_start = p; | |
for (int i = 0; i < 8; ++i) { | |
if (isxdigit(p[1])) { // Look one char ahead. | |
// Don't change rune until we're sure this | |
// is within the Unicode limit, but do advance p. | |
char32 newrune = (rune << 4) + hex_digit_to_int(*++p); | |
if (newrune > 0x10FFFF) { | |
LOG_STRING(ERROR, errors) | |
<< "Value of \\" | |
<< std::string(hex_start, p + 1 - hex_start) | |
<< " exceeds Unicode limit (0x10FFFF)"; | |
break; | |
} else { | |
rune = newrune; | |
} | |
} else { | |
LOG_STRING(ERROR, errors) | |
<< "\\U must be followed by 8 hex digits: \\" | |
<< std::string(hex_start, p+1-hex_start); | |
break; | |
} | |
} | |
d += runetochar(d, &rune); | |
break; | |
} | |
default: | |
LOG_STRING(ERROR, errors) << "Unknown escape sequence: \\" << *p; | |
} | |
p++; // read past letter we escaped | |
} | |
} | |
*d = '\0'; | |
return d - dest; | |
} | |
// ---------------------------------------------------------------------- | |
// UnescapeCEscapeString() | |
// This does the same thing as UnescapeCEscapeSequences, but creates | |
// a new string. The caller does not need to worry about allocating | |
// a dest buffer. This should be used for non performance critical | |
// tasks such as printing debug messages. It is safe for src and dest | |
// to be the same. | |
// | |
// The second call stores its errors in a supplied string vector. | |
// If the string vector pointer is nullptr, it reports the errors with LOG(). | |
// | |
// In the first and second calls, the length of dest is returned. In the | |
// the third call, the new string is returned. | |
// ---------------------------------------------------------------------- | |
int UnescapeCEscapeString(const std::string &src, std::string *dest) { | |
return UnescapeCEscapeString(src, dest, nullptr); | |
} | |
int UnescapeCEscapeString(const std::string &src, std::string *dest, | |
std::vector<std::string> *errors) { | |
std::unique_ptr<char[]> unescaped(new char[src.size() + 1]); | |
int len = UnescapeCEscapeSequences(src.c_str(), unescaped.get(), errors); | |
GOOGLE_CHECK(dest); | |
dest->assign(unescaped.get(), len); | |
return len; | |
} | |
std::string UnescapeCEscapeString(const std::string &src) { | |
std::unique_ptr<char[]> unescaped(new char[src.size() + 1]); | |
int len = UnescapeCEscapeSequences(src.c_str(), unescaped.get(), nullptr); | |
return std::string(unescaped.get(), len); | |
} | |
// ---------------------------------------------------------------------- | |
// CEscapeString() | |
// CHexEscapeString() | |
// Copies 'src' to 'dest', escaping dangerous characters using | |
// C-style escape sequences. This is very useful for preparing query | |
// flags. 'src' and 'dest' should not overlap. The 'Hex' version uses | |
// hexadecimal rather than octal sequences. | |
// Returns the number of bytes written to 'dest' (not including the \0) | |
// or -1 if there was insufficient space. | |
// | |
// Currently only \n, \r, \t, ", ', \ and !isprint() chars are escaped. | |
// ---------------------------------------------------------------------- | |
int CEscapeInternal(const char* src, int src_len, char* dest, | |
int dest_len, bool use_hex, bool utf8_safe) { | |
const char* src_end = src + src_len; | |
int used = 0; | |
bool last_hex_escape = false; // true if last output char was \xNN | |
for (; src < src_end; src++) { | |
if (dest_len - used < 2) // Need space for two letter escape | |
return -1; | |
bool is_hex_escape = false; | |
switch (*src) { | |
case '\n': dest[used++] = '\\'; dest[used++] = 'n'; break; | |
case '\r': dest[used++] = '\\'; dest[used++] = 'r'; break; | |
case '\t': dest[used++] = '\\'; dest[used++] = 't'; break; | |
case '\"': dest[used++] = '\\'; dest[used++] = '\"'; break; | |
case '\'': dest[used++] = '\\'; dest[used++] = '\''; break; | |
case '\\': dest[used++] = '\\'; dest[used++] = '\\'; break; | |
default: | |
// Note that if we emit \xNN and the src character after that is a hex | |
// digit then that digit must be escaped too to prevent it being | |
// interpreted as part of the character code by C. | |
if ((!utf8_safe || static_cast<uint8>(*src) < 0x80) && | |
(!isprint(*src) || | |
(last_hex_escape && isxdigit(*src)))) { | |
if (dest_len - used < 4) // need space for 4 letter escape | |
return -1; | |
sprintf(dest + used, (use_hex ? "\\x%02x" : "\\%03o"), | |
static_cast<uint8>(*src)); | |
is_hex_escape = use_hex; | |
used += 4; | |
} else { | |
dest[used++] = *src; break; | |
} | |
} | |
last_hex_escape = is_hex_escape; | |
} | |
if (dest_len - used < 1) // make sure that there is room for \0 | |
return -1; | |
dest[used] = '\0'; // doesn't count towards return value though | |
return used; | |
} | |
// Calculates the length of the C-style escaped version of 'src'. | |
// Assumes that non-printable characters are escaped using octal sequences, and | |
// that UTF-8 bytes are not handled specially. | |
static inline size_t CEscapedLength(StringPiece src) { | |
static char c_escaped_len[256] = { | |
4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 2, 4, 4, 2, 4, 4, // \t, \n, \r | |
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, | |
1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, // ", ' | |
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // '0'..'9' | |
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 'A'..'O' | |
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, // 'P'..'Z', '\' | |
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 'a'..'o' | |
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, // 'p'..'z', DEL | |
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, | |
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, | |
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, | |
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, | |
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, | |
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, | |
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, | |
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, | |
}; | |
size_t escaped_len = 0; | |
for (int i = 0; i < src.size(); ++i) { | |
unsigned char c = static_cast<unsigned char>(src[i]); | |
escaped_len += c_escaped_len[c]; | |
} | |
return escaped_len; | |
} | |
// ---------------------------------------------------------------------- | |
// Escapes 'src' using C-style escape sequences, and appends the escaped string | |
// to 'dest'. This version is faster than calling CEscapeInternal as it computes | |
// the required space using a lookup table, and also does not do any special | |
// handling for Hex or UTF-8 characters. | |
// ---------------------------------------------------------------------- | |
void CEscapeAndAppend(StringPiece src, std::string *dest) { | |
size_t escaped_len = CEscapedLength(src); | |
if (escaped_len == src.size()) { | |
dest->append(src.data(), src.size()); | |
return; | |
} | |
size_t cur_dest_len = dest->size(); | |
dest->resize(cur_dest_len + escaped_len); | |
char* append_ptr = &(*dest)[cur_dest_len]; | |
for (int i = 0; i < src.size(); ++i) { | |
unsigned char c = static_cast<unsigned char>(src[i]); | |
switch (c) { | |
case '\n': *append_ptr++ = '\\'; *append_ptr++ = 'n'; break; | |
case '\r': *append_ptr++ = '\\'; *append_ptr++ = 'r'; break; | |
case '\t': *append_ptr++ = '\\'; *append_ptr++ = 't'; break; | |
case '\"': *append_ptr++ = '\\'; *append_ptr++ = '\"'; break; | |
case '\'': *append_ptr++ = '\\'; *append_ptr++ = '\''; break; | |
case '\\': *append_ptr++ = '\\'; *append_ptr++ = '\\'; break; | |
default: | |
if (!isprint(c)) { | |
*append_ptr++ = '\\'; | |
*append_ptr++ = '0' + c / 64; | |
*append_ptr++ = '0' + (c % 64) / 8; | |
*append_ptr++ = '0' + c % 8; | |
} else { | |
*append_ptr++ = c; | |
} | |
break; | |
} | |
} | |
} | |
std::string CEscape(const std::string &src) { | |
std::string dest; | |
CEscapeAndAppend(src, &dest); | |
return dest; | |
} | |
namespace strings { | |
std::string Utf8SafeCEscape(const std::string &src) { | |
const int dest_length = src.size() * 4 + 1; // Maximum possible expansion | |
std::unique_ptr<char[]> dest(new char[dest_length]); | |
const int len = CEscapeInternal(src.data(), src.size(), | |
dest.get(), dest_length, false, true); | |
GOOGLE_DCHECK_GE(len, 0); | |
return std::string(dest.get(), len); | |
} | |
std::string CHexEscape(const std::string &src) { | |
const int dest_length = src.size() * 4 + 1; // Maximum possible expansion | |
std::unique_ptr<char[]> dest(new char[dest_length]); | |
const int len = CEscapeInternal(src.data(), src.size(), | |
dest.get(), dest_length, true, false); | |
GOOGLE_DCHECK_GE(len, 0); | |
return std::string(dest.get(), len); | |
} | |
} // namespace strings | |
// ---------------------------------------------------------------------- | |
// strto32_adaptor() | |
// strtou32_adaptor() | |
// Implementation of strto[u]l replacements that have identical | |
// overflow and underflow characteristics for both ILP-32 and LP-64 | |
// platforms, including errno preservation in error-free calls. | |
// ---------------------------------------------------------------------- | |
int32 strto32_adaptor(const char *nptr, char **endptr, int base) { | |
const int saved_errno = errno; | |
errno = 0; | |
const long result = strtol(nptr, endptr, base); | |
if (errno == ERANGE && result == LONG_MIN) { | |
return kint32min; | |
} else if (errno == ERANGE && result == LONG_MAX) { | |
return kint32max; | |
} else if (errno == 0 && result < kint32min) { | |
errno = ERANGE; | |
return kint32min; | |
} else if (errno == 0 && result > kint32max) { | |
errno = ERANGE; | |
return kint32max; | |
} | |
if (errno == 0) | |
errno = saved_errno; | |
return static_cast<int32>(result); | |
} | |
uint32 strtou32_adaptor(const char *nptr, char **endptr, int base) { | |
const int saved_errno = errno; | |
errno = 0; | |
const unsigned long result = strtoul(nptr, endptr, base); | |
if (errno == ERANGE && result == ULONG_MAX) { | |
return kuint32max; | |
} else if (errno == 0 && result > kuint32max) { | |
errno = ERANGE; | |
return kuint32max; | |
} | |
if (errno == 0) | |
errno = saved_errno; | |
return static_cast<uint32>(result); | |
} | |
inline bool safe_parse_sign(std::string *text /*inout*/, | |
bool *negative_ptr /*output*/) { | |
const char* start = text->data(); | |
const char* end = start + text->size(); | |
// Consume whitespace. | |
while (start < end && (start[0] == ' ')) { | |
++start; | |
} | |
while (start < end && (end[-1] == ' ')) { | |
--end; | |
} | |
if (start >= end) { | |
return false; | |
} | |
// Consume sign. | |
*negative_ptr = (start[0] == '-'); | |
if (*negative_ptr || start[0] == '+') { | |
++start; | |
if (start >= end) { | |
return false; | |
} | |
} | |
*text = text->substr(start - text->data(), end - start); | |
return true; | |
} | |
template <typename IntType> | |
bool safe_parse_positive_int(std::string text, IntType *value_p) { | |
int base = 10; | |
IntType value = 0; | |
const IntType vmax = std::numeric_limits<IntType>::max(); | |
assert(vmax > 0); | |
assert(vmax >= base); | |
const IntType vmax_over_base = vmax / base; | |
const char* start = text.data(); | |
const char* end = start + text.size(); | |
// loop over digits | |
for (; start < end; ++start) { | |
unsigned char c = static_cast<unsigned char>(start[0]); | |
int digit = c - '0'; | |
if (digit >= base || digit < 0) { | |
*value_p = value; | |
return false; | |
} | |
if (value > vmax_over_base) { | |
*value_p = vmax; | |
return false; | |
} | |
value *= base; | |
if (value > vmax - digit) { | |
*value_p = vmax; | |
return false; | |
} | |
value += digit; | |
} | |
*value_p = value; | |
return true; | |
} | |
template <typename IntType> | |
bool safe_parse_negative_int(const std::string &text, IntType *value_p) { | |
int base = 10; | |
IntType value = 0; | |
const IntType vmin = std::numeric_limits<IntType>::min(); | |
assert(vmin < 0); | |
assert(vmin <= 0 - base); | |
IntType vmin_over_base = vmin / base; | |
// 2003 c++ standard [expr.mul] | |
// "... the sign of the remainder is implementation-defined." | |
// Although (vmin/base)*base + vmin%base is always vmin. | |
// 2011 c++ standard tightens the spec but we cannot rely on it. | |
if (vmin % base > 0) { | |
vmin_over_base += 1; | |
} | |
const char* start = text.data(); | |
const char* end = start + text.size(); | |
// loop over digits | |
for (; start < end; ++start) { | |
unsigned char c = static_cast<unsigned char>(start[0]); | |
int digit = c - '0'; | |
if (digit >= base || digit < 0) { | |
*value_p = value; | |
return false; | |
} | |
if (value < vmin_over_base) { | |
*value_p = vmin; | |
return false; | |
} | |
value *= base; | |
if (value < vmin + digit) { | |
*value_p = vmin; | |
return false; | |
} | |
value -= digit; | |
} | |
*value_p = value; | |
return true; | |
} | |
template <typename IntType> | |
bool safe_int_internal(std::string text, IntType *value_p) { | |
*value_p = 0; | |
bool negative; | |
if (!safe_parse_sign(&text, &negative)) { | |
return false; | |
} | |
if (!negative) { | |
return safe_parse_positive_int(text, value_p); | |
} else { | |
return safe_parse_negative_int(text, value_p); | |
} | |
} | |
template <typename IntType> | |
bool safe_uint_internal(std::string text, IntType *value_p) { | |
*value_p = 0; | |
bool negative; | |
if (!safe_parse_sign(&text, &negative) || negative) { | |
return false; | |
} | |
return safe_parse_positive_int(text, value_p); | |
} | |
// ---------------------------------------------------------------------- | |
// FastIntToBuffer() | |
// FastInt64ToBuffer() | |
// FastHexToBuffer() | |
// FastHex64ToBuffer() | |
// FastHex32ToBuffer() | |
// ---------------------------------------------------------------------- | |
// Offset into buffer where FastInt64ToBuffer places the end of string | |
// null character. Also used by FastInt64ToBufferLeft. | |
static const int kFastInt64ToBufferOffset = 21; | |
char *FastInt64ToBuffer(int64 i, char* buffer) { | |
// We could collapse the positive and negative sections, but that | |
// would be slightly slower for positive numbers... | |
// 22 bytes is enough to store -2**64, -18446744073709551616. | |
char* p = buffer + kFastInt64ToBufferOffset; | |
*p-- = '\0'; | |
if (i >= 0) { | |
do { | |
*p-- = '0' + i % 10; | |
i /= 10; | |
} while (i > 0); | |
return p + 1; | |
} else { | |
// On different platforms, % and / have different behaviors for | |
// negative numbers, so we need to jump through hoops to make sure | |
// we don't divide negative numbers. | |
if (i > -10) { | |
i = -i; | |
*p-- = '0' + i; | |
*p = '-'; | |
return p; | |
} else { | |
// Make sure we aren't at MIN_INT, in which case we can't say i = -i | |
i = i + 10; | |
i = -i; | |
*p-- = '0' + i % 10; | |
// Undo what we did a moment ago | |
i = i / 10 + 1; | |
do { | |
*p-- = '0' + i % 10; | |
i /= 10; | |
} while (i > 0); | |
*p = '-'; | |
return p; | |
} | |
} | |
} | |
// Offset into buffer where FastInt32ToBuffer places the end of string | |
// null character. Also used by FastInt32ToBufferLeft | |
static const int kFastInt32ToBufferOffset = 11; | |
// Yes, this is a duplicate of FastInt64ToBuffer. But, we need this for the | |
// compiler to generate 32 bit arithmetic instructions. It's much faster, at | |
// least with 32 bit binaries. | |
char *FastInt32ToBuffer(int32 i, char* buffer) { | |
// We could collapse the positive and negative sections, but that | |
// would be slightly slower for positive numbers... | |
// 12 bytes is enough to store -2**32, -4294967296. | |
char* p = buffer + kFastInt32ToBufferOffset; | |
*p-- = '\0'; | |
if (i >= 0) { | |
do { | |
*p-- = '0' + i % 10; | |
i /= 10; | |
} while (i > 0); | |
return p + 1; | |
} else { | |
// On different platforms, % and / have different behaviors for | |
// negative numbers, so we need to jump through hoops to make sure | |
// we don't divide negative numbers. | |
if (i > -10) { | |
i = -i; | |
*p-- = '0' + i; | |
*p = '-'; | |
return p; | |
} else { | |
// Make sure we aren't at MIN_INT, in which case we can't say i = -i | |
i = i + 10; | |
i = -i; | |
*p-- = '0' + i % 10; | |
// Undo what we did a moment ago | |
i = i / 10 + 1; | |
do { | |
*p-- = '0' + i % 10; | |
i /= 10; | |
} while (i > 0); | |
*p = '-'; | |
return p; | |
} | |
} | |
} | |
char *FastHexToBuffer(int i, char* buffer) { | |
GOOGLE_CHECK(i >= 0) << "FastHexToBuffer() wants non-negative integers, not " << i; | |
static const char *hexdigits = "0123456789abcdef"; | |
char *p = buffer + 21; | |
*p-- = '\0'; | |
do { | |
*p-- = hexdigits[i & 15]; // mod by 16 | |
i >>= 4; // divide by 16 | |
} while (i > 0); | |
return p + 1; | |
} | |
char *InternalFastHexToBuffer(uint64 value, char* buffer, int num_byte) { | |
static const char *hexdigits = "0123456789abcdef"; | |
buffer[num_byte] = '\0'; | |
for (int i = num_byte - 1; i >= 0; i--) { | |
// MSVC x64 platform has a bug optimizing the uint32(value) in the #else | |
// block. Given that the uint32 cast was to improve performance on 32-bit | |
// platforms, we use 64-bit '&' directly. | |
buffer[i] = hexdigits[value & 0xf]; | |
buffer[i] = hexdigits[uint32(value) & 0xf]; | |
value >>= 4; | |
} | |
return buffer; | |
} | |
char *FastHex64ToBuffer(uint64 value, char* buffer) { | |
return InternalFastHexToBuffer(value, buffer, 16); | |
} | |
char *FastHex32ToBuffer(uint32 value, char* buffer) { | |
return InternalFastHexToBuffer(value, buffer, 8); | |
} | |
// ---------------------------------------------------------------------- | |
// FastInt32ToBufferLeft() | |
// FastUInt32ToBufferLeft() | |
// FastInt64ToBufferLeft() | |
// FastUInt64ToBufferLeft() | |
// | |
// Like the Fast*ToBuffer() functions above, these are intended for speed. | |
// Unlike the Fast*ToBuffer() functions, however, these functions write | |
// their output to the beginning of the buffer (hence the name, as the | |
// output is left-aligned). The caller is responsible for ensuring that | |
// the buffer has enough space to hold the output. | |
// | |
// Returns a pointer to the end of the string (i.e. the null character | |
// terminating the string). | |
// ---------------------------------------------------------------------- | |
static const char two_ASCII_digits[100][2] = { | |
{'0','0'}, {'0','1'}, {'0','2'}, {'0','3'}, {'0','4'}, | |
{'0','5'}, {'0','6'}, {'0','7'}, {'0','8'}, {'0','9'}, | |
{'1','0'}, {'1','1'}, {'1','2'}, {'1','3'}, {'1','4'}, | |
{'1','5'}, {'1','6'}, {'1','7'}, {'1','8'}, {'1','9'}, | |
{'2','0'}, {'2','1'}, {'2','2'}, {'2','3'}, {'2','4'}, | |
{'2','5'}, {'2','6'}, {'2','7'}, {'2','8'}, {'2','9'}, | |
{'3','0'}, {'3','1'}, {'3','2'}, {'3','3'}, {'3','4'}, | |
{'3','5'}, {'3','6'}, {'3','7'}, {'3','8'}, {'3','9'}, | |
{'4','0'}, {'4','1'}, {'4','2'}, {'4','3'}, {'4','4'}, | |
{'4','5'}, {'4','6'}, {'4','7'}, {'4','8'}, {'4','9'}, | |
{'5','0'}, {'5','1'}, {'5','2'}, {'5','3'}, {'5','4'}, | |
{'5','5'}, {'5','6'}, {'5','7'}, {'5','8'}, {'5','9'}, | |
{'6','0'}, {'6','1'}, {'6','2'}, {'6','3'}, {'6','4'}, | |
{'6','5'}, {'6','6'}, {'6','7'}, {'6','8'}, {'6','9'}, | |
{'7','0'}, {'7','1'}, {'7','2'}, {'7','3'}, {'7','4'}, | |
{'7','5'}, {'7','6'}, {'7','7'}, {'7','8'}, {'7','9'}, | |
{'8','0'}, {'8','1'}, {'8','2'}, {'8','3'}, {'8','4'}, | |
{'8','5'}, {'8','6'}, {'8','7'}, {'8','8'}, {'8','9'}, | |
{'9','0'}, {'9','1'}, {'9','2'}, {'9','3'}, {'9','4'}, | |
{'9','5'}, {'9','6'}, {'9','7'}, {'9','8'}, {'9','9'} | |
}; | |
char* FastUInt32ToBufferLeft(uint32 u, char* buffer) { | |
uint32 digits; | |
const char *ASCII_digits = nullptr; | |
// The idea of this implementation is to trim the number of divides to as few | |
// as possible by using multiplication and subtraction rather than mod (%), | |
// and by outputting two digits at a time rather than one. | |
// The huge-number case is first, in the hopes that the compiler will output | |
// that case in one branch-free block of code, and only output conditional | |
// branches into it from below. | |
if (u >= 1000000000) { // >= 1,000,000,000 | |
digits = u / 100000000; // 100,000,000 | |
ASCII_digits = two_ASCII_digits[digits]; | |
buffer[0] = ASCII_digits[0]; | |
buffer[1] = ASCII_digits[1]; | |
buffer += 2; | |
sublt100_000_000: | |
u -= digits * 100000000; // 100,000,000 | |
lt100_000_000: | |
digits = u / 1000000; // 1,000,000 | |
ASCII_digits = two_ASCII_digits[digits]; | |
buffer[0] = ASCII_digits[0]; | |
buffer[1] = ASCII_digits[1]; | |
buffer += 2; | |
sublt1_000_000: | |
u -= digits * 1000000; // 1,000,000 | |
lt1_000_000: | |
digits = u / 10000; // 10,000 | |
ASCII_digits = two_ASCII_digits[digits]; | |
buffer[0] = ASCII_digits[0]; | |
buffer[1] = ASCII_digits[1]; | |
buffer += 2; | |
sublt10_000: | |
u -= digits * 10000; // 10,000 | |
lt10_000: | |
digits = u / 100; | |
ASCII_digits = two_ASCII_digits[digits]; | |
buffer[0] = ASCII_digits[0]; | |
buffer[1] = ASCII_digits[1]; | |
buffer += 2; | |
sublt100: | |
u -= digits * 100; | |
lt100: | |
digits = u; | |
ASCII_digits = two_ASCII_digits[digits]; | |
buffer[0] = ASCII_digits[0]; | |
buffer[1] = ASCII_digits[1]; | |
buffer += 2; | |
done: | |
*buffer = 0; | |
return buffer; | |
} | |
if (u < 100) { | |
digits = u; | |
if (u >= 10) goto lt100; | |
*buffer++ = '0' + digits; | |
goto done; | |
} | |
if (u < 10000) { // 10,000 | |
if (u >= 1000) goto lt10_000; | |
digits = u / 100; | |
*buffer++ = '0' + digits; | |
goto sublt100; | |
} | |
if (u < 1000000) { // 1,000,000 | |
if (u >= 100000) goto lt1_000_000; | |
digits = u / 10000; // 10,000 | |
*buffer++ = '0' + digits; | |
goto sublt10_000; | |
} | |
if (u < 100000000) { // 100,000,000 | |
if (u >= 10000000) goto lt100_000_000; | |
digits = u / 1000000; // 1,000,000 | |
*buffer++ = '0' + digits; | |
goto sublt1_000_000; | |
} | |
// we already know that u < 1,000,000,000 | |
digits = u / 100000000; // 100,000,000 | |
*buffer++ = '0' + digits; | |
goto sublt100_000_000; | |
} | |
char* FastInt32ToBufferLeft(int32 i, char* buffer) { | |
uint32 u = 0; | |
if (i < 0) { | |
*buffer++ = '-'; | |
u -= i; | |
} else { | |
u = i; | |
} | |
return FastUInt32ToBufferLeft(u, buffer); | |
} | |
char* FastUInt64ToBufferLeft(uint64 u64, char* buffer) { | |
int digits; | |
const char *ASCII_digits = nullptr; | |
uint32 u = static_cast<uint32>(u64); | |
if (u == u64) return FastUInt32ToBufferLeft(u, buffer); | |
uint64 top_11_digits = u64 / 1000000000; | |
buffer = FastUInt64ToBufferLeft(top_11_digits, buffer); | |
u = u64 - (top_11_digits * 1000000000); | |
digits = u / 10000000; // 10,000,000 | |
GOOGLE_DCHECK_LT(digits, 100); | |
ASCII_digits = two_ASCII_digits[digits]; | |
buffer[0] = ASCII_digits[0]; | |
buffer[1] = ASCII_digits[1]; | |
buffer += 2; | |
u -= digits * 10000000; // 10,000,000 | |
digits = u / 100000; // 100,000 | |
ASCII_digits = two_ASCII_digits[digits]; | |
buffer[0] = ASCII_digits[0]; | |
buffer[1] = ASCII_digits[1]; | |
buffer += 2; | |
u -= digits * 100000; // 100,000 | |
digits = u / 1000; // 1,000 | |
ASCII_digits = two_ASCII_digits[digits]; | |
buffer[0] = ASCII_digits[0]; | |
buffer[1] = ASCII_digits[1]; | |
buffer += 2; | |
u -= digits * 1000; // 1,000 | |
digits = u / 10; | |
ASCII_digits = two_ASCII_digits[digits]; | |
buffer[0] = ASCII_digits[0]; | |
buffer[1] = ASCII_digits[1]; | |
buffer += 2; | |
u -= digits * 10; | |
digits = u; | |
*buffer++ = '0' + digits; | |
*buffer = 0; | |
return buffer; | |
} | |
char* FastInt64ToBufferLeft(int64 i, char* buffer) { | |
uint64 u = 0; | |
if (i < 0) { | |
*buffer++ = '-'; | |
u -= i; | |
} else { | |
u = i; | |
} | |
return FastUInt64ToBufferLeft(u, buffer); | |
} | |
// ---------------------------------------------------------------------- | |
// SimpleItoa() | |
// Description: converts an integer to a string. | |
// | |
// Return value: string | |
// ---------------------------------------------------------------------- | |
std::string SimpleItoa(int i) { | |
char buffer[kFastToBufferSize]; | |
return (sizeof(i) == 4) ? | |
FastInt32ToBuffer(i, buffer) : | |
FastInt64ToBuffer(i, buffer); | |
} | |
std::string SimpleItoa(unsigned int i) { | |
char buffer[kFastToBufferSize]; | |
return std::string(buffer, (sizeof(i) == 4) | |
? FastUInt32ToBufferLeft(i, buffer) | |
: FastUInt64ToBufferLeft(i, buffer)); | |
} | |
std::string SimpleItoa(long i) { | |
char buffer[kFastToBufferSize]; | |
return (sizeof(i) == 4) ? | |
FastInt32ToBuffer(i, buffer) : | |
FastInt64ToBuffer(i, buffer); | |
} | |
std::string SimpleItoa(unsigned long i) { | |
char buffer[kFastToBufferSize]; | |
return std::string(buffer, (sizeof(i) == 4) | |
? FastUInt32ToBufferLeft(i, buffer) | |
: FastUInt64ToBufferLeft(i, buffer)); | |
} | |
std::string SimpleItoa(long long i) { | |
char buffer[kFastToBufferSize]; | |
return (sizeof(i) == 4) ? | |
FastInt32ToBuffer(i, buffer) : | |
FastInt64ToBuffer(i, buffer); | |
} | |
std::string SimpleItoa(unsigned long long i) { | |
char buffer[kFastToBufferSize]; | |
return std::string(buffer, (sizeof(i) == 4) | |
? FastUInt32ToBufferLeft(i, buffer) | |
: FastUInt64ToBufferLeft(i, buffer)); | |
} | |
// ---------------------------------------------------------------------- | |
// SimpleDtoa() | |
// SimpleFtoa() | |
// DoubleToBuffer() | |
// FloatToBuffer() | |
// We want to print the value without losing precision, but we also do | |
// not want to print more digits than necessary. This turns out to be | |
// trickier than it sounds. Numbers like 0.2 cannot be represented | |
// exactly in binary. If we print 0.2 with a very large precision, | |
// e.g. "%.50g", we get "0.2000000000000000111022302462515654042363167". | |
// On the other hand, if we set the precision too low, we lose | |
// significant digits when printing numbers that actually need them. | |
// It turns out there is no precision value that does the right thing | |
// for all numbers. | |
// | |
// Our strategy is to first try printing with a precision that is never | |
// over-precise, then parse the result with strtod() to see if it | |
// matches. If not, we print again with a precision that will always | |
// give a precise result, but may use more digits than necessary. | |
// | |
// An arguably better strategy would be to use the algorithm described | |
// in "How to Print Floating-Point Numbers Accurately" by Steele & | |
// White, e.g. as implemented by David M. Gay's dtoa(). It turns out, | |
// however, that the following implementation is about as fast as | |
// DMG's code. Furthermore, DMG's code locks mutexes, which means it | |
// will not scale well on multi-core machines. DMG's code is slightly | |
// more accurate (in that it will never use more digits than | |
// necessary), but this is probably irrelevant for most users. | |
// | |
// Rob Pike and Ken Thompson also have an implementation of dtoa() in | |
// third_party/fmt/fltfmt.cc. Their implementation is similar to this | |
// one in that it makes guesses and then uses strtod() to check them. | |
// Their implementation is faster because they use their own code to | |
// generate the digits in the first place rather than use snprintf(), | |
// thus avoiding format string parsing overhead. However, this makes | |
// it considerably more complicated than the following implementation, | |
// and it is embedded in a larger library. If speed turns out to be | |
// an issue, we could re-implement this in terms of their | |
// implementation. | |
// ---------------------------------------------------------------------- | |
std::string SimpleDtoa(double value) { | |
char buffer[kDoubleToBufferSize]; | |
return DoubleToBuffer(value, buffer); | |
} | |
std::string SimpleFtoa(float value) { | |
char buffer[kFloatToBufferSize]; | |
return FloatToBuffer(value, buffer); | |
} | |
static inline bool IsValidFloatChar(char c) { | |
return ('0' <= c && c <= '9') || | |
c == 'e' || c == 'E' || | |
c == '+' || c == '-'; | |
} | |
void DelocalizeRadix(char* buffer) { | |
// Fast check: if the buffer has a normal decimal point, assume no | |
// translation is needed. | |
if (strchr(buffer, '.') != nullptr) return; | |
// Find the first unknown character. | |
while (IsValidFloatChar(*buffer)) ++buffer; | |
if (*buffer == '\0') { | |
// No radix character found. | |
return; | |
} | |
// We are now pointing at the locale-specific radix character. Replace it | |
// with '.'. | |
*buffer = '.'; | |
++buffer; | |
if (!IsValidFloatChar(*buffer) && *buffer != '\0') { | |
// It appears the radix was a multi-byte character. We need to remove the | |
// extra bytes. | |
char* target = buffer; | |
do { ++buffer; } while (!IsValidFloatChar(*buffer) && *buffer != '\0'); | |
memmove(target, buffer, strlen(buffer) + 1); | |
} | |
} | |
char* DoubleToBuffer(double value, char* buffer) { | |
// DBL_DIG is 15 for IEEE-754 doubles, which are used on almost all | |
// platforms these days. Just in case some system exists where DBL_DIG | |
// is significantly larger -- and risks overflowing our buffer -- we have | |
// this assert. | |
GOOGLE_COMPILE_ASSERT(DBL_DIG < 20, DBL_DIG_is_too_big); | |
if (value == std::numeric_limits<double>::infinity()) { | |
strcpy(buffer, "inf"); | |
return buffer; | |
} else if (value == -std::numeric_limits<double>::infinity()) { | |
strcpy(buffer, "-inf"); | |
return buffer; | |
} else if (std::isnan(value)) { | |
strcpy(buffer, "nan"); | |
return buffer; | |
} | |
int snprintf_result = | |
snprintf(buffer, kDoubleToBufferSize, "%.*g", DBL_DIG, value); | |
// The snprintf should never overflow because the buffer is significantly | |
// larger than the precision we asked for. | |
GOOGLE_DCHECK(snprintf_result > 0 && snprintf_result < kDoubleToBufferSize); | |
// We need to make parsed_value volatile in order to force the compiler to | |
// write it out to the stack. Otherwise, it may keep the value in a | |
// register, and if it does that, it may keep it as a long double instead | |
// of a double. This long double may have extra bits that make it compare | |
// unequal to "value" even though it would be exactly equal if it were | |
// truncated to a double. | |
volatile double parsed_value = internal::NoLocaleStrtod(buffer, nullptr); | |
if (parsed_value != value) { | |
int snprintf_result = | |
snprintf(buffer, kDoubleToBufferSize, "%.*g", DBL_DIG+2, value); | |
// Should never overflow; see above. | |
GOOGLE_DCHECK(snprintf_result > 0 && snprintf_result < kDoubleToBufferSize); | |
} | |
DelocalizeRadix(buffer); | |
return buffer; | |
} | |
static int memcasecmp(const char *s1, const char *s2, size_t len) { | |
const unsigned char *us1 = reinterpret_cast<const unsigned char *>(s1); | |
const unsigned char *us2 = reinterpret_cast<const unsigned char *>(s2); | |
for ( int i = 0; i < len; i++ ) { | |
const int diff = | |
static_cast<int>(static_cast<unsigned char>(ascii_tolower(us1[i]))) - | |
static_cast<int>(static_cast<unsigned char>(ascii_tolower(us2[i]))); | |
if (diff != 0) return diff; | |
} | |
return 0; | |
} | |
inline bool CaseEqual(StringPiece s1, StringPiece s2) { | |
if (s1.size() != s2.size()) return false; | |
return memcasecmp(s1.data(), s2.data(), s1.size()) == 0; | |
} | |
bool safe_strtob(StringPiece str, bool* value) { | |
GOOGLE_CHECK(value != nullptr) << "nullptr output boolean given."; | |
if (CaseEqual(str, "true") || CaseEqual(str, "t") || | |
CaseEqual(str, "yes") || CaseEqual(str, "y") || | |
CaseEqual(str, "1")) { | |
*value = true; | |
return true; | |
} | |
if (CaseEqual(str, "false") || CaseEqual(str, "f") || | |
CaseEqual(str, "no") || CaseEqual(str, "n") || | |
CaseEqual(str, "0")) { | |
*value = false; | |
return true; | |
} | |
return false; | |
} | |
bool safe_strtof(const char* str, float* value) { | |
char* endptr; | |
errno = 0; // errno only gets set on errors | |
*value = internal::NoLocaleStrtod(str, &endptr); | |
*value = strtof(str, &endptr); | |
return *str != 0 && *endptr == 0 && errno == 0; | |
} | |
bool safe_strtod(const char* str, double* value) { | |
char* endptr; | |
*value = internal::NoLocaleStrtod(str, &endptr); | |
if (endptr != str) { | |
while (ascii_isspace(*endptr)) ++endptr; | |
} | |
// Ignore range errors from strtod. The values it | |
// returns on underflow and overflow are the right | |
// fallback in a robust setting. | |
return *str != '\0' && *endptr == '\0'; | |
} | |
bool safe_strto32(const std::string &str, int32 *value) { | |
return safe_int_internal(str, value); | |
} | |
bool safe_strtou32(const std::string &str, uint32 *value) { | |
return safe_uint_internal(str, value); | |
} | |
bool safe_strto64(const std::string &str, int64 *value) { | |
return safe_int_internal(str, value); | |
} | |
bool safe_strtou64(const std::string &str, uint64 *value) { | |
return safe_uint_internal(str, value); | |
} | |
char* FloatToBuffer(float value, char* buffer) { | |
// FLT_DIG is 6 for IEEE-754 floats, which are used on almost all | |
// platforms these days. Just in case some system exists where FLT_DIG | |
// is significantly larger -- and risks overflowing our buffer -- we have | |
// this assert. | |
GOOGLE_COMPILE_ASSERT(FLT_DIG < 10, FLT_DIG_is_too_big); | |
if (value == std::numeric_limits<double>::infinity()) { | |
strcpy(buffer, "inf"); | |
return buffer; | |
} else if (value == -std::numeric_limits<double>::infinity()) { | |
strcpy(buffer, "-inf"); | |
return buffer; | |
} else if (std::isnan(value)) { | |
strcpy(buffer, "nan"); | |
return buffer; | |
} | |
int snprintf_result = | |
snprintf(buffer, kFloatToBufferSize, "%.*g", FLT_DIG, value); | |
// The snprintf should never overflow because the buffer is significantly | |
// larger than the precision we asked for. | |
GOOGLE_DCHECK(snprintf_result > 0 && snprintf_result < kFloatToBufferSize); | |
float parsed_value; | |
if (!safe_strtof(buffer, &parsed_value) || parsed_value != value) { | |
int snprintf_result = | |
snprintf(buffer, kFloatToBufferSize, "%.*g", FLT_DIG+3, value); | |
// Should never overflow; see above. | |
GOOGLE_DCHECK(snprintf_result > 0 && snprintf_result < kFloatToBufferSize); | |
} | |
DelocalizeRadix(buffer); | |
return buffer; | |
} | |
namespace strings { | |
AlphaNum::AlphaNum(strings::Hex hex) { | |
char *const end = &digits[kFastToBufferSize]; | |
char *writer = end; | |
uint64 value = hex.value; | |
uint64 width = hex.spec; | |
// We accomplish minimum width by OR'ing in 0x10000 to the user's value, | |
// where 0x10000 is the smallest hex number that is as wide as the user | |
// asked for. | |
uint64 mask = ((static_cast<uint64>(1) << (width - 1) * 4)) | value; | |
static const char hexdigits[] = "0123456789abcdef"; | |
do { | |
*--writer = hexdigits[value & 0xF]; | |
value >>= 4; | |
mask >>= 4; | |
} while (mask != 0); | |
piece_data_ = writer; | |
piece_size_ = end - writer; | |
} | |
} // namespace strings | |
// ---------------------------------------------------------------------- | |
// StrCat() | |
// This merges the given strings or integers, with no delimiter. This | |
// is designed to be the fastest possible way to construct a string out | |
// of a mix of raw C strings, C++ strings, and integer values. | |
// ---------------------------------------------------------------------- | |
// Append is merely a version of memcpy that returns the address of the byte | |
// after the area just overwritten. It comes in multiple flavors to minimize | |
// call overhead. | |
static char *Append1(char *out, const AlphaNum &x) { | |
if (x.size() > 0) { | |
memcpy(out, x.data(), x.size()); | |
out += x.size(); | |
} | |
return out; | |
} | |
static char *Append2(char *out, const AlphaNum &x1, const AlphaNum &x2) { | |
if (x1.size() > 0) { | |
memcpy(out, x1.data(), x1.size()); | |
out += x1.size(); | |
} | |
if (x2.size() > 0) { | |
memcpy(out, x2.data(), x2.size()); | |
out += x2.size(); | |
} | |
return out; | |
} | |
static char *Append4(char *out, const AlphaNum &x1, const AlphaNum &x2, | |
const AlphaNum &x3, const AlphaNum &x4) { | |
if (x1.size() > 0) { | |
memcpy(out, x1.data(), x1.size()); | |
out += x1.size(); | |
} | |
if (x2.size() > 0) { | |
memcpy(out, x2.data(), x2.size()); | |
out += x2.size(); | |
} | |
if (x3.size() > 0) { | |
memcpy(out, x3.data(), x3.size()); | |
out += x3.size(); | |
} | |
if (x4.size() > 0) { | |
memcpy(out, x4.data(), x4.size()); | |
out += x4.size(); | |
} | |
return out; | |
} | |
std::string StrCat(const AlphaNum &a, const AlphaNum &b) { | |
std::string result; | |
result.resize(a.size() + b.size()); | |
char *const begin = &*result.begin(); | |
char *out = Append2(begin, a, b); | |
GOOGLE_DCHECK_EQ(out, begin + result.size()); | |
return result; | |
} | |
std::string StrCat(const AlphaNum &a, const AlphaNum &b, const AlphaNum &c) { | |
std::string result; | |
result.resize(a.size() + b.size() + c.size()); | |
char *const begin = &*result.begin(); | |
char *out = Append2(begin, a, b); | |
out = Append1(out, c); | |
GOOGLE_DCHECK_EQ(out, begin + result.size()); | |
return result; | |
} | |
std::string StrCat(const AlphaNum &a, const AlphaNum &b, const AlphaNum &c, | |
const AlphaNum &d) { | |
std::string result; | |
result.resize(a.size() + b.size() + c.size() + d.size()); | |
char *const begin = &*result.begin(); | |
char *out = Append4(begin, a, b, c, d); | |
GOOGLE_DCHECK_EQ(out, begin + result.size()); | |
return result; | |
} | |
std::string StrCat(const AlphaNum &a, const AlphaNum &b, const AlphaNum &c, | |
const AlphaNum &d, const AlphaNum &e) { | |
std::string result; | |
result.resize(a.size() + b.size() + c.size() + d.size() + e.size()); | |
char *const begin = &*result.begin(); | |
char *out = Append4(begin, a, b, c, d); | |
out = Append1(out, e); | |
GOOGLE_DCHECK_EQ(out, begin + result.size()); | |
return result; | |
} | |
std::string StrCat(const AlphaNum &a, const AlphaNum &b, const AlphaNum &c, | |
const AlphaNum &d, const AlphaNum &e, const AlphaNum &f) { | |
std::string result; | |
result.resize(a.size() + b.size() + c.size() + d.size() + e.size() + | |
f.size()); | |
char *const begin = &*result.begin(); | |
char *out = Append4(begin, a, b, c, d); | |
out = Append2(out, e, f); | |
GOOGLE_DCHECK_EQ(out, begin + result.size()); | |
return result; | |
} | |
std::string StrCat(const AlphaNum &a, const AlphaNum &b, const AlphaNum &c, | |
const AlphaNum &d, const AlphaNum &e, const AlphaNum &f, | |
const AlphaNum &g) { | |
std::string result; | |
result.resize(a.size() + b.size() + c.size() + d.size() + e.size() + | |
f.size() + g.size()); | |
char *const begin = &*result.begin(); | |
char *out = Append4(begin, a, b, c, d); | |
out = Append2(out, e, f); | |
out = Append1(out, g); | |
GOOGLE_DCHECK_EQ(out, begin + result.size()); | |
return result; | |
} | |
std::string StrCat(const AlphaNum &a, const AlphaNum &b, const AlphaNum &c, | |
const AlphaNum &d, const AlphaNum &e, const AlphaNum &f, | |
const AlphaNum &g, const AlphaNum &h) { | |
std::string result; | |
result.resize(a.size() + b.size() + c.size() + d.size() + e.size() + | |
f.size() + g.size() + h.size()); | |
char *const begin = &*result.begin(); | |
char *out = Append4(begin, a, b, c, d); | |
out = Append4(out, e, f, g, h); | |
GOOGLE_DCHECK_EQ(out, begin + result.size()); | |
return result; | |
} | |
std::string StrCat(const AlphaNum &a, const AlphaNum &b, const AlphaNum &c, | |
const AlphaNum &d, const AlphaNum &e, const AlphaNum &f, | |
const AlphaNum &g, const AlphaNum &h, const AlphaNum &i) { | |
std::string result; | |
result.resize(a.size() + b.size() + c.size() + d.size() + e.size() + | |
f.size() + g.size() + h.size() + i.size()); | |
char *const begin = &*result.begin(); | |
char *out = Append4(begin, a, b, c, d); | |
out = Append4(out, e, f, g, h); | |
out = Append1(out, i); | |
GOOGLE_DCHECK_EQ(out, begin + result.size()); | |
return result; | |
} | |
// It's possible to call StrAppend with a char * pointer that is partway into | |
// the string we're appending to. However the results of this are random. | |
// Therefore, check for this in debug mode. Use unsigned math so we only have | |
// to do one comparison. | |
void StrAppend(std::string *result, const AlphaNum &a) { | |
GOOGLE_DCHECK_NO_OVERLAP(*result, a); | |
result->append(a.data(), a.size()); | |
} | |
void StrAppend(std::string *result, const AlphaNum &a, const AlphaNum &b) { | |
GOOGLE_DCHECK_NO_OVERLAP(*result, a); | |
GOOGLE_DCHECK_NO_OVERLAP(*result, b); | |
std::string::size_type old_size = result->size(); | |
result->resize(old_size + a.size() + b.size()); | |
char *const begin = &*result->begin(); | |
char *out = Append2(begin + old_size, a, b); | |
GOOGLE_DCHECK_EQ(out, begin + result->size()); | |
} | |
void StrAppend(std::string *result, const AlphaNum &a, const AlphaNum &b, | |
const AlphaNum &c) { | |
GOOGLE_DCHECK_NO_OVERLAP(*result, a); | |
GOOGLE_DCHECK_NO_OVERLAP(*result, b); | |
GOOGLE_DCHECK_NO_OVERLAP(*result, c); | |
std::string::size_type old_size = result->size(); | |
result->resize(old_size + a.size() + b.size() + c.size()); | |
char *const begin = &*result->begin(); | |
char *out = Append2(begin + old_size, a, b); | |
out = Append1(out, c); | |
GOOGLE_DCHECK_EQ(out, begin + result->size()); | |
} | |
void StrAppend(std::string *result, const AlphaNum &a, const AlphaNum &b, | |
const AlphaNum &c, const AlphaNum &d) { | |
GOOGLE_DCHECK_NO_OVERLAP(*result, a); | |
GOOGLE_DCHECK_NO_OVERLAP(*result, b); | |
GOOGLE_DCHECK_NO_OVERLAP(*result, c); | |
GOOGLE_DCHECK_NO_OVERLAP(*result, d); | |
std::string::size_type old_size = result->size(); | |
result->resize(old_size + a.size() + b.size() + c.size() + d.size()); | |
char *const begin = &*result->begin(); | |
char *out = Append4(begin + old_size, a, b, c, d); | |
GOOGLE_DCHECK_EQ(out, begin + result->size()); | |
} | |
int GlobalReplaceSubstring(const std::string &substring, | |
const std::string &replacement, std::string *s) { | |
GOOGLE_CHECK(s != nullptr); | |
if (s->empty() || substring.empty()) | |
return 0; | |
std::string tmp; | |
int num_replacements = 0; | |
int pos = 0; | |
for (int match_pos = s->find(substring.data(), pos, substring.length()); | |
match_pos != std::string::npos; pos = match_pos + substring.length(), | |
match_pos = s->find(substring.data(), pos, substring.length())) { | |
++num_replacements; | |
// Append the original content before the match. | |
tmp.append(*s, pos, match_pos - pos); | |
// Append the replacement for the match. | |
tmp.append(replacement.begin(), replacement.end()); | |
} | |
// Append the content after the last match. If no replacements were made, the | |
// original string is left untouched. | |
if (num_replacements > 0) { | |
tmp.append(*s, pos, s->length() - pos); | |
s->swap(tmp); | |
} | |
return num_replacements; | |
} | |
int CalculateBase64EscapedLen(int input_len, bool do_padding) { | |
// Base64 encodes three bytes of input at a time. If the input is not | |
// divisible by three, we pad as appropriate. | |
// | |
// (from http://tools.ietf.org/html/rfc3548) | |
// Special processing is performed if fewer than 24 bits are available | |
// at the end of the data being encoded. A full encoding quantum is | |
// always completed at the end of a quantity. When fewer than 24 input | |
// bits are available in an input group, zero bits are added (on the | |
// right) to form an integral number of 6-bit groups. Padding at the | |
// end of the data is performed using the '=' character. Since all base | |
// 64 input is an integral number of octets, only the following cases | |
// can arise: | |
// Base64 encodes each three bytes of input into four bytes of output. | |
int len = (input_len / 3) * 4; | |
if (input_len % 3 == 0) { | |
// (from http://tools.ietf.org/html/rfc3548) | |
// (1) the final quantum of encoding input is an integral multiple of 24 | |
// bits; here, the final unit of encoded output will be an integral | |
// multiple of 4 characters with no "=" padding, | |
} else if (input_len % 3 == 1) { | |
// (from http://tools.ietf.org/html/rfc3548) | |
// (2) the final quantum of encoding input is exactly 8 bits; here, the | |
// final unit of encoded output will be two characters followed by two | |
// "=" padding characters, or | |
len += 2; | |
if (do_padding) { | |
len += 2; | |
} | |
} else { // (input_len % 3 == 2) | |
// (from http://tools.ietf.org/html/rfc3548) | |
// (3) the final quantum of encoding input is exactly 16 bits; here, the | |
// final unit of encoded output will be three characters followed by one | |
// "=" padding character. | |
len += 3; | |
if (do_padding) { | |
len += 1; | |
} | |
} | |
assert(len >= input_len); // make sure we didn't overflow | |
return len; | |
} | |
// Base64Escape does padding, so this calculation includes padding. | |
int CalculateBase64EscapedLen(int input_len) { | |
return CalculateBase64EscapedLen(input_len, true); | |
} | |
// ---------------------------------------------------------------------- | |
// int Base64Unescape() - base64 decoder | |
// int Base64Escape() - base64 encoder | |
// int WebSafeBase64Unescape() - Google's variation of base64 decoder | |
// int WebSafeBase64Escape() - Google's variation of base64 encoder | |
// | |
// Check out | |
// http://tools.ietf.org/html/rfc2045 for formal description, but what we | |
// care about is that... | |
// Take the encoded stuff in groups of 4 characters and turn each | |
// character into a code 0 to 63 thus: | |
// A-Z map to 0 to 25 | |
// a-z map to 26 to 51 | |
// 0-9 map to 52 to 61 | |
// +(- for WebSafe) maps to 62 | |
// /(_ for WebSafe) maps to 63 | |
// There will be four numbers, all less than 64 which can be represented | |
// by a 6 digit binary number (aaaaaa, bbbbbb, cccccc, dddddd respectively). | |
// Arrange the 6 digit binary numbers into three bytes as such: | |
// aaaaaabb bbbbcccc ccdddddd | |
// Equals signs (one or two) are used at the end of the encoded block to | |
// indicate that the text was not an integer multiple of three bytes long. | |
// ---------------------------------------------------------------------- | |
int Base64UnescapeInternal(const char *src_param, int szsrc, | |
char *dest, int szdest, | |
const signed char* unbase64) { | |
static const char kPad64Equals = '='; | |
static const char kPad64Dot = '.'; | |
int decode = 0; | |
int destidx = 0; | |
int state = 0; | |
unsigned int ch = 0; | |
unsigned int temp = 0; | |
// If "char" is signed by default, using *src as an array index results in | |
// accessing negative array elements. Treat the input as a pointer to | |
// unsigned char to avoid this. | |
const unsigned char *src = reinterpret_cast<const unsigned char*>(src_param); | |
// The GET_INPUT macro gets the next input character, skipping | |
// over any whitespace, and stopping when we reach the end of the | |
// string or when we read any non-data character. The arguments are | |
// an arbitrary identifier (used as a label for goto) and the number | |
// of data bytes that must remain in the input to avoid aborting the | |
// loop. | |
// if dest is null, we're just checking to see if it's legal input | |
// rather than producing output. (I suspect this could just be done | |
// with a regexp...). We duplicate the loop so this test can be | |
// outside it instead of in every iteration. | |
if (dest) { | |
// This loop consumes 4 input bytes and produces 3 output bytes | |
// per iteration. We can't know at the start that there is enough | |
// data left in the string for a full iteration, so the loop may | |
// break out in the middle; if so 'state' will be set to the | |
// number of input bytes read. | |
while (szsrc >= 4) { | |
// We'll start by optimistically assuming that the next four | |
// bytes of the string (src[0..3]) are four good data bytes | |
// (that is, no nulls, whitespace, padding chars, or illegal | |
// chars). We need to test src[0..2] for nulls individually | |
// before constructing temp to preserve the property that we | |
// never read past a null in the string (no matter how long | |
// szsrc claims the string is). | |
if (!src[0] || !src[1] || !src[2] || | |
(temp = ((unsigned(unbase64[src[0]]) << 18) | | |
(unsigned(unbase64[src[1]]) << 12) | | |
(unsigned(unbase64[src[2]]) << 6) | | |
(unsigned(unbase64[src[3]])))) & 0x80000000) { | |
// Iff any of those four characters was bad (null, illegal, | |
// whitespace, padding), then temp's high bit will be set | |
// (because unbase64[] is -1 for all bad characters). | |
// | |
// We'll back up and resort to the slower decoder, which knows | |
// how to handle those cases. | |
GET_INPUT(first, 4); | |
temp = decode; | |
GET_INPUT(second, 3); | |
temp = (temp << 6) | decode; | |
GET_INPUT(third, 2); | |
temp = (temp << 6) | decode; | |
GET_INPUT(fourth, 1); | |
temp = (temp << 6) | decode; | |
} else { | |
// We really did have four good data bytes, so advance four | |
// characters in the string. | |
szsrc -= 4; | |
src += 4; | |
decode = -1; | |
ch = '\0'; | |
} | |
// temp has 24 bits of input, so write that out as three bytes. | |
if (destidx+3 > szdest) return -1; | |
dest[destidx+2] = temp; | |
temp >>= 8; | |
dest[destidx+1] = temp; | |
temp >>= 8; | |
dest[destidx] = temp; | |
destidx += 3; | |
} | |
} else { | |
while (szsrc >= 4) { | |
if (!src[0] || !src[1] || !src[2] || | |
(temp = ((unsigned(unbase64[src[0]]) << 18) | | |
(unsigned(unbase64[src[1]]) << 12) | | |
(unsigned(unbase64[src[2]]) << 6) | | |
(unsigned(unbase64[src[3]])))) & 0x80000000) { | |
GET_INPUT(first_no_dest, 4); | |
GET_INPUT(second_no_dest, 3); | |
GET_INPUT(third_no_dest, 2); | |
GET_INPUT(fourth_no_dest, 1); | |
} else { | |
szsrc -= 4; | |
src += 4; | |
decode = -1; | |
ch = '\0'; | |
} | |
destidx += 3; | |
} | |
} | |
// if the loop terminated because we read a bad character, return | |
// now. | |
if (decode < 0 && ch != '\0' && | |
ch != kPad64Equals && ch != kPad64Dot && !ascii_isspace(ch)) | |
return -1; | |
if (ch == kPad64Equals || ch == kPad64Dot) { | |
// if we stopped by hitting an '=' or '.', un-read that character -- we'll | |
// look at it again when we count to check for the proper number of | |
// equals signs at the end. | |
++szsrc; | |
--src; | |
} else { | |
// This loop consumes 1 input byte per iteration. It's used to | |
// clean up the 0-3 input bytes remaining when the first, faster | |
// loop finishes. 'temp' contains the data from 'state' input | |
// characters read by the first loop. | |
while (szsrc > 0) { | |
--szsrc; | |
ch = *src++; | |
decode = unbase64[ch]; | |
if (decode < 0) { | |
if (ascii_isspace(ch)) { | |
continue; | |
} else if (ch == '\0') { | |
break; | |
} else if (ch == kPad64Equals || ch == kPad64Dot) { | |
// back up one character; we'll read it again when we check | |
// for the correct number of pad characters at the end. | |
++szsrc; | |
--src; | |
break; | |
} else { | |
return -1; | |
} | |
} | |
// Each input character gives us six bits of output. | |
temp = (temp << 6) | decode; | |
++state; | |
if (state == 4) { | |
// If we've accumulated 24 bits of output, write that out as | |
// three bytes. | |
if (dest) { | |
if (destidx+3 > szdest) return -1; | |
dest[destidx+2] = temp; | |
temp >>= 8; | |
dest[destidx+1] = temp; | |
temp >>= 8; | |
dest[destidx] = temp; | |
} | |
destidx += 3; | |
state = 0; | |
temp = 0; | |
} | |
} | |
} | |
// Process the leftover data contained in 'temp' at the end of the input. | |
int expected_equals = 0; | |
switch (state) { | |
case 0: | |
// Nothing left over; output is a multiple of 3 bytes. | |
break; | |
case 1: | |
// Bad input; we have 6 bits left over. | |
return -1; | |
case 2: | |
// Produce one more output byte from the 12 input bits we have left. | |
if (dest) { | |
if (destidx+1 > szdest) return -1; | |
temp >>= 4; | |
dest[destidx] = temp; | |
} | |
++destidx; | |
expected_equals = 2; | |
break; | |
case 3: | |
// Produce two more output bytes from the 18 input bits we have left. | |
if (dest) { | |
if (destidx+2 > szdest) return -1; | |
temp >>= 2; | |
dest[destidx+1] = temp; | |
temp >>= 8; | |
dest[destidx] = temp; | |
} | |
destidx += 2; | |
expected_equals = 1; | |
break; | |
default: | |
// state should have no other values at this point. | |
GOOGLE_LOG(FATAL) << "This can't happen; base64 decoder state = " << state; | |
} | |
// The remainder of the string should be all whitespace, mixed with | |
// exactly 0 equals signs, or exactly 'expected_equals' equals | |
// signs. (Always accepting 0 equals signs is a google extension | |
// not covered in the RFC, as is accepting dot as the pad character.) | |
int equals = 0; | |
while (szsrc > 0 && *src) { | |
if (*src == kPad64Equals || *src == kPad64Dot) | |
++equals; | |
else if (!ascii_isspace(*src)) | |
return -1; | |
--szsrc; | |
++src; | |
} | |
return (equals == 0 || equals == expected_equals) ? destidx : -1; | |
} | |
// The arrays below were generated by the following code | |
// #include <sys/time.h> | |
// #include <stdlib.h> | |
// #include <string.h> | |
// #include <stdio.h> | |
// main() | |
// { | |
// static const char Base64[] = | |
// "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; | |
// const char *pos; | |
// int idx, i, j; | |
// printf(" "); | |
// for (i = 0; i < 255; i += 8) { | |
// for (j = i; j < i + 8; j++) { | |
// pos = strchr(Base64, j); | |
// if ((pos == nullptr) || (j == 0)) | |
// idx = -1; | |
// else | |
// idx = pos - Base64; | |
// if (idx == -1) | |
// printf(" %2d, ", idx); | |
// else | |
// printf(" %2d/""*%c*""/,", idx, j); | |
// } | |
// printf("\n "); | |
// } | |
// } | |
// | |
// where the value of "Base64[]" was replaced by one of the base-64 conversion | |
// tables from the functions below. | |
static const signed char kUnBase64[] = { | |
-1, -1, -1, -1, -1, -1, -1, -1, | |
-1, -1, -1, -1, -1, -1, -1, -1, | |
-1, -1, -1, -1, -1, -1, -1, -1, | |
-1, -1, -1, -1, -1, -1, -1, -1, | |
-1, -1, -1, -1, -1, -1, -1, -1, | |
-1, -1, -1, 62/*+*/, -1, -1, -1, 63/*/ */, | |
52/*0*/, 53/*1*/, 54/*2*/, 55/*3*/, 56/*4*/, 57/*5*/, 58/*6*/, 59/*7*/, | |
60/*8*/, 61/*9*/, -1, -1, -1, -1, -1, -1, | |
-1, 0/*A*/, 1/*B*/, 2/*C*/, 3/*D*/, 4/*E*/, 5/*F*/, 6/*G*/, | |
7/*H*/, 8/*I*/, 9/*J*/, 10/*K*/, 11/*L*/, 12/*M*/, 13/*N*/, 14/*O*/, | |
15/*P*/, 16/*Q*/, 17/*R*/, 18/*S*/, 19/*T*/, 20/*U*/, 21/*V*/, 22/*W*/, | |
23/*X*/, 24/*Y*/, 25/*Z*/, -1, -1, -1, -1, -1, | |
-1, 26/*a*/, 27/*b*/, 28/*c*/, 29/*d*/, 30/*e*/, 31/*f*/, 32/*g*/, | |
33/*h*/, 34/*i*/, 35/*j*/, 36/*k*/, 37/*l*/, 38/*m*/, 39/*n*/, 40/*o*/, | |
41/*p*/, 42/*q*/, 43/*r*/, 44/*s*/, 45/*t*/, 46/*u*/, 47/*v*/, 48/*w*/, | |
49/*x*/, 50/*y*/, 51/*z*/, -1, -1, -1, -1, -1, | |
-1, -1, -1, -1, -1, -1, -1, -1, | |
-1, -1, -1, -1, -1, -1, -1, -1, | |
-1, -1, -1, -1, -1, -1, -1, -1, | |
-1, -1, -1, -1, -1, -1, -1, -1, | |
-1, -1, -1, -1, -1, -1, -1, -1, | |
-1, -1, -1, -1, -1, -1, -1, -1, | |
-1, -1, -1, -1, -1, -1, -1, -1, | |
-1, -1, -1, -1, -1, -1, -1, -1, | |
-1, -1, -1, -1, -1, -1, -1, -1, | |
-1, -1, -1, -1, -1, -1, -1, -1, | |
-1, -1, -1, -1, -1, -1, -1, -1, | |
-1, -1, -1, -1, -1, -1, -1, -1, | |
-1, -1, -1, -1, -1, -1, -1, -1, | |
-1, -1, -1, -1, -1, -1, -1, -1, | |
-1, -1, -1, -1, -1, -1, -1, -1, | |
-1, -1, -1, -1, -1, -1, -1, -1 | |
}; | |
static const signed char kUnWebSafeBase64[] = { | |
-1, -1, -1, -1, -1, -1, -1, -1, | |
-1, -1, -1, -1, -1, -1, -1, -1, | |
-1, -1, -1, -1, -1, -1, -1, -1, | |
-1, -1, -1, -1, -1, -1, -1, -1, | |
-1, -1, -1, -1, -1, -1, -1, -1, | |
-1, -1, -1, -1, -1, 62/*-*/, -1, -1, | |
52/*0*/, 53/*1*/, 54/*2*/, 55/*3*/, 56/*4*/, 57/*5*/, 58/*6*/, 59/*7*/, | |
60/*8*/, 61/*9*/, -1, -1, -1, -1, -1, -1, | |
-1, 0/*A*/, 1/*B*/, 2/*C*/, 3/*D*/, 4/*E*/, 5/*F*/, 6/*G*/, | |
7/*H*/, 8/*I*/, 9/*J*/, 10/*K*/, 11/*L*/, 12/*M*/, 13/*N*/, 14/*O*/, | |
15/*P*/, 16/*Q*/, 17/*R*/, 18/*S*/, 19/*T*/, 20/*U*/, 21/*V*/, 22/*W*/, | |
23/*X*/, 24/*Y*/, 25/*Z*/, -1, -1, -1, -1, 63/*_*/, | |
-1, 26/*a*/, 27/*b*/, 28/*c*/, 29/*d*/, 30/*e*/, 31/*f*/, 32/*g*/, | |
33/*h*/, 34/*i*/, 35/*j*/, 36/*k*/, 37/*l*/, 38/*m*/, 39/*n*/, 40/*o*/, | |
41/*p*/, 42/*q*/, 43/*r*/, 44/*s*/, 45/*t*/, 46/*u*/, 47/*v*/, 48/*w*/, | |
49/*x*/, 50/*y*/, 51/*z*/, -1, -1, -1, -1, -1, | |
-1, -1, -1, -1, -1, -1, -1, -1, | |
-1, -1, -1, -1, -1, -1, -1, -1, | |
-1, -1, -1, -1, -1, -1, -1, -1, | |
-1, -1, -1, -1, -1, -1, -1, -1, | |
-1, -1, -1, -1, -1, -1, -1, -1, | |
-1, -1, -1, -1, -1, -1, -1, -1, | |
-1, -1, -1, -1, -1, -1, -1, -1, | |
-1, -1, -1, -1, -1, -1, -1, -1, | |
-1, -1, -1, -1, -1, -1, -1, -1, | |
-1, -1, -1, -1, -1, -1, -1, -1, | |
-1, -1, -1, -1, -1, -1, -1, -1, | |
-1, -1, -1, -1, -1, -1, -1, -1, | |
-1, -1, -1, -1, -1, -1, -1, -1, | |
-1, -1, -1, -1, -1, -1, -1, -1, | |
-1, -1, -1, -1, -1, -1, -1, -1, | |
-1, -1, -1, -1, -1, -1, -1, -1 | |
}; | |
int WebSafeBase64Unescape(const char *src, int szsrc, char *dest, int szdest) { | |
return Base64UnescapeInternal(src, szsrc, dest, szdest, kUnWebSafeBase64); | |
} | |
static bool Base64UnescapeInternal(const char *src, int slen, std::string *dest, | |
const signed char *unbase64) { | |
// Determine the size of the output string. Base64 encodes every 3 bytes into | |
// 4 characters. any leftover chars are added directly for good measure. | |
// This is documented in the base64 RFC: http://tools.ietf.org/html/rfc3548 | |
const int dest_len = 3 * (slen / 4) + (slen % 4); | |
dest->resize(dest_len); | |
// We are getting the destination buffer by getting the beginning of the | |
// string and converting it into a char *. | |
const int len = Base64UnescapeInternal(src, slen, string_as_array(dest), | |
dest_len, unbase64); | |
if (len < 0) { | |
dest->clear(); | |
return false; | |
} | |
// could be shorter if there was padding | |
GOOGLE_DCHECK_LE(len, dest_len); | |
dest->erase(len); | |
return true; | |
} | |
bool Base64Unescape(StringPiece src, std::string *dest) { | |
return Base64UnescapeInternal(src.data(), src.size(), dest, kUnBase64); | |
} | |
bool WebSafeBase64Unescape(StringPiece src, std::string *dest) { | |
return Base64UnescapeInternal(src.data(), src.size(), dest, kUnWebSafeBase64); | |
} | |
int Base64EscapeInternal(const unsigned char *src, int szsrc, | |
char *dest, int szdest, const char *base64, | |
bool do_padding) { | |
static const char kPad64 = '='; | |
if (szsrc <= 0) return 0; | |
if (szsrc * 4 > szdest * 3) return 0; | |
char *cur_dest = dest; | |
const unsigned char *cur_src = src; | |
char *limit_dest = dest + szdest; | |
const unsigned char *limit_src = src + szsrc; | |
// Three bytes of data encodes to four characters of cyphertext. | |
// So we can pump through three-byte chunks atomically. | |
while (cur_src < limit_src - 3) { // keep going as long as we have >= 32 bits | |
uint32 in = BigEndian::Load32(cur_src) >> 8; | |
cur_dest[0] = base64[in >> 18]; | |
in &= 0x3FFFF; | |
cur_dest[1] = base64[in >> 12]; | |
in &= 0xFFF; | |
cur_dest[2] = base64[in >> 6]; | |
in &= 0x3F; | |
cur_dest[3] = base64[in]; | |
cur_dest += 4; | |
cur_src += 3; | |
} | |
// To save time, we didn't update szdest or szsrc in the loop. So do it now. | |
szdest = limit_dest - cur_dest; | |
szsrc = limit_src - cur_src; | |
/* now deal with the tail (<=3 bytes) */ | |
switch (szsrc) { | |
case 0: | |
// Nothing left; nothing more to do. | |
break; | |
case 1: { | |
// One byte left: this encodes to two characters, and (optionally) | |
// two pad characters to round out the four-character cypherblock. | |
if ((szdest -= 2) < 0) return 0; | |
uint32 in = cur_src[0]; | |
cur_dest[0] = base64[in >> 2]; | |
in &= 0x3; | |
cur_dest[1] = base64[in << 4]; | |
cur_dest += 2; | |
if (do_padding) { | |
if ((szdest -= 2) < 0) return 0; | |
cur_dest[0] = kPad64; | |
cur_dest[1] = kPad64; | |
cur_dest += 2; | |
} | |
break; | |
} | |
case 2: { | |
// Two bytes left: this encodes to three characters, and (optionally) | |
// one pad character to round out the four-character cypherblock. | |
if ((szdest -= 3) < 0) return 0; | |
uint32 in = BigEndian::Load16(cur_src); | |
cur_dest[0] = base64[in >> 10]; | |
in &= 0x3FF; | |
cur_dest[1] = base64[in >> 4]; | |
in &= 0x00F; | |
cur_dest[2] = base64[in << 2]; | |
cur_dest += 3; | |
if (do_padding) { | |
if ((szdest -= 1) < 0) return 0; | |
cur_dest[0] = kPad64; | |
cur_dest += 1; | |
} | |
break; | |
} | |
case 3: { | |
// Three bytes left: same as in the big loop above. We can't do this in | |
// the loop because the loop above always reads 4 bytes, and the fourth | |
// byte is past the end of the input. | |
if ((szdest -= 4) < 0) return 0; | |
uint32 in = (cur_src[0] << 16) + BigEndian::Load16(cur_src + 1); | |
cur_dest[0] = base64[in >> 18]; | |
in &= 0x3FFFF; | |
cur_dest[1] = base64[in >> 12]; | |
in &= 0xFFF; | |
cur_dest[2] = base64[in >> 6]; | |
in &= 0x3F; | |
cur_dest[3] = base64[in]; | |
cur_dest += 4; | |
break; | |
} | |
default: | |
// Should not be reached: blocks of 4 bytes are handled | |
// in the while loop before this switch statement. | |
GOOGLE_LOG(FATAL) << "Logic problem? szsrc = " << szsrc; | |
break; | |
} | |
return (cur_dest - dest); | |
} | |
static const char kBase64Chars[] = | |
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; | |
static const char kWebSafeBase64Chars[] = | |
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_"; | |
int Base64Escape(const unsigned char *src, int szsrc, char *dest, int szdest) { | |
return Base64EscapeInternal(src, szsrc, dest, szdest, kBase64Chars, true); | |
} | |
int WebSafeBase64Escape(const unsigned char *src, int szsrc, char *dest, | |
int szdest, bool do_padding) { | |
return Base64EscapeInternal(src, szsrc, dest, szdest, | |
kWebSafeBase64Chars, do_padding); | |
} | |
void Base64EscapeInternal(const unsigned char *src, int szsrc, | |
std::string *dest, bool do_padding, | |
const char *base64_chars) { | |
const int calc_escaped_size = | |
CalculateBase64EscapedLen(szsrc, do_padding); | |
dest->resize(calc_escaped_size); | |
const int escaped_len = Base64EscapeInternal(src, szsrc, | |
string_as_array(dest), | |
dest->size(), | |
base64_chars, | |
do_padding); | |
GOOGLE_DCHECK_EQ(calc_escaped_size, escaped_len); | |
dest->erase(escaped_len); | |
} | |
void Base64Escape(const unsigned char *src, int szsrc, std::string *dest, | |
bool do_padding) { | |
Base64EscapeInternal(src, szsrc, dest, do_padding, kBase64Chars); | |
} | |
void WebSafeBase64Escape(const unsigned char *src, int szsrc, std::string *dest, | |
bool do_padding) { | |
Base64EscapeInternal(src, szsrc, dest, do_padding, kWebSafeBase64Chars); | |
} | |
void Base64Escape(StringPiece src, std::string *dest) { | |
Base64Escape(reinterpret_cast<const unsigned char*>(src.data()), | |
src.size(), dest, true); | |
} | |
void WebSafeBase64Escape(StringPiece src, std::string *dest) { | |
WebSafeBase64Escape(reinterpret_cast<const unsigned char*>(src.data()), | |
src.size(), dest, false); | |
} | |
void WebSafeBase64EscapeWithPadding(StringPiece src, std::string *dest) { | |
WebSafeBase64Escape(reinterpret_cast<const unsigned char*>(src.data()), | |
src.size(), dest, true); | |
} | |
// Helper to append a Unicode code point to a string as UTF8, without bringing | |
// in any external dependencies. | |
int EncodeAsUTF8Char(uint32 code_point, char* output) { | |
uint32 tmp = 0; | |
int len = 0; | |
if (code_point <= 0x7f) { | |
tmp = code_point; | |
len = 1; | |
} else if (code_point <= 0x07ff) { | |
tmp = 0x0000c080 | | |
((code_point & 0x07c0) << 2) | | |
(code_point & 0x003f); | |
len = 2; | |
} else if (code_point <= 0xffff) { | |
tmp = 0x00e08080 | | |
((code_point & 0xf000) << 4) | | |
((code_point & 0x0fc0) << 2) | | |
(code_point & 0x003f); | |
len = 3; | |
} else { | |
// UTF-16 is only defined for code points up to 0x10FFFF, and UTF-8 is | |
// normally only defined up to there as well. | |
tmp = 0xf0808080 | | |
((code_point & 0x1c0000) << 6) | | |
((code_point & 0x03f000) << 4) | | |
((code_point & 0x000fc0) << 2) | | |
(code_point & 0x003f); | |
len = 4; | |
} | |
tmp = ghtonl(tmp); | |
memcpy(output, reinterpret_cast<const char*>(&tmp) + sizeof(tmp) - len, len); | |
return len; | |
} | |
// Table of UTF-8 character lengths, based on first byte | |
static const unsigned char kUTF8LenTbl[256] = { | |
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, | |
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, | |
2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, | |
3, 3, 4, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}; | |
// Return length of a single UTF-8 source character | |
int UTF8FirstLetterNumBytes(const char* src, int len) { | |
if (len == 0) { | |
return 0; | |
} | |
return kUTF8LenTbl[*reinterpret_cast<const uint8*>(src)]; | |
} | |
// ---------------------------------------------------------------------- | |
// CleanStringLineEndings() | |
// Clean up a multi-line string to conform to Unix line endings. | |
// Reads from src and appends to dst, so usually dst should be empty. | |
// | |
// If there is no line ending at the end of a non-empty string, it can | |
// be added automatically. | |
// | |
// Four different types of input are correctly handled: | |
// | |
// - Unix/Linux files: line ending is LF: pass through unchanged | |
// | |
// - DOS/Windows files: line ending is CRLF: convert to LF | |
// | |
// - Legacy Mac files: line ending is CR: convert to LF | |
// | |
// - Garbled files: random line endings: convert gracefully | |
// lonely CR, lonely LF, CRLF: convert to LF | |
// | |
// @param src The multi-line string to convert | |
// @param dst The converted string is appended to this string | |
// @param auto_end_last_line Automatically terminate the last line | |
// | |
// Limitations: | |
// | |
// This does not do the right thing for CRCRLF files created by | |
// broken programs that do another Unix->DOS conversion on files | |
// that are already in CRLF format. For this, a two-pass approach | |
// brute-force would be needed that | |
// | |
// (1) determines the presence of LF (first one is ok) | |
// (2) if yes, removes any CR, else convert every CR to LF | |
void CleanStringLineEndings(const std::string &src, std::string *dst, | |
bool auto_end_last_line) { | |
if (dst->empty()) { | |
dst->append(src); | |
CleanStringLineEndings(dst, auto_end_last_line); | |
} else { | |
std::string tmp = src; | |
CleanStringLineEndings(&tmp, auto_end_last_line); | |
dst->append(tmp); | |
} | |
} | |
void CleanStringLineEndings(std::string *str, bool auto_end_last_line) { | |
ptrdiff_t output_pos = 0; | |
bool r_seen = false; | |
ptrdiff_t len = str->size(); | |
char *p = &(*str)[0]; | |
for (ptrdiff_t input_pos = 0; input_pos < len;) { | |
if (!r_seen && input_pos + 8 < len) { | |
uint64_t v = GOOGLE_UNALIGNED_LOAD64(p + input_pos); | |
// Loop over groups of 8 bytes at a time until we come across | |
// a word that has a byte whose value is less than or equal to | |
// '\r' (i.e. could contain a \n (0x0a) or a \r (0x0d) ). | |
// | |
// We use a has_less macro that quickly tests a whole 64-bit | |
// word to see if any of the bytes has a value < N. | |
// | |
// For more details, see: | |
// http://graphics.stanford.edu/~seander/bithacks.html#HasLessInWord | |
if (!has_less(v, '\r' + 1)) { | |
// No byte in this word has a value that could be a \r or a \n | |
if (output_pos != input_pos) { | |
GOOGLE_UNALIGNED_STORE64(p + output_pos, v); | |
} | |
input_pos += 8; | |
output_pos += 8; | |
continue; | |
} | |
} | |
std::string::const_reference in = p[input_pos]; | |
if (in == '\r') { | |
if (r_seen) p[output_pos++] = '\n'; | |
r_seen = true; | |
} else if (in == '\n') { | |
if (input_pos != output_pos) | |
p[output_pos++] = '\n'; | |
else | |
output_pos++; | |
r_seen = false; | |
} else { | |
if (r_seen) p[output_pos++] = '\n'; | |
r_seen = false; | |
if (input_pos != output_pos) | |
p[output_pos++] = in; | |
else | |
output_pos++; | |
} | |
input_pos++; | |
} | |
if (r_seen || | |
(auto_end_last_line && output_pos > 0 && p[output_pos - 1] != '\n')) { | |
str->resize(output_pos + 1); | |
str->operator[](output_pos) = '\n'; | |
} else if (output_pos < len) { | |
str->resize(output_pos); | |
} | |
} | |
namespace internal { | |
// ---------------------------------------------------------------------- | |
// NoLocaleStrtod() | |
// This code will make you cry. | |
// ---------------------------------------------------------------------- | |
namespace { | |
// Returns a string identical to *input except that the character pointed to | |
// by radix_pos (which should be '.') is replaced with the locale-specific | |
// radix character. | |
std::string LocalizeRadix(const char *input, const char *radix_pos) { | |
// Determine the locale-specific radix character by calling sprintf() to | |
// print the number 1.5, then stripping off the digits. As far as I can | |
// tell, this is the only portable, thread-safe way to get the C library | |
// to divuldge the locale's radix character. No, localeconv() is NOT | |
// thread-safe. | |
char temp[16]; | |
int size = snprintf(temp, sizeof(temp), "%.1f", 1.5); | |
GOOGLE_CHECK_EQ(temp[0], '1'); | |
GOOGLE_CHECK_EQ(temp[size - 1], '5'); | |
GOOGLE_CHECK_LE(size, 6); | |
// Now replace the '.' in the input with it. | |
std::string result; | |
result.reserve(strlen(input) + size - 3); | |
result.append(input, radix_pos); | |
result.append(temp + 1, size - 2); | |
result.append(radix_pos + 1); | |
return result; | |
} | |
} // namespace | |
double NoLocaleStrtod(const char *str, char **endptr) { | |
// We cannot simply set the locale to "C" temporarily with setlocale() | |
// as this is not thread-safe. Instead, we try to parse in the current | |
// locale first. If parsing stops at a '.' character, then this is a | |
// pretty good hint that we're actually in some other locale in which | |
// '.' is not the radix character. | |
char *temp_endptr; | |
double result = strtod(str, &temp_endptr); | |
if (endptr != NULL) *endptr = temp_endptr; | |
if (*temp_endptr != '.') return result; | |
// Parsing halted on a '.'. Perhaps we're in a different locale? Let's | |
// try to replace the '.' with a locale-specific radix character and | |
// try again. | |
std::string localized = LocalizeRadix(str, temp_endptr); | |
const char *localized_cstr = localized.c_str(); | |
char *localized_endptr; | |
result = strtod(localized_cstr, &localized_endptr); | |
if ((localized_endptr - localized_cstr) > (temp_endptr - str)) { | |
// This attempt got further, so replacing the decimal must have helped. | |
// Update endptr to point at the right location. | |
if (endptr != NULL) { | |
// size_diff is non-zero if the localized radix has multiple bytes. | |
int size_diff = localized.size() - strlen(str); | |
// const_cast is necessary to match the strtod() interface. | |
*endptr = const_cast<char *>( | |
str + (localized_endptr - localized_cstr - size_diff)); | |
} | |
} | |
return result; | |
} | |
} // namespace internal | |
} // namespace protobuf | |
} // namespace google | |