# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Copyright (C) 2025 NVIDIA Corporation. All rights reserved. # # This work is licensed under the LICENSE file # located at the root directory. from collections import defaultdict from diffusers.models.attention_processor import Attention, apply_rope from typing import Callable, List, Optional, Tuple, Union from addit_attention_store import AttentionStore from visualization_utils import show_tensors import torch import torch.nn.functional as F import numpy as np from scipy.optimize import brentq def apply_standard_attention(query, key, value, attn, attention_probs=None): batch_size, attn_heads, _, head_dim = query.shape # Do normal attention, to cache the attention scores query = query.reshape(batch_size*attn_heads, -1, head_dim) key = key.reshape(batch_size*attn_heads, -1, head_dim) value = value.reshape(batch_size*attn_heads, -1, head_dim) if attention_probs is None: attention_probs = attn.get_attention_scores(query, key) hidden_states = torch.bmm(attention_probs, value) hidden_states = hidden_states.view(batch_size, attn_heads, -1, head_dim) return hidden_states, attention_probs def apply_extended_attention(query, key, value, attention_store, attn, layer_name, step_index, extend_type="pixels", extended_scale=1., record_attention=False): batch_size = query.size(0) extend_query = query[1:] if extend_type == "full": added_key = key[0] * extended_scale added_value = value[0] elif extend_type == "text": added_key = key[0, :, :512] * extended_scale added_value = value[0, :, :512] elif extend_type == "pixels": added_key = key[0, :, 512:] added_value = value[0, :, 512:] key[1] = key[1] * extended_scale extend_key = torch.cat([added_key, key[1]], dim=1).unsqueeze(0) extend_value = torch.cat([added_value, value[1]], dim=1).unsqueeze(0) hidden_states_0 = F.scaled_dot_product_attention(query[:1], key[:1], value[:1], dropout_p=0.0, is_causal=False) if record_attention or attention_store.is_cache_attn_ratio(step_index): hidden_states_1, attention_probs_1 = apply_standard_attention(extend_query, extend_key, extend_value, attn) else: hidden_states_1 = F.scaled_dot_product_attention(extend_query, extend_key, extend_value, dropout_p=0.0, is_causal=False) if record_attention: # Store Attention seq_len = attention_probs_1.size(2) - attention_probs_1.size(1) self_attention_probs_1 = attention_probs_1[:,:,seq_len:] attention_store.store_attention(self_attention_probs_1, layer_name, 1, attn.heads) if attention_store.is_cache_attn_ratio(step_index): attention_store.store_attention_ratios(attention_probs_1, step_index, layer_name) hidden_states = torch.cat([hidden_states_0, hidden_states_1], dim=0) return hidden_states def apply_attention(query, key, value, attention_store, attn, layer_name, step_index, record_attention, extended_attention, extended_scale): if extended_attention: hidden_states = apply_extended_attention(query, key, value, attention_store, attn, layer_name, step_index, extended_scale=extended_scale, record_attention=record_attention) else: if record_attention: hidden_states_0 = F.scaled_dot_product_attention(query[:1], key[:1], value[:1], dropout_p=0.0, is_causal=False) hidden_states_1, attention_probs_1 = apply_standard_attention(query[1:], key[1:], value[1:], attn) attention_store.store_attention(attention_probs_1, layer_name, 1, attn.heads) hidden_states = torch.cat([hidden_states_0, hidden_states_1], dim=0) else: hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False) return hidden_states class AdditFluxAttnProcessor2_0: """Attention processor used typically in processing the SD3-like self-attention projections.""" def __init__(self, layer_name: str, attention_store: AttentionStore, extended_steps: Tuple[int, int] = (0, 30), **kwargs): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError("FluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") self.layer_name = layer_name self.layer_idx = int(layer_name.split(".")[-1]) self.attention_store = attention_store self.extended_steps = (0, extended_steps) if isinstance(extended_steps, int) else extended_steps def __call__( self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor = None, attention_mask: Optional[torch.FloatTensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, step_index: Optional[int] = None, extended_scale: Optional[float] = 1.0, ) -> torch.FloatTensor: input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) context_input_ndim = encoder_hidden_states.ndim if context_input_ndim == 4: batch_size, channel, height, width = encoder_hidden_states.shape encoder_hidden_states = encoder_hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size = encoder_hidden_states.shape[0] # `sample` projections. query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # `context` projections. encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) if attn.norm_added_q is not None: encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) if attn.norm_added_k is not None: encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj) # attention query = torch.cat([encoder_hidden_states_query_proj, query], dim=2) key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) if image_rotary_emb is not None: # YiYi to-do: update uising apply_rotary_emb # from ..embeddings import apply_rotary_emb # query = apply_rotary_emb(query, image_rotary_emb) # key = apply_rotary_emb(key, image_rotary_emb) query, key = apply_rope(query, key, image_rotary_emb) record_attention = self.attention_store.is_record_attention(self.layer_name, step_index) extend_start, extend_end = self.extended_steps extended_attention = extend_start <= step_index <= extend_end hidden_states = apply_attention(query, key, value, self.attention_store, attn, self.layer_name, step_index, record_attention, extended_attention, extended_scale) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) encoder_hidden_states, hidden_states = ( hidden_states[:, : encoder_hidden_states.shape[1]], hidden_states[:, encoder_hidden_states.shape[1] :], ) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) encoder_hidden_states = attn.to_add_out(encoder_hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if context_input_ndim == 4: encoder_hidden_states = encoder_hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) return hidden_states, encoder_hidden_states class AdditFluxSingleAttnProcessor2_0: r""" Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). """ def __init__(self, layer_name: str, attention_store: AttentionStore, extended_steps: Tuple[int, int] = (0, 30), **kwargs): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") self.layer_name = layer_name self.layer_idx = int(layer_name.split(".")[-1]) self.attention_store = attention_store self.extended_steps = (0, extended_steps) if isinstance(extended_steps, int) else extended_steps def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.FloatTensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, step_index: Optional[int] = None, extended_scale: Optional[float] = 1.0, ) -> torch.Tensor: input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # Apply RoPE if needed if image_rotary_emb is not None: # YiYi to-do: update uising apply_rotary_emb # from ..embeddings import apply_rotary_emb # query = apply_rotary_emb(query, image_rotary_emb) # key = apply_rotary_emb(key, image_rotary_emb) query, key = apply_rope(query, key, image_rotary_emb) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 record_attention = self.attention_store.is_record_attention(self.layer_name, step_index) extend_start, extend_end = self.extended_steps extended_attention = extend_start <= step_index <= extend_end hidden_states = apply_attention(query, key, value, self.attention_store, attn, self.layer_name, step_index, record_attention, extended_attention, extended_scale) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) return hidden_states