File size: 19,331 Bytes
504c7e8
 
 
 
 
 
 
 
 
 
 
 
 
 
528aaee
504c7e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
528aaee
 
 
 
 
 
 
 
 
 
504c7e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
528aaee
 
 
 
 
 
 
 
 
 
 
 
504c7e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b756b2
 
504c7e8
 
 
 
 
 
 
 
 
6b756b2
 
504c7e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b9bac1
504c7e8
6b756b2
504c7e8
 
 
 
 
 
 
 
 
 
 
528aaee
504c7e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b756b2
 
504c7e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
#!/usr/bin/env python3
# Copyright (C) 2025 NVIDIA Corporation.  All rights reserved.
#
# This work is licensed under the LICENSE file
# located at the root directory.

import os
import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import tempfile
import gc
from datetime import datetime

from addit_flux_pipeline import AdditFluxPipeline
from addit_flux_transformer import AdditFluxTransformer2DModel
from addit_scheduler import AdditFlowMatchEulerDiscreteScheduler
from addit_methods import add_object_generated, add_object_real

# Global variables for model
pipe = None
device = None

# Initialize model at startup
print("Initializing ADDIT model...")
try:
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print(f"Using device: {device}")
    
    # Load transformer
    my_transformer = AdditFluxTransformer2DModel.from_pretrained(
        "black-forest-labs/FLUX.1-dev", 
        subfolder="transformer", 
        torch_dtype=torch.bfloat16
    )
    
    # Load pipeline
    pipe = AdditFluxPipeline.from_pretrained(
        "black-forest-labs/FLUX.1-dev", 
        transformer=my_transformer,
        torch_dtype=torch.bfloat16
    ).to(device)
    
    # Set scheduler
    pipe.scheduler = AdditFlowMatchEulerDiscreteScheduler.from_config(pipe.scheduler.config)
    
    print("Model initialized successfully!")
    
except Exception as e:
    print(f"Error initializing model: {str(e)}")
    print("The application will start but model functionality will be unavailable.")

def validate_inputs(prompt_source, prompt_target, subject_token):
    """Validate user inputs"""
    if not prompt_source.strip():
        return "Source prompt cannot be empty"
    if not prompt_target.strip():
        return "Target prompt cannot be empty"
    if not subject_token.strip():
        return "Subject token cannot be empty"
    if subject_token not in prompt_target:
        return f"Subject token '{subject_token}' must appear in the target prompt"
    return None

@spaces.GPU
def process_generated_image(
    prompt_source,
    prompt_target,
    subject_token,
    seed_src,
    seed_obj,
    extended_scale,
    structure_transfer_step,
    blend_steps,
    localization_model,
    progress=gr.Progress(track_tqdm=True)
):
    """Process generated image with ADDIT"""
    global pipe
    
    if pipe is None:
        return None, None, "Model not initialized. Please restart the application."
    
    # Validate inputs
    error_msg = validate_inputs(prompt_source, prompt_target, subject_token)
    if error_msg:
        return None, None, error_msg
    
    # Print current time and input information
    current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    print(f"\n[{current_time}] Starting Generated Image Processing")
    print(f"Source Prompt: '{prompt_source}'")
    print(f"Target Prompt: '{prompt_target}'")
    print(f"Subject Token: '{subject_token}'")
    print(f"Source Seed: {seed_src}, Object Seed: {seed_obj}")
    print(f"Extended Scale: {extended_scale}, Structure Transfer Step: {structure_transfer_step}")
    print(f"Blend Steps: '{blend_steps}', Localization Model: '{localization_model}'")
    
    try:
        # Parse blend steps
        if blend_steps.strip():
            blend_steps_list = [int(x.strip()) for x in blend_steps.split(',') if x.strip()]
        else:
            blend_steps_list = []
        
        # Generate images
        src_image, edited_image = add_object_generated(
            pipe=pipe,
            prompt_source=prompt_source,
            prompt_object=prompt_target,
            subject_token=subject_token,
            seed_src=seed_src,
            seed_obj=seed_obj,
            show_attention=False,
            extended_scale=extended_scale,
            structure_transfer_step=structure_transfer_step,
            blend_steps=blend_steps_list,
            localization_model=localization_model,
            display_output=False
        )
        
        return src_image, edited_image, "Images generated successfully!"
        
    except Exception as e:
        error_msg = f"Error generating images: {str(e)}"
        print(error_msg)
        return None, None, error_msg

@spaces.GPU
def process_real_image(
    source_image,
    prompt_source,
    prompt_target,
    subject_token,
    seed_src,
    seed_obj,
    extended_scale,
    structure_transfer_step,
    blend_steps,
    localization_model,
    use_offset,
    disable_inversion,
    progress=gr.Progress(track_tqdm=True)
):
    """Process real image with ADDIT"""
    global pipe
    
    if pipe is None:
        return None, None, "Model not initialized. Please restart the application."
    
    if source_image is None:
        return None, None, "Please upload a source image"
    
    # Validate inputs
    error_msg = validate_inputs(prompt_source, prompt_target, subject_token)
    if error_msg:
        return None, None, error_msg
    
    # Print current time and input information
    current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    print(f"\n[{current_time}] Starting Real Image Processing")
    print(f"Source Image Size: {source_image.size}")
    print(f"Source Prompt: '{prompt_source}'")
    print(f"Target Prompt: '{prompt_target}'")
    print(f"Subject Token: '{subject_token}'")
    print(f"Source Seed: {seed_src}, Object Seed: {seed_obj}")
    print(f"Extended Scale: {extended_scale}, Structure Transfer Step: {structure_transfer_step}")
    print(f"Blend Steps: '{blend_steps}', Localization Model: '{localization_model}'")
    print(f"Use Offset: {use_offset}, Disable Inversion: {disable_inversion}")
    
    try:
        # Resize source image
        source_image = source_image.resize((1024, 1024))
        
        # Parse blend steps
        if blend_steps.strip():
            blend_steps_list = [int(x.strip()) for x in blend_steps.split(',') if x.strip()]
        else:
            blend_steps_list = []
        
        # Process image
        src_image, edited_image = add_object_real(
            pipe=pipe,
            source_image=source_image,
            prompt_source=prompt_source,
            prompt_object=prompt_target,
            subject_token=subject_token,
            seed_src=seed_src,
            seed_obj=seed_obj,
            extended_scale=extended_scale,
            structure_transfer_step=structure_transfer_step,
            blend_steps=blend_steps_list,
            localization_model=localization_model,
            use_offset=use_offset,
            show_attention=False,
            use_inversion=not disable_inversion,
            display_output=False
        )
        
        return src_image, edited_image, "Image edited successfully!"
        
    except Exception as e:
        error_msg = f"Error processing image: {str(e)}"
        print(error_msg)
        return None, None, error_msg

def create_interface():
    """Create the Gradio interface"""
    
    # Show model status in the interface
    model_status = "Model ready!" if pipe is not None else "Model initialization failed - functionality unavailable"
    
    with gr.Blocks(title="🎨 Add-it: Training-Free Object Insertion in Images With Pretrained Diffusion Models", theme=gr.themes.Soft()) as demo:
        gr.HTML(f"""
        <div style="text-align: center; margin-bottom: 20px;">
            <h1>🎨 Add-it: Training-Free Object Insertion</h1>
            <p>Add objects to images using pretrained diffusion models</p>
            <p><a href="https://research.nvidia.com/labs/par/addit/" target="_blank">🌐 Project Website</a> | 
               <a href="https://arxiv.org/abs/2411.07232" target="_blank">📄 Paper</a> | 
               <a href="https://github.com/NVlabs/addit" target="_blank">💻 Code</a></p>
            <p style="color: {'green' if pipe is not None else 'red'}; font-weight: bold;">Status: {model_status}</p>
        </div>
        """)
        
        # Main interface
        with gr.Tabs():
            # Generated Images Tab
            with gr.TabItem("🎭 Generated Images"):
                gr.Markdown("### Generate a base image and add objects to it")
                
                with gr.Row():
                    with gr.Column(scale=1):
                        gen_prompt_source = gr.Textbox(
                            label="Source Prompt",
                            placeholder="A photo of a cat sitting on the couch",
                            value="A photo of a cat sitting on the couch"
                        )
                        gen_prompt_target = gr.Textbox(
                            label="Target Prompt",
                            placeholder="A photo of a cat wearing a blue hat sitting on the couch",
                            value="A photo of a cat wearing a blue hat sitting on the couch"
                        )
                        gen_subject_token = gr.Textbox(
                            label="Subject Token",
                            placeholder="hat",
                            value="hat",
                            info="Single token representing the object to add **(must appear in target prompt)**"
                        )
                        
                        with gr.Accordion("Advanced Settings", open=False):
                            gen_seed_src = gr.Number(label="Source Seed", value=1, precision=0)
                            gen_seed_obj = gr.Number(label="Object Seed", value=42, precision=0)
                            gen_extended_scale = gr.Slider(
                                label="Extended Scale", 
                                minimum=1.0, 
                                maximum=1.3, 
                                value=1.05, 
                                step=0.01
                            )
                            gen_structure_transfer_step = gr.Slider(
                                label="Structure Transfer Step", 
                                minimum=0, 
                                maximum=10, 
                                value=2, 
                                step=1
                            )
                            gen_blend_steps = gr.Textbox(
                                label="Blend Steps", 
                                value="15", 
                                info="Comma-separated list of steps (e.g., '15,20') or empty for no blending"
                            )
                            gen_localization_model = gr.Dropdown(
                                label="Localization Model",
                                choices=[
                                    "attention_points_sam",
                                    "attention",
                                    "attention_box_sam",
                                    "attention_mask_sam",
                                    "grounding_sam"
                                ],
                                value="attention_points_sam"
                            )
                        
                        gen_submit_btn = gr.Button("🎨 Generate & Edit", variant="primary")
                    
                    with gr.Column(scale=2):
                        with gr.Row():
                            gen_src_output = gr.Image(label="Generated Source Image", type="pil")
                            gen_edited_output = gr.Image(label="Edited Image", type="pil")
                        gen_status = gr.Textbox(label="Status", interactive=False)
                
                gen_submit_btn.click(
                    fn=process_generated_image,
                    inputs=[
                        gen_prompt_source, gen_prompt_target, gen_subject_token,
                        gen_seed_src, gen_seed_obj, gen_extended_scale,
                        gen_structure_transfer_step, gen_blend_steps,
                        gen_localization_model
                    ],
                    outputs=[gen_src_output, gen_edited_output, gen_status]
                )
                
                # Examples for generated images
                gr.Examples(
                    examples=[
                        ["An empty throne", "A king sitting on a throne", "king"],
                        ["A photo of a man sitting on a bench", "A photo of a man sitting on a bench with a dog", "dog"],
                        ["A photo of a cat sitting on the couch", "A photo of a cat wearing a blue hat sitting on the couch", "hat"],
                        ["A car driving through an empty street", "A pink car driving through an empty street", "car"]
                    ],
                    inputs=[
                        gen_prompt_source, gen_prompt_target, gen_subject_token
                    ],
                    label="Example Prompts"
                )
            
            # Real Images Tab
            with gr.TabItem("📸 Real Images"):
                gr.Markdown("### Upload an image and add objects to it")
                gr.HTML("<p style='color: red; font-weight: bold; margin: -15px -10px;'>Note: Images will be resized to 1024x1024 pixels. For best results, use square images.</p>")
                
                with gr.Row():
                    with gr.Column(scale=1):
                        real_source_image = gr.Image(label="Source Image", type="pil")
                        real_prompt_source = gr.Textbox(
                            label="Source Prompt",
                            placeholder="A photo of a bed in a dark room",
                            value="A photo of a bed in a dark room"
                        )
                        real_prompt_target = gr.Textbox(
                            label="Target Prompt",
                            placeholder="A photo of a dog lying on a bed in a dark room",
                            value="A photo of a dog lying on a bed in a dark room"
                        )
                        real_subject_token = gr.Textbox(
                            label="Subject Token",
                            placeholder="dog",
                            value="dog",
                            info="Single token representing the object to add **(must appear in target prompt)**"
                        )
                        
                        with gr.Accordion("Advanced Settings", open=False):
                            real_seed_src = gr.Number(label="Source Seed", value=1, precision=0)
                            real_seed_obj = gr.Number(label="Object Seed", value=0, precision=0)
                            real_extended_scale = gr.Slider(
                                label="Extended Scale", 
                                minimum=1.0, 
                                maximum=1.3, 
                                value=1.1, 
                                step=0.01
                            )
                            real_structure_transfer_step = gr.Slider(
                                label="Structure Transfer Step", 
                                minimum=0, 
                                maximum=10, 
                                value=4, 
                                step=1
                            )
                            real_blend_steps = gr.Textbox(
                                label="Blend Steps", 
                                value="18", 
                                info="Comma-separated list of steps (e.g., '15,20') or empty for no blending"
                            )
                            real_localization_model = gr.Dropdown(
                                label="Localization Model",
                                choices=[
                                    "attention",
                                    "attention_points_sam",
                                    "attention_box_sam",
                                    "attention_mask_sam",
                                    "grounding_sam"
                                ],
                                value="attention"
                            )
                            real_use_offset = gr.Checkbox(label="Use Offset", value=False)
                            real_disable_inversion = gr.Checkbox(label="Disable Inversion", value=False)
                        
                        real_submit_btn = gr.Button("🎨 Edit Image", variant="primary")
                    
                    with gr.Column(scale=2):
                        with gr.Row():
                            real_src_output = gr.Image(label="Source Image", type="pil")
                            real_edited_output = gr.Image(label="Edited Image", type="pil")
                        real_status = gr.Textbox(label="Status", interactive=False)
                
                real_submit_btn.click(
                    fn=process_real_image,
                    inputs=[
                        real_source_image, real_prompt_source, real_prompt_target, real_subject_token,
                        real_seed_src, real_seed_obj, real_extended_scale,
                        real_structure_transfer_step, real_blend_steps,
                        real_localization_model, real_use_offset,
                        real_disable_inversion
                    ],
                    outputs=[real_src_output, real_edited_output, real_status]
                )
                
                # Examples for real images
                gr.Examples(
                    examples=[
                        [
                            "images/bed_dark_room.jpg",
                            "A photo of a bed in a dark room",
                            "A photo of a dog lying on a bed in a dark room",
                            "dog"
                        ],
                        [
                            "images/flower.jpg",
                            "A photo of a flower", 
                            "A bee standing on a flower",
                            "bee"
                        ]
                    ],
                    inputs=[
                        real_source_image, real_prompt_source, real_prompt_target, real_subject_token
                    ],
                    label="Example Images & Prompts"
                )
        
        # Tips
        with gr.Accordion("💡 Tips for Better Results", open=False):
            gr.Markdown("""
            - **Prompt Design**: The Target Prompt should be similar to the Source Prompt, but include a description of the new object to insert
            - **Seed Variation**: Try different values for Object Seed - some prompts may require a few attempts to get satisfying results
            - **Localization Models**: The most effective options are `attention_points_sam` and `attention`. Use Show Attention to visualize localization performance
            - **Object Placement Issues**: If the object is not added to the image:
              - Try **decreasing** Structure Transfer Step
              - Try **increasing** Extended Scale
            - **Flexibility**: To allow more flexibility in modifying the source image, leave Blend Steps empty to send an empty list
            """)
    
    return demo

demo = create_interface()
demo.launch(
    server_name="0.0.0.0",
    server_port=7860,
    share=True
)