addit / run_CLI_addit_real.py
YoadTew's picture
Add application file
504c7e8
#!/usr/bin/env python3
# Copyright (C) 2025 NVIDIA Corporation. All rights reserved.
#
# This work is licensed under the LICENSE file
# located at the root directory.
import os
import argparse
import torch
import random
from PIL import Image
from visualization_utils import show_images
from addit_flux_pipeline import AdditFluxPipeline
from addit_flux_transformer import AdditFluxTransformer2DModel
from addit_scheduler import AdditFlowMatchEulerDiscreteScheduler
from addit_methods import add_object_real
def main():
parser = argparse.ArgumentParser(description='Run ADDIT with real images')
# Required arguments
parser.add_argument('--source_image', type=str, default="images/bed_dark_room.jpg",
help='Path to the source image')
parser.add_argument('--prompt_source', type=str, default="A photo of a bed in a dark room",
help='Source prompt describing the original image')
parser.add_argument('--prompt_target', type=str, default="A photo of a dog lying on a bed in a dark room",
help='Target prompt describing the desired edited image')
parser.add_argument('--subject_token', type=str, default="dog",
help='Subject token to add to the image')
# Optional arguments
parser.add_argument('--output_dir', type=str, default='outputs',
help='Directory to save output images (default: outputs)')
parser.add_argument('--seed_src', type=int, default=6311,
help='Seed for source generation')
parser.add_argument('--seed_obj', type=int, default=1,
help='Seed for edited image generation')
parser.add_argument('--extended_scale', type=float, default=1.1,
help='Extended attention scale (default: 1.1)')
parser.add_argument('--structure_transfer_step', type=int, default=4,
help='Structure transfer step (default: 4)')
parser.add_argument('--blend_steps', type=int, nargs='*', default=[18],
help='Blend steps (default: [18])')
parser.add_argument('--localization_model', type=str, default="attention",
help='Localization model (default: attention, Options: [attention_points_sam, attention, attention_box_sam, attention_mask_sam, grounding_sam])')
parser.add_argument('--use_offset', action='store_true',
help='Use offset in processing')
parser.add_argument('--show_attention', action='store_true',
help='Show attention maps')
parser.add_argument('--disable_inversion', action='store_true',
help='Disable source image inversion')
parser.add_argument('--display_output', action='store_true',
help='Display output images during processing')
args = parser.parse_args()
assert args.subject_token in args.prompt_target, "Subject token must appear in the prompt_target"
# Set up device and model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
my_transformer = AdditFluxTransformer2DModel.from_pretrained(
"black-forest-labs/FLUX.1-dev",
subfolder="transformer",
torch_dtype=torch.bfloat16
)
pipe = AdditFluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
transformer=my_transformer,
torch_dtype=torch.bfloat16
).to(device)
pipe.scheduler = AdditFlowMatchEulerDiscreteScheduler.from_config(pipe.scheduler.config)
# Load and resize source image
source_image = Image.open(args.source_image).resize((1024, 1024))
print(f"Loaded source image: {args.source_image}")
# Set random seed
if args.seed_src is None:
random.seed(0)
args.seed_src = random.randint(0, 10000)
# Create output directory
os.makedirs(args.output_dir, exist_ok=True)
# Process the seeds
print(f"\nProcessing with source seed: {args.seed_src}, object seed: {args.seed_obj}")
src_image, edited_image = add_object_real(
pipe,
source_image=source_image,
prompt_source=args.prompt_source,
prompt_object=args.prompt_target,
subject_token=args.subject_token,
seed_src=args.seed_src,
seed_obj=args.seed_obj,
extended_scale=args.extended_scale,
structure_transfer_step=args.structure_transfer_step,
blend_steps=args.blend_steps,
localization_model=args.localization_model,
use_offset=args.use_offset,
show_attention=args.show_attention,
use_inversion=not args.disable_inversion,
display_output=args.display_output
)
# Save output images
src_filename = f"src_{args.prompt_source}_seed-src={args.seed_src}.png"
edited_filename = f"edited_{args.prompt_target}_seed-src={args.seed_src}_seed-obj={args.seed_obj}.png"
src_image.save(os.path.join(args.output_dir, src_filename))
edited_image.save(os.path.join(args.output_dir, edited_filename))
print(f"Saved images: {src_filename}, {edited_filename}")
if __name__ == "__main__":
main()