File size: 8,325 Bytes
504c7e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
# Copyright (C) 2025 NVIDIA Corporation.  All rights reserved.
#
# This work is licensed under the LICENSE file
# located at the root directory.

import cv2
import numpy as np
from PIL import Image, ImageDraw
import torch
import matplotlib.pyplot as plt
from skimage import filters
from IPython.display import display

def gaussian_blur(heatmap, kernel_size=7):
    # Shape of heatmap: (H, W)
    heatmap = heatmap.cpu().numpy()
    heatmap = cv2.GaussianBlur(heatmap, (kernel_size, kernel_size), 0)
    heatmap = torch.tensor(heatmap)
    
    return heatmap

def show_cam_on_image(img, mask):
        heatmap = cv2.applyColorMap(np.uint8(255 * mask), cv2.COLORMAP_JET)
        heatmap = np.float32(heatmap) / 255
        cam = heatmap + np.float32(img)
        cam = cam / np.max(cam)
        return cam

def show_image_and_heatmap(heatmap: torch.Tensor, image: Image.Image, relevnace_res: int = 256, interpolation: str = 'bilinear', gassussian_kernel_size: int = 3):
    image = image.resize((relevnace_res, relevnace_res))
    image = np.array(image)
    image = (image - image.min()) / (image.max() - image.min())

    # Apply gaussian blur to heatmap
    # heatmap = gaussian_blur(heatmap, kernel_size=gassussian_kernel_size)

    # heatmap = (heatmap - heatmap.min()) / (heatmap.max() - heatmap.min())
    # otsu_thr = filters.threshold_otsu(heatmap.cpu().numpy())
    # heatmap = (heatmap > otsu_thr).to(heatmap.dtype)

    heatmap = heatmap.reshape(1, 1, heatmap.shape[-1], heatmap.shape[-1])
    heatmap = torch.nn.functional.interpolate(heatmap, size=relevnace_res, mode=interpolation)
    heatmap = (heatmap - heatmap.min()) / (heatmap.max() - heatmap.min())
    heatmap = heatmap.reshape(relevnace_res, relevnace_res).cpu()

    vis = show_cam_on_image(image, heatmap)
    vis = np.uint8(255 * vis)
    vis = cv2.cvtColor(np.array(vis), cv2.COLOR_RGB2BGR)

    vis = vis.astype(np.uint8)
    vis = Image.fromarray(vis).resize((relevnace_res, relevnace_res))

    return vis

def show_only_heatmap(heatmap: torch.Tensor, relevnace_res: int = 256, interpolation: str = 'bilinear', gassussian_kernel_size: int = 3):
    # Apply gaussian blur to heatmap
    # heatmap = gaussian_blur(heatmap, kernel_size=gassussian_kernel_size)

    heatmap = heatmap.reshape(1, 1, heatmap.shape[-1], heatmap.shape[-1])
    heatmap = torch.nn.functional.interpolate(heatmap, size=relevnace_res, mode=interpolation)
    heatmap = (heatmap - heatmap.min()) / (heatmap.max() - heatmap.min())
    heatmap = heatmap.reshape(relevnace_res, relevnace_res).cpu()

    vis = heatmap
    vis = np.uint8(255 * vis)

    # Show in black and white
    vis = cv2.cvtColor(np.array(vis), cv2.COLOR_GRAY2BGR)

    vis = Image.fromarray(vis).resize((relevnace_res, relevnace_res))

    return vis

def visualize_tokens_attentions(attention, tokens, image, heatmap_interpolation="nearest", show_on_image=True):
    # Tokens: list of strings
    # attention: tensor of shape (batch_size, num_tokens, width, height)
    token_vis = []
    for j, token in enumerate(tokens):
        if j >= attention.shape[0]:
            break
        
        if show_on_image:
            vis = show_image_and_heatmap(attention[j], image, relevnace_res=512, interpolation=heatmap_interpolation)
        else:
            vis = show_only_heatmap(attention[j], relevnace_res=512, interpolation=heatmap_interpolation)
            
        token_vis.append((token, vis))

    # Display the token and the attention map in a grid, with K tokens per row
    K = 4
    n_rows = (len(token_vis) + K - 1) // K  # Ceiling division
    fig, axs = plt.subplots(n_rows, K, figsize=(K*5, n_rows*5))

    for i, (token, vis) in enumerate(token_vis):
        row, col = divmod(i, K)
        if n_rows > 1:
            ax = axs[row, col]
        elif K > 1:
            ax = axs[col]
        else:
            ax = axs

        ax.imshow(vis)
        ax.set_title(token)
        ax.axis("off")

    # Hide unused subplots
    for j in range(i + 1, n_rows * K):
        row, col = divmod(j, K)
        if n_rows > 1:
            axs[row, col].axis('off')
        elif K > 1:
            axs[col].axis('off')

    plt.tight_layout()

    # We want to return the figure so that we can save it to a file
    return fig

def show_images(images, titles=None, size=1024, max_row_length=5, figsize=None, col_height=10, save_path=None):
    if isinstance(images, Image.Image):
        images = [images]

    if len(images) == 1:
        img = images[0]
        img = img.resize((size, size))
        plt.imshow(img)
        plt.axis('off')

        if titles is not None:
            plt.title(titles[0])
            
        if save_path:
            plt.savefig(save_path, bbox_inches='tight', dpi=150)
        
        plt.show()
    else:
        images = [img.resize((size, size)) for img in images]

        # Check if the number of titles matches the number of images
        if titles is not None:
            assert len(images) == len(titles), "Number of titles should match the number of images"

        n_images = len(images)
        n_cols = min(n_images, max_row_length)
        n_rows = (n_images + n_cols - 1) // n_cols  # Calculate the number of rows needed

        if figsize is None:
            figsize=(n_cols * col_height, n_rows * col_height)

        fig, axs = plt.subplots(n_rows, n_cols, figsize=figsize)
        axs = axs.flatten() if isinstance(axs, np.ndarray) else [axs]

        # Display images in the subplots
        for i, img in enumerate(images):
            axs[i].imshow(img)
            if titles is not None:
                axs[i].set_title(titles[i])
            axs[i].axis("off")

        # Turn off any unused subplots
        for ax in axs[len(images):]:
            ax.axis("off")

        if save_path:
            plt.savefig(save_path, bbox_inches='tight', dpi=150)
        
        plt.show()

def show_tensors(tensors, titles=None, size=None, max_row_length=5):
    # Shape of tensors: List[Tensor[H, W]]
    if size is not None:
        tensors = [torch.nn.functional.interpolate(t.unsqueeze(0).unsqueeze(0), size=(size, size), mode='bilinear').squeeze() for t in tensors]

    if len(tensors) == 1:
        plt.imshow(tensors[0].cpu().numpy())
        plt.axis('off')

        if titles is not None:
            plt.title(titles[0])
            
        plt.show()
    else:
        # Check if the number of titles matches the number of images
        if titles is not None:
            assert len(tensors) == len(titles), "Number of titles should match the number of images"

        n_tensors = len(tensors)
        n_cols = min(n_tensors, max_row_length)
        n_rows = (n_tensors + n_cols - 1) // n_cols

        fig, axs = plt.subplots(n_rows, n_cols, figsize=(n_cols * 10, n_rows * 10))
        axs = axs.flatten() if isinstance(axs, np.ndarray) else [axs]

        for i, tensor in enumerate(tensors):
            axs[i].imshow(tensor.cpu().numpy())
            if titles is not None:
                axs[i].set_title(titles[i])
            axs[i].axis("off")

        for ax in axs[len(tensors):]:
            ax.axis("off")
        
        plt.show()

def draw_bboxes_on_image(image, bboxes, color="red", thickness=2):
    image = image.copy()
    draw = ImageDraw.Draw(image)
    for bbox in bboxes:
        draw.rectangle(bbox, outline=color, width=thickness)
    return image

def draw_points_on_pil_image(pil_image, point_coords, point_color="red", radius=5):
    """
    Draw points (circles) on a PIL image and return the modified image.

    :param pil_image:      PIL Image (e.g., sam_masked_image)
    :param point_coords:   An array-like of shape (N, 2), with x,y coordinates
    :param point_color:    Color of the point (default 'red')
    :param radius:         Radius of the drawn circles
    :return:               PIL Image with points drawn
    """
    # Copy so we don't modify the original
    out_img = pil_image.copy()
    draw = ImageDraw.Draw(out_img)
    
    # Draw each point
    for x, y in point_coords:
        # Calculate bounding box of the circle
        left_up_point = (x - radius, y - radius)
        right_down_point = (x + radius, y + radius)
        # Draw the circle
        draw.ellipse([left_up_point, right_down_point], fill=point_color, outline=point_color)
    
    return out_img