|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from collections import defaultdict |
|
from diffusers.models.attention_processor import Attention, apply_rope |
|
from typing import Callable, List, Optional, Tuple, Union |
|
|
|
from addit_attention_store import AttentionStore |
|
from visualization_utils import show_tensors |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import numpy as np |
|
from scipy.optimize import brentq |
|
|
|
def apply_standard_attention(query, key, value, attn, attention_probs=None): |
|
batch_size, attn_heads, _, head_dim = query.shape |
|
|
|
|
|
query = query.reshape(batch_size*attn_heads, -1, head_dim) |
|
key = key.reshape(batch_size*attn_heads, -1, head_dim) |
|
value = value.reshape(batch_size*attn_heads, -1, head_dim) |
|
|
|
if attention_probs is None: |
|
attention_probs = attn.get_attention_scores(query, key) |
|
|
|
hidden_states = torch.bmm(attention_probs, value) |
|
hidden_states = hidden_states.view(batch_size, attn_heads, -1, head_dim) |
|
|
|
return hidden_states, attention_probs |
|
|
|
def apply_extended_attention(query, key, value, attention_store, attn, layer_name, step_index, extend_type="pixels", |
|
extended_scale=1., record_attention=False): |
|
batch_size = query.size(0) |
|
extend_query = query[1:] |
|
|
|
if extend_type == "full": |
|
added_key = key[0] * extended_scale |
|
added_value = value[0] |
|
elif extend_type == "text": |
|
added_key = key[0, :, :512] * extended_scale |
|
added_value = value[0, :, :512] |
|
elif extend_type == "pixels": |
|
added_key = key[0, :, 512:] |
|
added_value = value[0, :, 512:] |
|
|
|
key[1] = key[1] * extended_scale |
|
|
|
extend_key = torch.cat([added_key, key[1]], dim=1).unsqueeze(0) |
|
extend_value = torch.cat([added_value, value[1]], dim=1).unsqueeze(0) |
|
|
|
hidden_states_0 = F.scaled_dot_product_attention(query[:1], key[:1], value[:1], dropout_p=0.0, is_causal=False) |
|
|
|
if record_attention or attention_store.is_cache_attn_ratio(step_index): |
|
hidden_states_1, attention_probs_1 = apply_standard_attention(extend_query, extend_key, extend_value, attn) |
|
else: |
|
hidden_states_1 = F.scaled_dot_product_attention(extend_query, extend_key, extend_value, dropout_p=0.0, is_causal=False) |
|
|
|
if record_attention: |
|
|
|
seq_len = attention_probs_1.size(2) - attention_probs_1.size(1) |
|
self_attention_probs_1 = attention_probs_1[:,:,seq_len:] |
|
attention_store.store_attention(self_attention_probs_1, layer_name, 1, attn.heads) |
|
|
|
if attention_store.is_cache_attn_ratio(step_index): |
|
attention_store.store_attention_ratios(attention_probs_1, step_index, layer_name) |
|
|
|
hidden_states = torch.cat([hidden_states_0, hidden_states_1], dim=0) |
|
|
|
return hidden_states |
|
|
|
def apply_attention(query, key, value, attention_store, attn, layer_name, step_index, |
|
record_attention, extended_attention, extended_scale): |
|
if extended_attention: |
|
hidden_states = apply_extended_attention(query, key, value, attention_store, attn, layer_name, step_index, |
|
extended_scale=extended_scale, |
|
record_attention=record_attention) |
|
else: |
|
if record_attention: |
|
hidden_states_0 = F.scaled_dot_product_attention(query[:1], key[:1], value[:1], dropout_p=0.0, is_causal=False) |
|
hidden_states_1, attention_probs_1 = apply_standard_attention(query[1:], key[1:], value[1:], attn) |
|
attention_store.store_attention(attention_probs_1, layer_name, 1, attn.heads) |
|
|
|
hidden_states = torch.cat([hidden_states_0, hidden_states_1], dim=0) |
|
else: |
|
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False) |
|
|
|
return hidden_states |
|
|
|
class AdditFluxAttnProcessor2_0: |
|
"""Attention processor used typically in processing the SD3-like self-attention projections.""" |
|
|
|
def __init__(self, layer_name: str, attention_store: AttentionStore, |
|
extended_steps: Tuple[int, int] = (0, 30), **kwargs): |
|
if not hasattr(F, "scaled_dot_product_attention"): |
|
raise ImportError("FluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") |
|
|
|
self.layer_name = layer_name |
|
self.layer_idx = int(layer_name.split(".")[-1]) |
|
self.attention_store = attention_store |
|
|
|
self.extended_steps = (0, extended_steps) if isinstance(extended_steps, int) else extended_steps |
|
|
|
def __call__( |
|
self, |
|
attn: Attention, |
|
hidden_states: torch.FloatTensor, |
|
encoder_hidden_states: torch.FloatTensor = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
image_rotary_emb: Optional[torch.Tensor] = None, |
|
|
|
step_index: Optional[int] = None, |
|
extended_scale: Optional[float] = 1.0, |
|
) -> torch.FloatTensor: |
|
input_ndim = hidden_states.ndim |
|
if input_ndim == 4: |
|
batch_size, channel, height, width = hidden_states.shape |
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
context_input_ndim = encoder_hidden_states.ndim |
|
if context_input_ndim == 4: |
|
batch_size, channel, height, width = encoder_hidden_states.shape |
|
encoder_hidden_states = encoder_hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
|
|
batch_size = encoder_hidden_states.shape[0] |
|
|
|
|
|
query = attn.to_q(hidden_states) |
|
key = attn.to_k(hidden_states) |
|
value = attn.to_v(hidden_states) |
|
|
|
inner_dim = key.shape[-1] |
|
head_dim = inner_dim // attn.heads |
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
if attn.norm_q is not None: |
|
query = attn.norm_q(query) |
|
if attn.norm_k is not None: |
|
key = attn.norm_k(key) |
|
|
|
|
|
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) |
|
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) |
|
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) |
|
|
|
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( |
|
batch_size, -1, attn.heads, head_dim |
|
).transpose(1, 2) |
|
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( |
|
batch_size, -1, attn.heads, head_dim |
|
).transpose(1, 2) |
|
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( |
|
batch_size, -1, attn.heads, head_dim |
|
).transpose(1, 2) |
|
|
|
if attn.norm_added_q is not None: |
|
encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) |
|
if attn.norm_added_k is not None: |
|
encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj) |
|
|
|
|
|
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2) |
|
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) |
|
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) |
|
|
|
if image_rotary_emb is not None: |
|
|
|
|
|
|
|
|
|
query, key = apply_rope(query, key, image_rotary_emb) |
|
|
|
record_attention = self.attention_store.is_record_attention(self.layer_name, step_index) |
|
extend_start, extend_end = self.extended_steps |
|
extended_attention = extend_start <= step_index <= extend_end |
|
|
|
hidden_states = apply_attention(query, key, value, self.attention_store, attn, self.layer_name, step_index, |
|
record_attention, extended_attention, extended_scale) |
|
|
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
hidden_states = hidden_states.to(query.dtype) |
|
|
|
encoder_hidden_states, hidden_states = ( |
|
hidden_states[:, : encoder_hidden_states.shape[1]], |
|
hidden_states[:, encoder_hidden_states.shape[1] :], |
|
) |
|
|
|
|
|
hidden_states = attn.to_out[0](hidden_states) |
|
|
|
hidden_states = attn.to_out[1](hidden_states) |
|
encoder_hidden_states = attn.to_add_out(encoder_hidden_states) |
|
|
|
if input_ndim == 4: |
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
if context_input_ndim == 4: |
|
encoder_hidden_states = encoder_hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
return hidden_states, encoder_hidden_states |
|
|
|
class AdditFluxSingleAttnProcessor2_0: |
|
r""" |
|
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). |
|
""" |
|
|
|
def __init__(self, layer_name: str, attention_store: AttentionStore, |
|
extended_steps: Tuple[int, int] = (0, 30), **kwargs): |
|
if not hasattr(F, "scaled_dot_product_attention"): |
|
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") |
|
|
|
self.layer_name = layer_name |
|
self.layer_idx = int(layer_name.split(".")[-1]) |
|
self.attention_store = attention_store |
|
|
|
self.extended_steps = (0, extended_steps) if isinstance(extended_steps, int) else extended_steps |
|
|
|
def __call__( |
|
self, |
|
attn: Attention, |
|
hidden_states: torch.Tensor, |
|
encoder_hidden_states: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
image_rotary_emb: Optional[torch.Tensor] = None, |
|
step_index: Optional[int] = None, |
|
extended_scale: Optional[float] = 1.0, |
|
) -> torch.Tensor: |
|
input_ndim = hidden_states.ndim |
|
|
|
if input_ndim == 4: |
|
batch_size, channel, height, width = hidden_states.shape |
|
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) |
|
|
|
batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape |
|
|
|
query = attn.to_q(hidden_states) |
|
if encoder_hidden_states is None: |
|
encoder_hidden_states = hidden_states |
|
|
|
key = attn.to_k(encoder_hidden_states) |
|
value = attn.to_v(encoder_hidden_states) |
|
|
|
inner_dim = key.shape[-1] |
|
head_dim = inner_dim // attn.heads |
|
|
|
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) |
|
|
|
if attn.norm_q is not None: |
|
query = attn.norm_q(query) |
|
if attn.norm_k is not None: |
|
key = attn.norm_k(key) |
|
|
|
|
|
if image_rotary_emb is not None: |
|
|
|
|
|
|
|
|
|
query, key = apply_rope(query, key, image_rotary_emb) |
|
|
|
|
|
|
|
|
|
record_attention = self.attention_store.is_record_attention(self.layer_name, step_index) |
|
extend_start, extend_end = self.extended_steps |
|
extended_attention = extend_start <= step_index <= extend_end |
|
|
|
hidden_states = apply_attention(query, key, value, self.attention_store, attn, self.layer_name, step_index, |
|
record_attention, extended_attention, extended_scale) |
|
|
|
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) |
|
hidden_states = hidden_states.to(query.dtype) |
|
|
|
if input_ndim == 4: |
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) |
|
|
|
return hidden_states |