|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Any, Callable, Dict, List, Optional, Union |
|
import torch |
|
import numpy as np |
|
from PIL import Image |
|
from diffusers.pipelines.flux.pipeline_flux import FluxPipeline, calculate_shift, retrieve_timesteps |
|
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput |
|
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor |
|
from diffusers.utils.torch_utils import randn_tensor |
|
import matplotlib.pyplot as plt |
|
|
|
import torch.fft |
|
import torch.nn.functional as F |
|
|
|
from diffusers.models.attention_processor import FluxAttnProcessor2_0, FluxSingleAttnProcessor2_0 |
|
from addit_attention_processors import AdditFluxAttnProcessor2_0, AdditFluxSingleAttnProcessor2_0 |
|
from addit_attention_store import AttentionStore |
|
|
|
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation |
|
from skimage import filters |
|
from visualization_utils import show_image_and_heatmap, show_images, draw_points_on_pil_image, draw_bboxes_on_image |
|
from addit_blending_utils import clipseg_predict, grounding_sam_predict, mask_to_box_sam_predict, \ |
|
mask_to_mask_sam_predict, attention_to_points_sam_predict |
|
|
|
from transformers import AutoProcessor, AutoModelForZeroShotObjectDetection |
|
from sam2.sam2_image_predictor import SAM2ImagePredictor |
|
|
|
from scipy.optimize import brentq |
|
from scipy.optimize import root_scalar |
|
|
|
def register_my_attention_processors(transformer, attention_store, extended_steps_multi, extended_steps_single): |
|
attn_procs = {} |
|
|
|
for i, (name, processor) in enumerate(transformer.attn_processors.items()): |
|
layer_name = ".".join(name.split(".")[:2]) |
|
|
|
if layer_name.startswith("transformer_blocks"): |
|
attn_procs[name] = AdditFluxAttnProcessor2_0(layer_name=layer_name, |
|
attention_store=attention_store, |
|
extended_steps=extended_steps_multi) |
|
elif layer_name.startswith("single_transformer_blocks"): |
|
attn_procs[name] = AdditFluxSingleAttnProcessor2_0(layer_name=layer_name, |
|
attention_store=attention_store, |
|
extended_steps=extended_steps_single) |
|
|
|
transformer.set_attn_processor(attn_procs) |
|
|
|
def register_regular_attention_processors(transformer): |
|
attn_procs = {} |
|
|
|
for i, (name, processor) in enumerate(transformer.attn_processors.items()): |
|
layer_name = ".".join(name.split(".")[:2]) |
|
|
|
if layer_name.startswith("transformer_blocks"): |
|
attn_procs[name] = FluxAttnProcessor2_0() |
|
elif layer_name.startswith("single_transformer_blocks"): |
|
attn_procs[name] = FluxSingleAttnProcessor2_0() |
|
|
|
transformer.set_attn_processor(attn_procs) |
|
|
|
def img2img_retrieve_latents( |
|
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample" |
|
): |
|
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample": |
|
return encoder_output.latent_dist.sample(generator) |
|
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax": |
|
return encoder_output.latent_dist.mode() |
|
elif hasattr(encoder_output, "latents"): |
|
return encoder_output.latents |
|
else: |
|
raise AttributeError("Could not access latents of provided encoder_output") |
|
|
|
class AdditFluxPipeline(FluxPipeline): |
|
def prepare_latents( |
|
self, |
|
batch_size, |
|
num_channels_latents, |
|
height, |
|
width, |
|
dtype, |
|
device, |
|
generator, |
|
latents=None, |
|
): |
|
height = 2 * (int(height) // self.vae_scale_factor) |
|
width = 2 * (int(width) // self.vae_scale_factor) |
|
|
|
shape = (batch_size, num_channels_latents, height, width) |
|
|
|
if latents is not None: |
|
latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype) |
|
return latents.to(device=device, dtype=dtype), latent_image_ids |
|
|
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
if isinstance(generator, list): |
|
latents = torch.empty(shape, device=device, dtype=dtype) |
|
|
|
latents_list = [randn_tensor(shape, generator=g, device=device, dtype=dtype) for g in generator] |
|
|
|
for i, l_i in enumerate(latents_list): |
|
latents[i] = l_i[i] |
|
else: |
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
|
|
latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width) |
|
|
|
latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype) |
|
|
|
return latents, latent_image_ids |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
prompt_2: Optional[Union[str, List[str]]] = None, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 28, |
|
timesteps: List[int] = None, |
|
guidance_scale: Union[float, List[float]] = 7.0, |
|
num_images_per_prompt: Optional[int] = 1, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
joint_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, |
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
max_sequence_length: int = 512, |
|
|
|
seed: Optional[Union[int, List[int]]] = None, |
|
same_latent_for_all_prompts: bool = False, |
|
|
|
|
|
extended_steps_multi: Optional[int] = -1, |
|
extended_steps_single: Optional[int] = -1, |
|
extended_scale: Optional[Union[float, str]] = 1.0, |
|
|
|
|
|
source_latents: Optional[torch.FloatTensor] = None, |
|
structure_transfer_step: int = 5, |
|
|
|
|
|
subject_token: Optional[str] = None, |
|
localization_model: Optional[str] = "attention_points_sam", |
|
blend_steps: List[int] = [], |
|
show_attention: bool = False, |
|
|
|
|
|
is_img_src: bool = False, |
|
use_offset: bool = False, |
|
img_src_latents: Optional[List[torch.FloatTensor]] = None, |
|
): |
|
r""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. |
|
instead. |
|
prompt_2 (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is |
|
will be used instead |
|
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The height in pixels of the generated image. This is set to 1024 by default for the best results. |
|
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The width in pixels of the generated image. This is set to 1024 by default for the best results. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
timesteps (`List[int]`, *optional*): |
|
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument |
|
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is |
|
passed will be used. Must be in descending order. |
|
guidance_scale (`float`, *optional*, defaults to 7.0): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
pooled_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. |
|
If not provided, pooled text embeddings will be generated from `prompt` input argument. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple. |
|
joint_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
`self.processor` in |
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
callback_on_step_end (`Callable`, *optional*): |
|
A function that calls at the end of each denoising steps during the inference. The function is called |
|
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, |
|
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by |
|
`callback_on_step_end_tensor_inputs`. |
|
callback_on_step_end_tensor_inputs (`List`, *optional*): |
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list |
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the |
|
`._callback_tensor_inputs` attribute of your pipeline class. |
|
max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`. |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict` |
|
is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated |
|
images. |
|
""" |
|
|
|
device = self._execution_device |
|
|
|
|
|
blend_models = {} |
|
if len(blend_steps) > 0: |
|
if localization_model == "clipseg": |
|
blend_models["clipseg_processor"] = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined") |
|
blend_models["clipseg_model"] = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined").to(device) |
|
elif localization_model == "grounding_sam": |
|
grounding_dino_model_id = "IDEA-Research/grounding-dino-base" |
|
blend_models["grounding_processor"] = AutoProcessor.from_pretrained(grounding_dino_model_id) |
|
blend_models["grounding_model"] = AutoModelForZeroShotObjectDetection.from_pretrained(grounding_dino_model_id).to(device) |
|
blend_models["sam_predictor"] = SAM2ImagePredictor.from_pretrained("facebook/sam2-hiera-large") |
|
elif localization_model == "clipseg_sam": |
|
blend_models["clipseg_processor"] = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined") |
|
blend_models["clipseg_model"] = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined").to(device) |
|
blend_models["sam_predictor"] = SAM2ImagePredictor.from_pretrained("facebook/sam2-hiera-large") |
|
elif localization_model == "attention": |
|
pass |
|
elif localization_model in ["attention_box_sam", "attention_mask_sam", "attention_points_sam"]: |
|
blend_models["sam_predictor"] = SAM2ImagePredictor.from_pretrained("facebook/sam2-hiera-large") |
|
|
|
height = height or self.default_sample_size * self.vae_scale_factor |
|
width = width or self.default_sample_size * self.vae_scale_factor |
|
|
|
|
|
self.check_inputs( |
|
prompt, |
|
prompt_2, |
|
height, |
|
width, |
|
prompt_embeds=prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, |
|
max_sequence_length=max_sequence_length, |
|
) |
|
|
|
self._guidance_scale = guidance_scale |
|
self._joint_attention_kwargs = joint_attention_kwargs |
|
self._interrupt = False |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
lora_scale = ( |
|
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None |
|
) |
|
( |
|
prompt_embeds, |
|
pooled_prompt_embeds, |
|
text_ids, |
|
) = self.encode_prompt( |
|
prompt=prompt, |
|
prompt_2=prompt_2, |
|
prompt_embeds=prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
device=device, |
|
num_images_per_prompt=num_images_per_prompt, |
|
max_sequence_length=max_sequence_length, |
|
lora_scale=lora_scale, |
|
) |
|
|
|
|
|
if (generator is None) and seed is not None: |
|
if isinstance(seed, int): |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
else: |
|
assert len(seed) == batch_size, "The number of seeds must match the batch size" |
|
generator = [torch.Generator(device=device).manual_seed(s) for s in seed] |
|
|
|
num_channels_latents = self.transformer.config.in_channels // 4 |
|
latents, latent_image_ids = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
if same_latent_for_all_prompts: |
|
latents = latents[:1].repeat(batch_size * num_images_per_prompt, 1, 1) |
|
|
|
noise = latents.clone() |
|
|
|
attention_store_kwargs = {} |
|
|
|
if extended_scale == "auto": |
|
is_auto_extend_scale = True |
|
extended_scale = 1.05 |
|
attention_store_kwargs["is_cache_attn_ratio"] = True |
|
auto_extended_step = 5 |
|
target_auto_ratio = 1.05 |
|
else: |
|
is_auto_extend_scale = False |
|
|
|
if len(blend_steps) > 0: |
|
attn_steps = range(blend_steps[0] - 2, blend_steps[0] + 1) |
|
attention_store_kwargs["record_attention_steps"] = attn_steps |
|
|
|
self.attention_store = AttentionStore(prompts=prompt, tokenizer=self.tokenizer_2, subject_token=subject_token, **attention_store_kwargs) |
|
register_my_attention_processors(self.transformer, self.attention_store, extended_steps_multi, extended_steps_single) |
|
|
|
|
|
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) |
|
image_seq_len = latents.shape[1] |
|
mu = calculate_shift( |
|
image_seq_len, |
|
self.scheduler.config.base_image_seq_len, |
|
self.scheduler.config.max_image_seq_len, |
|
self.scheduler.config.base_shift, |
|
self.scheduler.config.max_shift, |
|
) |
|
timesteps, num_inference_steps = retrieve_timesteps( |
|
self.scheduler, |
|
num_inference_steps, |
|
device, |
|
timesteps, |
|
sigmas, |
|
mu=mu, |
|
) |
|
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) |
|
self._num_timesteps = len(timesteps) |
|
|
|
|
|
if self.transformer.config.guidance_embeds: |
|
if isinstance(guidance_scale, float): |
|
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32) |
|
guidance = guidance.expand(latents.shape[0]) |
|
elif isinstance(guidance_scale, list): |
|
assert len(guidance_scale) == latents.shape[0], "The number of guidance scales must match the batch size" |
|
guidance = torch.tensor(guidance_scale, device=device, dtype=torch.float32) |
|
else: |
|
guidance = None |
|
|
|
if is_img_src and img_src_latents is None: |
|
assert source_latents is not None, "source_latents must be provided when is_img_src is True" |
|
|
|
rand_noise = noise[0].clone() |
|
img_src_latents = [] |
|
|
|
for i in range(timesteps.shape[0]): |
|
sigma = self.scheduler.sigmas[i] |
|
img_src_latents.append((1.0 - sigma) * source_latents[0] + sigma * rand_noise) |
|
|
|
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
if self.interrupt: |
|
continue |
|
|
|
|
|
timestep = t.expand(latents.shape[0]).to(latents.dtype) |
|
|
|
|
|
if is_img_src: |
|
latents[0] = img_src_latents[i] |
|
|
|
|
|
if (source_latents is not None) and i == structure_transfer_step: |
|
sigma = self.scheduler.sigmas[i] |
|
latents[1] = (1.0 - sigma) * source_latents[0] + sigma * noise[1] |
|
|
|
if is_auto_extend_scale and i == auto_extended_step: |
|
def f(gamma): |
|
self.attention_store.attention_ratios[i] = {} |
|
noise_pred = self.transformer( |
|
hidden_states=latents, |
|
timestep=timestep / 1000, |
|
guidance=guidance, |
|
pooled_projections=pooled_prompt_embeds, |
|
encoder_hidden_states=prompt_embeds, |
|
txt_ids=text_ids, |
|
img_ids=latent_image_ids, |
|
joint_attention_kwargs=self.joint_attention_kwargs, |
|
return_dict=False, |
|
proccesor_kwargs={"step_index": i, "extended_scale": gamma}, |
|
)[0] |
|
|
|
scores_per_layer = self.attention_store.get_attention_ratios(step_indices=[i], display_imgs=False) |
|
source_sum, text_sum, target_sum = scores_per_layer['transformer_blocks'] |
|
|
|
|
|
ratio = (target_sum / source_sum) |
|
return (ratio - target_auto_ratio) |
|
|
|
gamma_sol = brentq(f, 1.0, 1.2, xtol=0.01) |
|
|
|
print('Chosen gamma:', gamma_sol) |
|
extended_scale = gamma_sol |
|
else: |
|
noise_pred = self.transformer( |
|
hidden_states=latents, |
|
timestep=timestep / 1000, |
|
guidance=guidance, |
|
pooled_projections=pooled_prompt_embeds, |
|
encoder_hidden_states=prompt_embeds, |
|
txt_ids=text_ids, |
|
img_ids=latent_image_ids, |
|
joint_attention_kwargs=self.joint_attention_kwargs, |
|
return_dict=False, |
|
proccesor_kwargs={"step_index": i, "extended_scale": extended_scale}, |
|
)[0] |
|
|
|
|
|
latents_dtype = latents.dtype |
|
latents, x0 = self.scheduler.step(noise_pred, t, latents, return_dict=False, step_index=i) |
|
|
|
if use_offset and is_img_src and (i+1 < len(img_src_latents)): |
|
next_latent = img_src_latents[i+1] |
|
offset = (next_latent - latents[0]) |
|
latents[1] = latents[1] + offset |
|
|
|
|
|
if i in blend_steps and (subject_token is not None) and (localization_model is not None): |
|
x0 = self._unpack_latents(x0, height, width, self.vae_scale_factor) |
|
x0 = (x0 / self.vae.config.scaling_factor) + self.vae.config.shift_factor |
|
images = self.vae.decode(x0, return_dict=False)[0] |
|
images = self.image_processor.postprocess(images, output_type="pil") |
|
|
|
self.do_step_blend(images, latents, subject_token, localization_model, show_attention, i, blend_models) |
|
|
|
if latents.dtype != latents_dtype: |
|
if torch.backends.mps.is_available(): |
|
|
|
latents = latents.to(latents_dtype) |
|
|
|
if callback_on_step_end is not None: |
|
callback_kwargs = {} |
|
for k in callback_on_step_end_tensor_inputs: |
|
callback_kwargs[k] = locals()[k] |
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) |
|
|
|
latents = callback_outputs.pop("latents", latents) |
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
|
|
|
|
|
|
|
|
if output_type == "latent": |
|
image = latents |
|
elif output_type == "both": |
|
return_latents = latents |
|
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) |
|
|
|
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor |
|
image = self.vae.decode(latents, return_dict=False)[0] |
|
image = self.image_processor.postprocess(image, output_type="pil") |
|
|
|
return (image, return_latents) |
|
else: |
|
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) |
|
|
|
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor |
|
image = self.vae.decode(latents, return_dict=False)[0] |
|
image = self.image_processor.postprocess(image, output_type=output_type) |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
return (image,) |
|
|
|
return FluxPipelineOutput(images=image) |
|
|
|
def do_step_blend(self, images, latents, subject_token, localization_model, |
|
show_attention, i, blend_models): |
|
|
|
device = latents.device |
|
latents_dtype = latents.dtype |
|
|
|
clipseg_processor = blend_models.get("clipseg_processor", None) |
|
clipseg_model = blend_models.get("clipseg_model", None) |
|
grounding_processor = blend_models.get("grounding_processor", None) |
|
grounding_model = blend_models.get("grounding_model", None) |
|
sam_predictor = blend_models.get("sam_predictor", None) |
|
|
|
image_to_display = [] |
|
titles_to_display = [] |
|
|
|
if show_attention: |
|
image_to_display += [images[0], images[1]] |
|
titles_to_display += ["Source X0", "Target X0"] |
|
|
|
if localization_model == "clipseg": |
|
subject_mask = clipseg_predict(clipseg_model, clipseg_processor, [images[-1]], f"A photo of {subject_token}", device) |
|
elif localization_model == "grounding_sam": |
|
subject_mask = grounding_sam_predict(grounding_model, grounding_processor, sam_predictor, images[-1], f"A {subject_token}.", device) |
|
elif localization_model == "clipseg_sam": |
|
subject_mask = clipseg_predict(clipseg_model, clipseg_processor, [images[-1]], f"A photo of {subject_token}", device) |
|
subject_mask = mask_to_box_sam_predict(subject_mask, sam_predictor, images[-1], None, device) |
|
elif localization_model == "attention": |
|
store = self.attention_store.image2text_store |
|
attention_maps, attention_masks, tokens = self.attention_store.aggregate_attention(store, target_layers=None, gaussian_kernel=3) |
|
|
|
subject_mask = attention_masks[0][-1].to(device) |
|
subject_attention = attention_maps[0][-1].to(device) |
|
|
|
if show_attention: |
|
attentioned_image = show_image_and_heatmap(subject_attention.float(), images[1], relevnace_res=512) |
|
attention_masked_image = show_image_and_heatmap(subject_mask.float(), images[1], relevnace_res=512) |
|
|
|
image_to_display += [attentioned_image, attention_masked_image] |
|
titles_to_display += ["Attention", "Attention Mask"] |
|
|
|
elif localization_model == "attention_box_sam": |
|
store = self.attention_store.image2text_store |
|
attention_maps, attention_masks, tokens = self.attention_store.aggregate_attention(store, target_layers=None, gaussian_kernel=3) |
|
|
|
attention_mask = attention_masks[0][-1].to(device) |
|
subject_attention = attention_maps[0][-1].to(device) |
|
|
|
subject_mask, bbox = mask_to_box_sam_predict(attention_mask, sam_predictor, images[-1], None, device) |
|
|
|
if show_attention: |
|
attentioned_image = show_image_and_heatmap(subject_attention.float(), images[1], relevnace_res=512) |
|
attention_masked_image = show_image_and_heatmap(attention_mask.float(), images[1], relevnace_res=512) |
|
|
|
sam_masked_image = show_image_and_heatmap(subject_mask.float(), images[1], relevnace_res=1024) |
|
sam_masked_image = draw_bboxes_on_image(sam_masked_image, [bbox.tolist()], color="green", thickness=5) |
|
|
|
image_to_display += [attentioned_image, attention_masked_image, sam_masked_image] |
|
titles_to_display += ["Attention", "Attention Mask", "SAM Mask"] |
|
|
|
elif localization_model == "attention_mask_sam": |
|
store = self.attention_store.image2text_store |
|
attention_maps, attention_masks, tokens = self.attention_store.aggregate_attention(store, target_layers=None, gaussian_kernel=3) |
|
|
|
attention_mask = attention_masks[0][-1].to(device) |
|
subject_attention = attention_maps[0][-1].to(device) |
|
|
|
subject_mask = mask_to_mask_sam_predict(attention_mask, sam_predictor, images[-1], None, device) |
|
|
|
if show_attention: |
|
print('Attention:') |
|
attentioned_image = show_image_and_heatmap(subject_attention.float(), images[1], relevnace_res=512) |
|
attention_masked_image = show_image_and_heatmap(attention_mask.float(), images[1], relevnace_res=512) |
|
sam_masked_image = show_image_and_heatmap(subject_mask.float(), images[1], relevnace_res=1024) |
|
|
|
image_to_display += [attentioned_image, attention_masked_image, sam_masked_image] |
|
titles_to_display += ["Attention", "Attention Mask", "SAM Mask"] |
|
|
|
elif localization_model == "attention_points_sam": |
|
store = self.attention_store.image2text_store |
|
attention_maps, attention_masks, tokens = self.attention_store.aggregate_attention(store, target_layers=None, gaussian_kernel=3) |
|
|
|
attention_mask = attention_masks[0][-1].to(device) |
|
subject_attention = attention_maps[0][-1].to(device) |
|
|
|
subject_mask, point_coords = attention_to_points_sam_predict(subject_attention, attention_mask, sam_predictor, images[1], None, device) |
|
|
|
if show_attention: |
|
print('Attention:') |
|
attentioned_image = show_image_and_heatmap(subject_attention.float(), images[1], relevnace_res=512) |
|
attention_masked_image = show_image_and_heatmap(attention_mask.float(), images[1], relevnace_res=512) |
|
|
|
sam_masked_image = show_image_and_heatmap(subject_mask.float(), images[1], relevnace_res=1024) |
|
sam_masked_image = draw_points_on_pil_image(sam_masked_image, point_coords, point_color="green", radius=10) |
|
|
|
image_to_display += [attentioned_image, attention_masked_image, sam_masked_image] |
|
titles_to_display += ["Attention", "Attention Mask", "SAM Mask"] |
|
|
|
if show_attention: |
|
show_images(image_to_display, titles_to_display, size=512, save_path="attn_vis.png") |
|
|
|
|
|
latents_mask = torch.nn.functional.interpolate(subject_mask.view(1,1,subject_mask.shape[-2],subject_mask.shape[-1]), size=64, mode='bilinear').view(4096, 1).to(latents_dtype) |
|
latents_mask[latents_mask > 0.01] = 1 |
|
|
|
latents[1] = latents[1] * latents_mask + latents[0] * (1 - latents_mask) |
|
|
|
|
|
def img2img_encode_vae_image(self, image: torch.Tensor, generator: torch.Generator): |
|
if isinstance(generator, list): |
|
image_latents = [ |
|
img2img_retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i]) |
|
for i in range(image.shape[0]) |
|
] |
|
image_latents = torch.cat(image_latents, dim=0) |
|
else: |
|
image_latents = img2img_retrieve_latents(self.vae.encode(image), generator=generator) |
|
|
|
image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor |
|
|
|
return image_latents |
|
|
|
def img2img_prepare_latents( |
|
self, |
|
image, |
|
timestep, |
|
batch_size, |
|
num_channels_latents, |
|
height, |
|
width, |
|
dtype, |
|
device, |
|
generator, |
|
latents=None, |
|
): |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
height = 2 * (int(height) // self.vae_scale_factor) |
|
width = 2 * (int(width) // self.vae_scale_factor) |
|
|
|
shape = (batch_size, num_channels_latents, height, width) |
|
latent_image_ids = self.img2img_prepare_latent_image_ids(batch_size, height, width, device, dtype) |
|
|
|
if latents is not None: |
|
return latents.to(device=device, dtype=dtype), latent_image_ids |
|
|
|
image = image.to(device=device, dtype=dtype) |
|
image_latents = self.img2img_encode_vae_image(image=image, generator=generator) |
|
if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0: |
|
|
|
additional_image_per_prompt = batch_size // image_latents.shape[0] |
|
image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0) |
|
elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0: |
|
raise ValueError( |
|
f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts." |
|
) |
|
else: |
|
image_latents = torch.cat([image_latents], dim=0) |
|
|
|
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
latents = self.scheduler.scale_noise(image_latents, timestep, noise) |
|
latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width) |
|
return latents, latent_image_ids |
|
|
|
def img2img_check_inputs( |
|
self, |
|
prompt, |
|
prompt_2, |
|
strength, |
|
height, |
|
width, |
|
prompt_embeds=None, |
|
pooled_prompt_embeds=None, |
|
callback_on_step_end_tensor_inputs=None, |
|
max_sequence_length=None, |
|
): |
|
if strength < 0 or strength > 1: |
|
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}") |
|
|
|
if height % 8 != 0 or width % 8 != 0: |
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") |
|
|
|
if callback_on_step_end_tensor_inputs is not None and not all( |
|
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs |
|
): |
|
raise ValueError( |
|
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" |
|
) |
|
|
|
if prompt is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
" only forward one of the two." |
|
) |
|
elif prompt_2 is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
" only forward one of the two." |
|
) |
|
elif prompt is None and prompt_embeds is None: |
|
raise ValueError( |
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." |
|
) |
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)): |
|
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}") |
|
|
|
if prompt_embeds is not None and pooled_prompt_embeds is None: |
|
raise ValueError( |
|
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." |
|
) |
|
|
|
if max_sequence_length is not None and max_sequence_length > 512: |
|
raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}") |
|
|
|
|
|
def img2img_get_timesteps(self, num_inference_steps, strength, device): |
|
|
|
init_timestep = min(num_inference_steps * strength, num_inference_steps) |
|
|
|
t_start = int(max(num_inference_steps - init_timestep, 0)) |
|
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] |
|
if hasattr(self.scheduler, "set_begin_index"): |
|
self.scheduler.set_begin_index(t_start * self.scheduler.order) |
|
|
|
return timesteps, num_inference_steps - t_start |
|
|
|
@staticmethod |
|
|
|
def img2img_prepare_latent_image_ids(batch_size, height, width, device, dtype): |
|
latent_image_ids = torch.zeros(height // 2, width // 2, 3) |
|
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None] |
|
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :] |
|
|
|
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape |
|
|
|
latent_image_ids = latent_image_ids.reshape( |
|
latent_image_id_height * latent_image_id_width, latent_image_id_channels |
|
) |
|
|
|
return latent_image_ids.to(device=device, dtype=dtype) |
|
|
|
@torch.no_grad() |
|
def call_img2img( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
prompt_2: Optional[Union[str, List[str]]] = None, |
|
image: PipelineImageInput = None, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
strength: float = 0.6, |
|
num_inference_steps: int = 28, |
|
timesteps: List[int] = None, |
|
guidance_scale: float = 7.0, |
|
num_images_per_prompt: Optional[int] = 1, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
joint_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, |
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
max_sequence_length: int = 512, |
|
): |
|
r""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. |
|
instead. |
|
prompt_2 (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is |
|
will be used instead |
|
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`): |
|
`Image`, numpy array or tensor representing an image batch to be used as the starting point. For both |
|
numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list |
|
or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a |
|
list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image |
|
latents as `image`, but if passing latents directly it is not encoded again. |
|
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The height in pixels of the generated image. This is set to 1024 by default for the best results. |
|
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The width in pixels of the generated image. This is set to 1024 by default for the best results. |
|
strength (`float`, *optional*, defaults to 1.0): |
|
Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a |
|
starting point and more noise is added the higher the `strength`. The number of denoising steps depends |
|
on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising |
|
process runs for the full number of iterations specified in `num_inference_steps`. A value of 1 |
|
essentially ignores `image`. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
timesteps (`List[int]`, *optional*): |
|
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument |
|
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is |
|
passed will be used. Must be in descending order. |
|
guidance_scale (`float`, *optional*, defaults to 7.0): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
pooled_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. |
|
If not provided, pooled text embeddings will be generated from `prompt` input argument. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple. |
|
joint_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
`self.processor` in |
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
callback_on_step_end (`Callable`, *optional*): |
|
A function that calls at the end of each denoising steps during the inference. The function is called |
|
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, |
|
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by |
|
`callback_on_step_end_tensor_inputs`. |
|
callback_on_step_end_tensor_inputs (`List`, *optional*): |
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list |
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the |
|
`._callback_tensor_inputs` attribute of your pipeline class. |
|
max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`. |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict` |
|
is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated |
|
images. |
|
""" |
|
|
|
height = height or self.default_sample_size * self.vae_scale_factor |
|
width = width or self.default_sample_size * self.vae_scale_factor |
|
|
|
|
|
self.img2img_check_inputs( |
|
prompt, |
|
prompt_2, |
|
strength, |
|
height, |
|
width, |
|
prompt_embeds=prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, |
|
max_sequence_length=max_sequence_length, |
|
) |
|
|
|
self._guidance_scale = guidance_scale |
|
self._joint_attention_kwargs = joint_attention_kwargs |
|
self._interrupt = False |
|
|
|
|
|
init_image = self.image_processor.preprocess(image, height=height, width=width) |
|
init_image = init_image.to(dtype=torch.float32) |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
lora_scale = ( |
|
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None |
|
) |
|
( |
|
prompt_embeds, |
|
pooled_prompt_embeds, |
|
text_ids, |
|
) = self.encode_prompt( |
|
prompt=prompt, |
|
prompt_2=prompt_2, |
|
prompt_embeds=prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
device=device, |
|
num_images_per_prompt=num_images_per_prompt, |
|
max_sequence_length=max_sequence_length, |
|
lora_scale=lora_scale, |
|
) |
|
|
|
register_regular_attention_processors(self.transformer) |
|
|
|
|
|
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) |
|
image_seq_len = (int(height) // self.vae_scale_factor) * (int(width) // self.vae_scale_factor) |
|
mu = calculate_shift( |
|
image_seq_len, |
|
self.scheduler.config.base_image_seq_len, |
|
self.scheduler.config.max_image_seq_len, |
|
self.scheduler.config.base_shift, |
|
self.scheduler.config.max_shift, |
|
) |
|
timesteps, num_inference_steps = retrieve_timesteps( |
|
self.scheduler, |
|
num_inference_steps, |
|
device, |
|
timesteps, |
|
sigmas, |
|
mu=mu, |
|
) |
|
timesteps, num_inference_steps = self.img2img_get_timesteps(num_inference_steps, strength, device) |
|
|
|
if num_inference_steps < 1: |
|
raise ValueError( |
|
f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline" |
|
f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline." |
|
) |
|
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) |
|
|
|
|
|
num_channels_latents = self.transformer.config.in_channels // 4 |
|
|
|
latents, latent_image_ids = self.img2img_prepare_latents( |
|
init_image, |
|
latent_timestep, |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) |
|
self._num_timesteps = len(timesteps) |
|
|
|
|
|
if self.transformer.config.guidance_embeds: |
|
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32) |
|
guidance = guidance.expand(latents.shape[0]) |
|
else: |
|
guidance = None |
|
|
|
text_ids = text_ids.expand(latents.shape[0], -1, -1) |
|
latent_image_ids = latent_image_ids.expand(latents.shape[0], -1, -1) |
|
|
|
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
if self.interrupt: |
|
continue |
|
|
|
|
|
timestep = t.expand(latents.shape[0]).to(latents.dtype) |
|
noise_pred = self.transformer( |
|
hidden_states=latents, |
|
timestep=timestep / 1000, |
|
guidance=guidance, |
|
pooled_projections=pooled_prompt_embeds, |
|
encoder_hidden_states=prompt_embeds, |
|
txt_ids=text_ids, |
|
img_ids=latent_image_ids, |
|
joint_attention_kwargs=self.joint_attention_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
latents_dtype = latents.dtype |
|
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] |
|
|
|
if latents.dtype != latents_dtype: |
|
if torch.backends.mps.is_available(): |
|
|
|
latents = latents.to(latents_dtype) |
|
|
|
if callback_on_step_end is not None: |
|
callback_kwargs = {} |
|
for k in callback_on_step_end_tensor_inputs: |
|
callback_kwargs[k] = locals()[k] |
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) |
|
|
|
latents = callback_outputs.pop("latents", latents) |
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
|
|
|
|
|
|
|
|
if output_type == "latent": |
|
image = latents |
|
|
|
else: |
|
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) |
|
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor |
|
image = self.vae.decode(latents, return_dict=False)[0] |
|
image = self.image_processor.postprocess(image, output_type=output_type) |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
return (image,) |
|
|
|
return FluxPipelineOutput(images=image) |
|
|
|
|
|
def invert_prepare_latents( |
|
self, |
|
image, |
|
timestep, |
|
batch_size, |
|
num_channels_latents, |
|
height, |
|
width, |
|
dtype, |
|
device, |
|
generator, |
|
latents=None, |
|
add_noise=False, |
|
): |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
height = 2 * (int(height) // self.vae_scale_factor) |
|
width = 2 * (int(width) // self.vae_scale_factor) |
|
|
|
shape = (batch_size, num_channels_latents, height, width) |
|
latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype) |
|
|
|
if latents is not None: |
|
return latents.to(device=device, dtype=dtype), latent_image_ids |
|
|
|
image = image.to(device=device, dtype=dtype) |
|
image_latents = self.img2img_encode_vae_image(image=image, generator=generator) |
|
|
|
if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0: |
|
|
|
additional_image_per_prompt = batch_size // image_latents.shape[0] |
|
image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0) |
|
elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0: |
|
raise ValueError( |
|
f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts." |
|
) |
|
else: |
|
image_latents = torch.cat([image_latents], dim=0) |
|
|
|
if add_noise: |
|
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
latents = self.scheduler.scale_noise(image_latents, timestep, noise) |
|
else: |
|
latents = image_latents |
|
|
|
latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width) |
|
|
|
return latents, latent_image_ids |
|
|
|
@torch.no_grad() |
|
def call_invert( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
prompt_2: Optional[Union[str, List[str]]] = None, |
|
image: PipelineImageInput = None, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 28, |
|
timesteps: List[int] = None, |
|
guidance_scale: float = 7.0, |
|
num_images_per_prompt: Optional[int] = 1, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
joint_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, |
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
max_sequence_length: int = 512, |
|
|
|
fixed_point_iterations: int = 1, |
|
): |
|
r""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. |
|
instead. |
|
prompt_2 (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is |
|
will be used instead |
|
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The height in pixels of the generated image. This is set to 1024 by default for the best results. |
|
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The width in pixels of the generated image. This is set to 1024 by default for the best results. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
timesteps (`List[int]`, *optional*): |
|
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument |
|
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is |
|
passed will be used. Must be in descending order. |
|
guidance_scale (`float`, *optional*, defaults to 7.0): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
pooled_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. |
|
If not provided, pooled text embeddings will be generated from `prompt` input argument. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple. |
|
joint_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
`self.processor` in |
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
callback_on_step_end (`Callable`, *optional*): |
|
A function that calls at the end of each denoising steps during the inference. The function is called |
|
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, |
|
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by |
|
`callback_on_step_end_tensor_inputs`. |
|
callback_on_step_end_tensor_inputs (`List`, *optional*): |
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list |
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the |
|
`._callback_tensor_inputs` attribute of your pipeline class. |
|
max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`. |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict` |
|
is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated |
|
images. |
|
""" |
|
height = height or self.default_sample_size * self.vae_scale_factor |
|
width = width or self.default_sample_size * self.vae_scale_factor |
|
|
|
|
|
self.check_inputs( |
|
prompt, |
|
prompt_2, |
|
height, |
|
width, |
|
prompt_embeds=prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, |
|
max_sequence_length=max_sequence_length, |
|
) |
|
|
|
self._guidance_scale = guidance_scale |
|
self._joint_attention_kwargs = joint_attention_kwargs |
|
self._interrupt = False |
|
|
|
|
|
if isinstance(image, Image.Image): |
|
init_image = self.image_processor.preprocess(image, height=height, width=width) |
|
elif isinstance(image, torch.Tensor): |
|
init_image = image |
|
latents = image |
|
else: |
|
raise ValueError("Image must be of type `PIL.Image.Image` or `torch.Tensor`") |
|
|
|
init_image = init_image.to(dtype=torch.float32) |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
lora_scale = ( |
|
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None |
|
) |
|
( |
|
prompt_embeds, |
|
pooled_prompt_embeds, |
|
text_ids, |
|
) = self.encode_prompt( |
|
prompt=prompt, |
|
prompt_2=prompt_2, |
|
prompt_embeds=prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
device=device, |
|
num_images_per_prompt=num_images_per_prompt, |
|
max_sequence_length=max_sequence_length, |
|
lora_scale=lora_scale, |
|
) |
|
|
|
|
|
num_channels_latents = self.transformer.config.in_channels // 4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
latents, latent_image_ids = self.invert_prepare_latents( |
|
init_image, |
|
None, |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
False |
|
) |
|
|
|
register_regular_attention_processors(self.transformer) |
|
|
|
|
|
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) |
|
image_seq_len = latents.shape[1] |
|
mu = calculate_shift( |
|
image_seq_len, |
|
self.scheduler.config.base_image_seq_len, |
|
self.scheduler.config.max_image_seq_len, |
|
self.scheduler.config.base_shift, |
|
self.scheduler.config.max_shift, |
|
) |
|
|
|
|
|
|
|
|
|
timesteps, num_inference_steps = retrieve_timesteps( |
|
self.scheduler, |
|
num_inference_steps, |
|
device, |
|
timesteps, |
|
sigmas, |
|
mu=mu, |
|
) |
|
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) |
|
self._num_timesteps = len(timesteps) |
|
|
|
|
|
if self.transformer.config.guidance_embeds: |
|
guidance = torch.tensor([guidance_scale], device=device) |
|
guidance = guidance.expand(latents.shape[0]) |
|
else: |
|
guidance = None |
|
|
|
self.scheduler.sigmas = reversed(self.scheduler.sigmas) |
|
|
|
timesteps_zero_start = reversed(torch.cat([self.scheduler.timesteps[1:], torch.tensor([0], device=device)])) |
|
timesteps_one_start = reversed(self.scheduler.timesteps) |
|
|
|
self.scheduler.timesteps = timesteps_zero_start |
|
|
|
|
|
timesteps = self.scheduler.timesteps |
|
|
|
latents_list = [] |
|
latents_list.append(latents) |
|
|
|
|
|
with self.progress_bar(total=num_inference_steps * fixed_point_iterations) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
original_latents = latents.clone() |
|
for j in range(fixed_point_iterations): |
|
if self.interrupt: |
|
continue |
|
|
|
if j == 0: |
|
|
|
timestep = timesteps[i].expand(latents.shape[0]).to(latents.dtype) |
|
else: |
|
timestep = timesteps_one_start[i].expand(latents.shape[0]).to(latents.dtype) |
|
|
|
noise_pred = self.transformer( |
|
hidden_states=latents, |
|
|
|
timestep=timestep / 1000, |
|
guidance=guidance, |
|
pooled_projections=pooled_prompt_embeds, |
|
encoder_hidden_states=prompt_embeds, |
|
txt_ids=text_ids, |
|
img_ids=latent_image_ids, |
|
joint_attention_kwargs=self.joint_attention_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
latents_dtype = latents.dtype |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, original_latents, return_dict=False, step_index=i)[0] |
|
|
|
if latents.dtype != latents_dtype: |
|
if torch.backends.mps.is_available(): |
|
|
|
latents = latents.to(latents_dtype) |
|
|
|
if callback_on_step_end is not None: |
|
callback_kwargs = {} |
|
for k in callback_on_step_end_tensor_inputs: |
|
callback_kwargs[k] = locals()[k] |
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) |
|
|
|
latents = callback_outputs.pop("latents", latents) |
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
|
|
|
|
|
|
|
|
latents_list.append(latents) |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
return latents_list |