{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Copyright (C) 2025 NVIDIA Corporation. All rights reserved.\n", "#\n", "# This work is licensed under the LICENSE file\n", "# located at the root directory.\n", "\n", "import torch\n", "import random\n", "from PIL import Image\n", "\n", "from visualization_utils import show_images\n", "from addit_flux_pipeline import AdditFluxPipeline\n", "from addit_flux_transformer import AdditFluxTransformer2DModel\n", "from addit_scheduler import AdditFlowMatchEulerDiscreteScheduler\n", "from addit_methods import add_object_real\n", "\n", "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n", "my_transformer = AdditFluxTransformer2DModel.from_pretrained(\"black-forest-labs/FLUX.1-dev\", subfolder=\"transformer\", torch_dtype=torch.bfloat16)\n", "\n", "pipe = AdditFluxPipeline.from_pretrained(\"black-forest-labs/FLUX.1-dev\", \n", " transformer=my_transformer,\n", " torch_dtype=torch.bfloat16).to(device)\n", "pipe.scheduler = AdditFlowMatchEulerDiscreteScheduler.from_config(pipe.scheduler.config)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Reset the GPU memory tracking\n", "torch.cuda.reset_max_memory_allocated(0)\n", "\n", "# source_image = Image.open(\"images/cat.jpg\").resize((1024, 1024))\n", "# (prompt_src, prompt_tgt), subject_token = [\"A photo of a cat\", \"A photo of a cat wearing a scarf\"], \"scarf\"\n", "\n", "source_image = Image.open(\"images/bed_dark_room.jpg\").resize((1024, 1024))\n", "(prompt_src, prompt_tgt), subject_token = [\"A photo of a bed in a dark room\", \"A photo of a dog lying on a bed in a dark room\"], \"dog\"\n", "\n", "random.seed(0)\n", "seed_src = random.randint(0, 10000)\n", "seeds_obj = [0,1,2]\n", "\n", "for seed_obj in seeds_obj:\n", " images_list = add_object_real(pipe, source_image=source_image, prompt_source=prompt_src, prompt_object=prompt_tgt, \n", " subject_token=subject_token, seed_src=seed_src, seed_obj=seed_obj, \n", " extended_scale =1.1, structure_transfer_step=4, blend_steps = [18], #localization_model=\"attention\",\n", " use_offset=False, show_attention=True, use_inversion=True, display_output=True)\n", "\n", "# Report maximum GPU memory usage in GB\n", "max_memory_used = torch.cuda.max_memory_allocated(0) / (1024**3) # Convert to GB\n", "print(f\"Maximum GPU memory used: {max_memory_used:.2f} GB\")" ] } ], "metadata": { "kernelspec": { "display_name": "addit", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.9" } }, "nbformat": 4, "nbformat_minor": 2 }