addit / addit_flux_pipeline.py
YoadTew's picture
Update tqdm descriptions
6b756b2
raw
history blame
68.8 kB
# Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Copyright (C) 2025 NVIDIA Corporation. All rights reserved.
#
# This work is licensed under the LICENSE file
# located at the root directory.
from tqdm import tqdm
from typing import Any, Callable, Dict, List, Optional, Union
import torch
import numpy as np
from PIL import Image
from diffusers.pipelines.flux.pipeline_flux import FluxPipeline, calculate_shift, retrieve_timesteps
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
from diffusers.utils.torch_utils import randn_tensor
import matplotlib.pyplot as plt
import torch.fft
import torch.nn.functional as F
from diffusers.models.attention_processor import FluxAttnProcessor2_0, FluxSingleAttnProcessor2_0
from addit_attention_processors import AdditFluxAttnProcessor2_0, AdditFluxSingleAttnProcessor2_0
from addit_attention_store import AttentionStore
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation
from skimage import filters
from visualization_utils import show_image_and_heatmap, show_images, draw_points_on_pil_image, draw_bboxes_on_image
from addit_blending_utils import clipseg_predict, grounding_sam_predict, mask_to_box_sam_predict, \
mask_to_mask_sam_predict, attention_to_points_sam_predict
from transformers import AutoProcessor, AutoModelForZeroShotObjectDetection
from sam2.sam2_image_predictor import SAM2ImagePredictor
from scipy.optimize import brentq
from scipy.optimize import root_scalar
def register_my_attention_processors(transformer, attention_store, extended_steps_multi, extended_steps_single):
attn_procs = {}
for i, (name, processor) in enumerate(transformer.attn_processors.items()):
layer_name = ".".join(name.split(".")[:2])
if layer_name.startswith("transformer_blocks"):
attn_procs[name] = AdditFluxAttnProcessor2_0(layer_name=layer_name,
attention_store=attention_store,
extended_steps=extended_steps_multi)
elif layer_name.startswith("single_transformer_blocks"):
attn_procs[name] = AdditFluxSingleAttnProcessor2_0(layer_name=layer_name,
attention_store=attention_store,
extended_steps=extended_steps_single)
transformer.set_attn_processor(attn_procs)
def register_regular_attention_processors(transformer):
attn_procs = {}
for i, (name, processor) in enumerate(transformer.attn_processors.items()):
layer_name = ".".join(name.split(".")[:2])
if layer_name.startswith("transformer_blocks"):
attn_procs[name] = FluxAttnProcessor2_0()
elif layer_name.startswith("single_transformer_blocks"):
attn_procs[name] = FluxSingleAttnProcessor2_0()
transformer.set_attn_processor(attn_procs)
def img2img_retrieve_latents(
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
):
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
return encoder_output.latent_dist.sample(generator)
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
return encoder_output.latent_dist.mode()
elif hasattr(encoder_output, "latents"):
return encoder_output.latents
else:
raise AttributeError("Could not access latents of provided encoder_output")
class AdditFluxPipeline(FluxPipeline):
def prepare_latents(
self,
batch_size,
num_channels_latents,
height,
width,
dtype,
device,
generator,
latents=None,
):
height = 2 * (int(height) // self.vae_scale_factor)
width = 2 * (int(width) // self.vae_scale_factor)
shape = (batch_size, num_channels_latents, height, width)
if latents is not None:
latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype)
return latents.to(device=device, dtype=dtype), latent_image_ids
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if isinstance(generator, list):
latents = torch.empty(shape, device=device, dtype=dtype)
latents_list = [randn_tensor(shape, generator=g, device=device, dtype=dtype) for g in generator]
for i, l_i in enumerate(latents_list):
latents[i] = l_i[i]
else:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype)
return latents, latent_image_ids
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]] = None,
prompt_2: Optional[Union[str, List[str]]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 28,
timesteps: List[int] = None,
guidance_scale: Union[float, List[float]] = 7.0,
num_images_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
max_sequence_length: int = 512,
seed: Optional[Union[int, List[int]]] = None,
same_latent_for_all_prompts: bool = False,
# Extended Attention
extended_steps_multi: Optional[int] = -1,
extended_steps_single: Optional[int] = -1,
extended_scale: Optional[Union[float, str]] = 1.0,
# Structure Transfer
source_latents: Optional[torch.FloatTensor] = None,
structure_transfer_step: int = 5,
# Latent Blending
subject_token: Optional[str] = None,
localization_model: Optional[str] = "attention_points_sam",
blend_steps: List[int] = [],
show_attention: bool = False,
# Real Image Source
is_img_src: bool = False,
use_offset: bool = False,
img_src_latents: Optional[List[torch.FloatTensor]] = None,
# TQDM
tqdm_desc: str = "Denoising",
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
prompt_2 (`str` or `List[str]`, *optional*):
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
will be used instead
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image. This is set to 1024 by default for the best results.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The width in pixels of the generated image. This is set to 1024 by default for the best results.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
timesteps (`List[int]`, *optional*):
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
passed will be used. Must be in descending order.
guidance_scale (`float`, *optional*, defaults to 7.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
If not provided, pooled text embeddings will be generated from `prompt` input argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
joint_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
callback_on_step_end (`Callable`, *optional*):
A function that calls at the end of each denoising steps during the inference. The function is called
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
`callback_on_step_end_tensor_inputs`.
callback_on_step_end_tensor_inputs (`List`, *optional*):
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
`._callback_tensor_inputs` attribute of your pipeline class.
max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
Examples:
Returns:
[`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
images.
"""
device = self._execution_device
# Blend Steps
blend_models = {}
if len(blend_steps) > 0:
if localization_model == "clipseg":
blend_models["clipseg_processor"] = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
blend_models["clipseg_model"] = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined").to(device)
elif localization_model == "grounding_sam":
grounding_dino_model_id = "IDEA-Research/grounding-dino-base"
blend_models["grounding_processor"] = AutoProcessor.from_pretrained(grounding_dino_model_id)
blend_models["grounding_model"] = AutoModelForZeroShotObjectDetection.from_pretrained(grounding_dino_model_id).to(device)
blend_models["sam_predictor"] = SAM2ImagePredictor.from_pretrained("facebook/sam2-hiera-large")
elif localization_model == "clipseg_sam":
blend_models["clipseg_processor"] = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
blend_models["clipseg_model"] = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined").to(device)
blend_models["sam_predictor"] = SAM2ImagePredictor.from_pretrained("facebook/sam2-hiera-large")
elif localization_model == "attention":
pass
elif localization_model in ["attention_box_sam", "attention_mask_sam", "attention_points_sam"]:
blend_models["sam_predictor"] = SAM2ImagePredictor.from_pretrained("facebook/sam2-hiera-large")
height = height or self.default_sample_size * self.vae_scale_factor
width = width or self.default_sample_size * self.vae_scale_factor
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
prompt_2,
height,
width,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
max_sequence_length=max_sequence_length,
)
self._guidance_scale = guidance_scale
self._joint_attention_kwargs = joint_attention_kwargs
self._interrupt = False
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
lora_scale = (
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
)
(
prompt_embeds,
pooled_prompt_embeds,
text_ids,
) = self.encode_prompt(
prompt=prompt,
prompt_2=prompt_2,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
device=device,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
lora_scale=lora_scale,
)
# 4. Prepare latent variables
if (generator is None) and seed is not None:
if isinstance(seed, int):
generator = torch.Generator(device=device).manual_seed(seed)
else:
assert len(seed) == batch_size, "The number of seeds must match the batch size"
generator = [torch.Generator(device=device).manual_seed(s) for s in seed]
num_channels_latents = self.transformer.config.in_channels // 4
latents, latent_image_ids = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
if same_latent_for_all_prompts:
latents = latents[:1].repeat(batch_size * num_images_per_prompt, 1, 1)
noise = latents.clone()
attention_store_kwargs = {}
if extended_scale == "auto":
is_auto_extend_scale = True
extended_scale = 1.05
attention_store_kwargs["is_cache_attn_ratio"] = True
auto_extended_step = 5
target_auto_ratio = 1.05
else:
is_auto_extend_scale = False
if len(blend_steps) > 0:
attn_steps = range(blend_steps[0] - 2, blend_steps[0] + 1)
attention_store_kwargs["record_attention_steps"] = attn_steps
self.attention_store = AttentionStore(prompts=prompt, tokenizer=self.tokenizer_2, subject_token=subject_token, **attention_store_kwargs)
register_my_attention_processors(self.transformer, self.attention_store, extended_steps_multi, extended_steps_single)
# 5. Prepare timesteps
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
image_seq_len = latents.shape[1]
mu = calculate_shift(
image_seq_len,
self.scheduler.config.base_image_seq_len,
self.scheduler.config.max_image_seq_len,
self.scheduler.config.base_shift,
self.scheduler.config.max_shift,
)
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler,
num_inference_steps,
device,
timesteps,
sigmas,
mu=mu,
)
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
self._num_timesteps = len(timesteps)
# handle guidance
if self.transformer.config.guidance_embeds:
if isinstance(guidance_scale, float):
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
guidance = guidance.expand(latents.shape[0])
elif isinstance(guidance_scale, list):
assert len(guidance_scale) == latents.shape[0], "The number of guidance scales must match the batch size"
guidance = torch.tensor(guidance_scale, device=device, dtype=torch.float32)
else:
guidance = None
if is_img_src and img_src_latents is None:
assert source_latents is not None, "source_latents must be provided when is_img_src is True"
rand_noise = noise[0].clone()
img_src_latents = []
for i in range(timesteps.shape[0]):
sigma = self.scheduler.sigmas[i]
img_src_latents.append((1.0 - sigma) * source_latents[0] + sigma * rand_noise)
# 6. Denoising loop
for i, t in enumerate(tqdm(timesteps, desc=tqdm_desc)):
if self.interrupt:
continue
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timestep = t.expand(latents.shape[0]).to(latents.dtype)
# For denoising from source image
if is_img_src:
latents[0] = img_src_latents[i]
# For Structure Transfer
if (source_latents is not None) and i == structure_transfer_step:
sigma = self.scheduler.sigmas[i]
latents[1] = (1.0 - sigma) * source_latents[0] + sigma * noise[1]
if is_auto_extend_scale and i == auto_extended_step:
def f(gamma):
self.attention_store.attention_ratios[i] = {}
noise_pred = self.transformer(
hidden_states=latents,
timestep=timestep / 1000,
guidance=guidance,
pooled_projections=pooled_prompt_embeds,
encoder_hidden_states=prompt_embeds,
txt_ids=text_ids,
img_ids=latent_image_ids,
joint_attention_kwargs=self.joint_attention_kwargs,
return_dict=False,
proccesor_kwargs={"step_index": i, "extended_scale": gamma},
)[0]
scores_per_layer = self.attention_store.get_attention_ratios(step_indices=[i], display_imgs=False)
source_sum, text_sum, target_sum = scores_per_layer['transformer_blocks']
# We want to find the gamma that makes the ratio equal to K
ratio = (target_sum / source_sum)
return (ratio - target_auto_ratio)
gamma_sol = brentq(f, 1.0, 1.2, xtol=0.01)
print('Chosen gamma:', gamma_sol)
extended_scale = gamma_sol
else:
noise_pred = self.transformer(
hidden_states=latents,
timestep=timestep / 1000,
guidance=guidance,
pooled_projections=pooled_prompt_embeds,
encoder_hidden_states=prompt_embeds,
txt_ids=text_ids,
img_ids=latent_image_ids,
joint_attention_kwargs=self.joint_attention_kwargs,
return_dict=False,
proccesor_kwargs={"step_index": i, "extended_scale": extended_scale},
)[0]
# compute the previous noisy sample x_t -> x_t-1
latents_dtype = latents.dtype
latents, x0 = self.scheduler.step(noise_pred, t, latents, return_dict=False, step_index=i)
if use_offset and is_img_src and (i+1 < len(img_src_latents)):
next_latent = img_src_latents[i+1]
offset = (next_latent - latents[0])
latents[1] = latents[1] + offset
# blend latents
if i in blend_steps and (subject_token is not None) and (localization_model is not None):
x0 = self._unpack_latents(x0, height, width, self.vae_scale_factor)
x0 = (x0 / self.vae.config.scaling_factor) + self.vae.config.shift_factor
images = self.vae.decode(x0, return_dict=False)[0]
images = self.image_processor.postprocess(images, output_type="pil")
self.do_step_blend(images, latents, subject_token, localization_model, show_attention, i, blend_models)
if latents.dtype != latents_dtype:
if torch.backends.mps.is_available():
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
latents = latents.to(latents_dtype)
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
# if XLA_AVAILABLE:
# xm.mark_step()
if output_type == "latent":
image = latents
elif output_type == "both":
return_latents = latents
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
image = self.vae.decode(latents, return_dict=False)[0]
image = self.image_processor.postprocess(image, output_type="pil")
return (image, return_latents)
else:
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
image = self.vae.decode(latents, return_dict=False)[0]
image = self.image_processor.postprocess(image, output_type=output_type)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image,)
return FluxPipelineOutput(images=image)
def do_step_blend(self, images, latents, subject_token, localization_model,
show_attention, i, blend_models):
device = latents.device
latents_dtype = latents.dtype
clipseg_processor = blend_models.get("clipseg_processor", None)
clipseg_model = blend_models.get("clipseg_model", None)
grounding_processor = blend_models.get("grounding_processor", None)
grounding_model = blend_models.get("grounding_model", None)
sam_predictor = blend_models.get("sam_predictor", None)
image_to_display = []
titles_to_display = []
if show_attention:
image_to_display += [images[0], images[1]]
titles_to_display += ["Source X0", "Target X0"]
if localization_model == "clipseg":
subject_mask = clipseg_predict(clipseg_model, clipseg_processor, [images[-1]], f"A photo of {subject_token}", device)
elif localization_model == "grounding_sam":
subject_mask = grounding_sam_predict(grounding_model, grounding_processor, sam_predictor, images[-1], f"A {subject_token}.", device)
elif localization_model == "clipseg_sam":
subject_mask = clipseg_predict(clipseg_model, clipseg_processor, [images[-1]], f"A photo of {subject_token}", device)
subject_mask = mask_to_box_sam_predict(subject_mask, sam_predictor, images[-1], None, device)
elif localization_model == "attention":
store = self.attention_store.image2text_store
attention_maps, attention_masks, tokens = self.attention_store.aggregate_attention(store, target_layers=None, gaussian_kernel=3)
subject_mask = attention_masks[0][-1].to(device)
subject_attention = attention_maps[0][-1].to(device)
if show_attention:
attentioned_image = show_image_and_heatmap(subject_attention.float(), images[1], relevnace_res=512)
attention_masked_image = show_image_and_heatmap(subject_mask.float(), images[1], relevnace_res=512)
image_to_display += [attentioned_image, attention_masked_image]
titles_to_display += ["Attention", "Attention Mask"]
elif localization_model == "attention_box_sam":
store = self.attention_store.image2text_store
attention_maps, attention_masks, tokens = self.attention_store.aggregate_attention(store, target_layers=None, gaussian_kernel=3)
attention_mask = attention_masks[0][-1].to(device)
subject_attention = attention_maps[0][-1].to(device)
subject_mask, bbox = mask_to_box_sam_predict(attention_mask, sam_predictor, images[-1], None, device)
if show_attention:
attentioned_image = show_image_and_heatmap(subject_attention.float(), images[1], relevnace_res=512)
attention_masked_image = show_image_and_heatmap(attention_mask.float(), images[1], relevnace_res=512)
sam_masked_image = show_image_and_heatmap(subject_mask.float(), images[1], relevnace_res=1024)
sam_masked_image = draw_bboxes_on_image(sam_masked_image, [bbox.tolist()], color="green", thickness=5)
image_to_display += [attentioned_image, attention_masked_image, sam_masked_image]
titles_to_display += ["Attention", "Attention Mask", "SAM Mask"]
elif localization_model == "attention_mask_sam":
store = self.attention_store.image2text_store
attention_maps, attention_masks, tokens = self.attention_store.aggregate_attention(store, target_layers=None, gaussian_kernel=3)
attention_mask = attention_masks[0][-1].to(device)
subject_attention = attention_maps[0][-1].to(device)
subject_mask = mask_to_mask_sam_predict(attention_mask, sam_predictor, images[-1], None, device)
if show_attention:
print('Attention:')
attentioned_image = show_image_and_heatmap(subject_attention.float(), images[1], relevnace_res=512)
attention_masked_image = show_image_and_heatmap(attention_mask.float(), images[1], relevnace_res=512)
sam_masked_image = show_image_and_heatmap(subject_mask.float(), images[1], relevnace_res=1024)
image_to_display += [attentioned_image, attention_masked_image, sam_masked_image]
titles_to_display += ["Attention", "Attention Mask", "SAM Mask"]
elif localization_model == "attention_points_sam":
store = self.attention_store.image2text_store
attention_maps, attention_masks, tokens = self.attention_store.aggregate_attention(store, target_layers=None, gaussian_kernel=3)
attention_mask = attention_masks[0][-1].to(device)
subject_attention = attention_maps[0][-1].to(device)
subject_mask, point_coords = attention_to_points_sam_predict(subject_attention, attention_mask, sam_predictor, images[1], None, device)
if show_attention:
print('Attention:')
attentioned_image = show_image_and_heatmap(subject_attention.float(), images[1], relevnace_res=512)
attention_masked_image = show_image_and_heatmap(attention_mask.float(), images[1], relevnace_res=512)
sam_masked_image = show_image_and_heatmap(subject_mask.float(), images[1], relevnace_res=1024)
sam_masked_image = draw_points_on_pil_image(sam_masked_image, point_coords, point_color="green", radius=10)
image_to_display += [attentioned_image, attention_masked_image, sam_masked_image]
titles_to_display += ["Attention", "Attention Mask", "SAM Mask"]
if show_attention:
show_images(image_to_display, titles_to_display, size=512, save_path="attn_vis.png")
# Resize the mask to latents size
latents_mask = torch.nn.functional.interpolate(subject_mask.view(1,1,subject_mask.shape[-2],subject_mask.shape[-1]), size=64, mode='bilinear').view(4096, 1).to(latents_dtype)
latents_mask[latents_mask > 0.01] = 1
latents[1] = latents[1] * latents_mask + latents[0] * (1 - latents_mask)
############# Image to Image Methods #############
def img2img_encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
if isinstance(generator, list):
image_latents = [
img2img_retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
for i in range(image.shape[0])
]
image_latents = torch.cat(image_latents, dim=0)
else:
image_latents = img2img_retrieve_latents(self.vae.encode(image), generator=generator)
image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
return image_latents
def img2img_prepare_latents(
self,
image,
timestep,
batch_size,
num_channels_latents,
height,
width,
dtype,
device,
generator,
latents=None,
):
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
height = 2 * (int(height) // self.vae_scale_factor)
width = 2 * (int(width) // self.vae_scale_factor)
shape = (batch_size, num_channels_latents, height, width)
latent_image_ids = self.img2img_prepare_latent_image_ids(batch_size, height, width, device, dtype)
if latents is not None:
return latents.to(device=device, dtype=dtype), latent_image_ids
image = image.to(device=device, dtype=dtype)
image_latents = self.img2img_encode_vae_image(image=image, generator=generator)
if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
# expand init_latents for batch_size
additional_image_per_prompt = batch_size // image_latents.shape[0]
image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0)
elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
raise ValueError(
f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
)
else:
image_latents = torch.cat([image_latents], dim=0)
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
latents = self.scheduler.scale_noise(image_latents, timestep, noise)
latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
return latents, latent_image_ids
def img2img_check_inputs(
self,
prompt,
prompt_2,
strength,
height,
width,
prompt_embeds=None,
pooled_prompt_embeds=None,
callback_on_step_end_tensor_inputs=None,
max_sequence_length=None,
):
if strength < 0 or strength > 1:
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if callback_on_step_end_tensor_inputs is not None and not all(
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
):
raise ValueError(
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt_2 is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
if prompt_embeds is not None and pooled_prompt_embeds is None:
raise ValueError(
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
)
if max_sequence_length is not None and max_sequence_length > 512:
raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
# Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3_img2img.StableDiffusion3Img2ImgPipeline.get_timesteps
def img2img_get_timesteps(self, num_inference_steps, strength, device):
# get the original timestep using init_timestep
init_timestep = min(num_inference_steps * strength, num_inference_steps)
t_start = int(max(num_inference_steps - init_timestep, 0))
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
if hasattr(self.scheduler, "set_begin_index"):
self.scheduler.set_begin_index(t_start * self.scheduler.order)
return timesteps, num_inference_steps - t_start
@staticmethod
# Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._prepare_latent_image_ids
def img2img_prepare_latent_image_ids(batch_size, height, width, device, dtype):
latent_image_ids = torch.zeros(height // 2, width // 2, 3)
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None]
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :]
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
latent_image_ids = latent_image_ids.reshape(
latent_image_id_height * latent_image_id_width, latent_image_id_channels
)
return latent_image_ids.to(device=device, dtype=dtype)
@torch.no_grad()
def call_img2img(
self,
prompt: Union[str, List[str]] = None,
prompt_2: Optional[Union[str, List[str]]] = None,
image: PipelineImageInput = None,
height: Optional[int] = None,
width: Optional[int] = None,
strength: float = 0.6,
num_inference_steps: int = 28,
timesteps: List[int] = None,
guidance_scale: float = 7.0,
num_images_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
max_sequence_length: int = 512,
# TQDM
tqdm_desc: str = "Denoising",
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
prompt_2 (`str` or `List[str]`, *optional*):
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
will be used instead
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
`Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list
or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a
list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image
latents as `image`, but if passing latents directly it is not encoded again.
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image. This is set to 1024 by default for the best results.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The width in pixels of the generated image. This is set to 1024 by default for the best results.
strength (`float`, *optional*, defaults to 1.0):
Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
starting point and more noise is added the higher the `strength`. The number of denoising steps depends
on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
essentially ignores `image`.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
timesteps (`List[int]`, *optional*):
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
passed will be used. Must be in descending order.
guidance_scale (`float`, *optional*, defaults to 7.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
If not provided, pooled text embeddings will be generated from `prompt` input argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
joint_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
callback_on_step_end (`Callable`, *optional*):
A function that calls at the end of each denoising steps during the inference. The function is called
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
`callback_on_step_end_tensor_inputs`.
callback_on_step_end_tensor_inputs (`List`, *optional*):
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
`._callback_tensor_inputs` attribute of your pipeline class.
max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
Examples:
Returns:
[`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
images.
"""
height = height or self.default_sample_size * self.vae_scale_factor
width = width or self.default_sample_size * self.vae_scale_factor
# 1. Check inputs. Raise error if not correct
self.img2img_check_inputs(
prompt,
prompt_2,
strength,
height,
width,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
max_sequence_length=max_sequence_length,
)
self._guidance_scale = guidance_scale
self._joint_attention_kwargs = joint_attention_kwargs
self._interrupt = False
# 2. Preprocess image
init_image = self.image_processor.preprocess(image, height=height, width=width)
init_image = init_image.to(dtype=torch.float32)
# 3. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
lora_scale = (
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
)
(
prompt_embeds,
pooled_prompt_embeds,
text_ids,
) = self.encode_prompt(
prompt=prompt,
prompt_2=prompt_2,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
device=device,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
lora_scale=lora_scale,
)
register_regular_attention_processors(self.transformer)
# 4.Prepare timesteps
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
image_seq_len = (int(height) // self.vae_scale_factor) * (int(width) // self.vae_scale_factor)
mu = calculate_shift(
image_seq_len,
self.scheduler.config.base_image_seq_len,
self.scheduler.config.max_image_seq_len,
self.scheduler.config.base_shift,
self.scheduler.config.max_shift,
)
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler,
num_inference_steps,
device,
timesteps,
sigmas,
mu=mu,
)
timesteps, num_inference_steps = self.img2img_get_timesteps(num_inference_steps, strength, device)
if num_inference_steps < 1:
raise ValueError(
f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline"
f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline."
)
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
# 5. Prepare latent variables
num_channels_latents = self.transformer.config.in_channels // 4
latents, latent_image_ids = self.img2img_prepare_latents(
init_image,
latent_timestep,
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
self._num_timesteps = len(timesteps)
# handle guidance
if self.transformer.config.guidance_embeds:
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
guidance = guidance.expand(latents.shape[0])
else:
guidance = None
text_ids = text_ids.expand(latents.shape[0], -1, -1)
latent_image_ids = latent_image_ids.expand(latents.shape[0], -1, -1)
# 6. Denoising loop
for i, t in enumerate(tqdm(timesteps, desc=tqdm_desc)):
if self.interrupt:
continue
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timestep = t.expand(latents.shape[0]).to(latents.dtype)
noise_pred = self.transformer(
hidden_states=latents,
timestep=timestep / 1000,
guidance=guidance,
pooled_projections=pooled_prompt_embeds,
encoder_hidden_states=prompt_embeds,
txt_ids=text_ids,
img_ids=latent_image_ids,
joint_attention_kwargs=self.joint_attention_kwargs,
return_dict=False,
)[0]
# compute the previous noisy sample x_t -> x_t-1
latents_dtype = latents.dtype
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
if latents.dtype != latents_dtype:
if torch.backends.mps.is_available():
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
latents = latents.to(latents_dtype)
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
# if XLA_AVAILABLE:
# xm.mark_step()
if output_type == "latent":
image = latents
else:
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
image = self.vae.decode(latents, return_dict=False)[0]
image = self.image_processor.postprocess(image, output_type=output_type)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image,)
return FluxPipelineOutput(images=image)
############# Invert Methods #############
def invert_prepare_latents(
self,
image,
timestep,
batch_size,
num_channels_latents,
height,
width,
dtype,
device,
generator,
latents=None,
add_noise=False,
):
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
height = 2 * (int(height) // self.vae_scale_factor)
width = 2 * (int(width) // self.vae_scale_factor)
shape = (batch_size, num_channels_latents, height, width)
latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype)
if latents is not None:
return latents.to(device=device, dtype=dtype), latent_image_ids
image = image.to(device=device, dtype=dtype)
image_latents = self.img2img_encode_vae_image(image=image, generator=generator)
if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
# expand init_latents for batch_size
additional_image_per_prompt = batch_size // image_latents.shape[0]
image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0)
elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
raise ValueError(
f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
)
else:
image_latents = torch.cat([image_latents], dim=0)
if add_noise:
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
latents = self.scheduler.scale_noise(image_latents, timestep, noise)
else:
latents = image_latents
latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
return latents, latent_image_ids
@torch.no_grad()
def call_invert(
self,
prompt: Union[str, List[str]] = None,
prompt_2: Optional[Union[str, List[str]]] = None,
image: PipelineImageInput = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 28,
timesteps: List[int] = None,
guidance_scale: float = 7.0,
num_images_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
max_sequence_length: int = 512,
fixed_point_iterations: int = 1,
# TQDM
tqdm_desc: str = "Denoising",
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
prompt_2 (`str` or `List[str]`, *optional*):
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
will be used instead
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image. This is set to 1024 by default for the best results.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The width in pixels of the generated image. This is set to 1024 by default for the best results.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
timesteps (`List[int]`, *optional*):
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
passed will be used. Must be in descending order.
guidance_scale (`float`, *optional*, defaults to 7.0):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
If not provided, pooled text embeddings will be generated from `prompt` input argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
joint_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
callback_on_step_end (`Callable`, *optional*):
A function that calls at the end of each denoising steps during the inference. The function is called
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
`callback_on_step_end_tensor_inputs`.
callback_on_step_end_tensor_inputs (`List`, *optional*):
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
`._callback_tensor_inputs` attribute of your pipeline class.
max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
Examples:
Returns:
[`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
images.
"""
height = height or self.default_sample_size * self.vae_scale_factor
width = width or self.default_sample_size * self.vae_scale_factor
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
prompt_2,
height,
width,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
max_sequence_length=max_sequence_length,
)
self._guidance_scale = guidance_scale
self._joint_attention_kwargs = joint_attention_kwargs
self._interrupt = False
# 1.5. Preprocess image
if isinstance(image, Image.Image):
init_image = self.image_processor.preprocess(image, height=height, width=width)
elif isinstance(image, torch.Tensor):
init_image = image
latents = image
else:
raise ValueError("Image must be of type `PIL.Image.Image` or `torch.Tensor`")
init_image = init_image.to(dtype=torch.float32)
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
lora_scale = (
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
)
(
prompt_embeds,
pooled_prompt_embeds,
text_ids,
) = self.encode_prompt(
prompt=prompt,
prompt_2=prompt_2,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
device=device,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
lora_scale=lora_scale,
)
# 4. Prepare latent variables
num_channels_latents = self.transformer.config.in_channels // 4
# latents, latent_image_ids = self.prepare_latents(
# batch_size * num_images_per_prompt,
# num_channels_latents,
# height,
# width,
# prompt_embeds.dtype,
# device,
# generator,
# latents,
# )
latents, latent_image_ids = self.invert_prepare_latents(
init_image,
None,
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
False
)
register_regular_attention_processors(self.transformer)
# 5. Prepare timesteps
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
image_seq_len = latents.shape[1]
mu = calculate_shift(
image_seq_len,
self.scheduler.config.base_image_seq_len,
self.scheduler.config.max_image_seq_len,
self.scheduler.config.base_shift,
self.scheduler.config.max_shift,
)
# For Inversion, reverse the sigmas
# sigmas = sigmas[::-1]
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler,
num_inference_steps,
device,
timesteps,
sigmas,
mu=mu,
)
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
self._num_timesteps = len(timesteps)
# handle guidance
if self.transformer.config.guidance_embeds:
guidance = torch.tensor([guidance_scale], device=device)
guidance = guidance.expand(latents.shape[0])
else:
guidance = None
self.scheduler.sigmas = reversed(self.scheduler.sigmas)
timesteps_zero_start = reversed(torch.cat([self.scheduler.timesteps[1:], torch.tensor([0], device=device)]))
timesteps_one_start = reversed(self.scheduler.timesteps)
self.scheduler.timesteps = timesteps_zero_start
# self.scheduler.timesteps = timesteps_one_start
timesteps = self.scheduler.timesteps
latents_list = []
latents_list.append(latents)
# 6. Denoising loop
for i, t in enumerate(tqdm(timesteps, desc=tqdm_desc)):
original_latents = latents.clone()
for j in range(fixed_point_iterations):
if self.interrupt:
continue
if j == 0:
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timestep = timesteps[i].expand(latents.shape[0]).to(latents.dtype)
else:
timestep = timesteps_one_start[i].expand(latents.shape[0]).to(latents.dtype)
noise_pred = self.transformer(
hidden_states=latents,
# YiYi notes: divide it by 1000 for now because we scale it by 1000 in the transforme rmodel (we should not keep it but I want to keep the inputs same for the model for testing)
timestep=timestep / 1000,
guidance=guidance,
pooled_projections=pooled_prompt_embeds,
encoder_hidden_states=prompt_embeds,
txt_ids=text_ids,
img_ids=latent_image_ids,
joint_attention_kwargs=self.joint_attention_kwargs,
return_dict=False,
)[0]
# compute the previous noisy sample x_t -> x_t-1
latents_dtype = latents.dtype
# noise_pred = -noise_pred
latents = self.scheduler.step(noise_pred, t, original_latents, return_dict=False, step_index=i)[0]
if latents.dtype != latents_dtype:
if torch.backends.mps.is_available():
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
latents = latents.to(latents_dtype)
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
# if XLA_AVAILABLE:
# xm.mark_step()
latents_list.append(latents)
# Offload all models
self.maybe_free_model_hooks()
return latents_list