Spaces:
Restarting
on
A10G
Restarting
on
A10G
Upload 225 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +20 -0
- README.md +139 -14
- llava/__init__.py +8 -0
- llava/cli/infer_audio.py +88 -0
- llava/constants.py +55 -0
- llava/conversation.py +197 -0
- llava/data/__init__.py +9 -0
- llava/data/base.py +95 -0
- llava/data/builder.py +193 -0
- llava/data/collate.py +166 -0
- llava/data/dataset.py +1635 -0
- llava/data/datasets_mixture.py +80 -0
- llava/data/registry/datasets/audio_test.yaml +97 -0
- llava/data/registry/datasets/default.yaml +5 -0
- llava/data/registry/mixtures.yaml +78 -0
- llava/entry.py +60 -0
- llava/eval/__init__.py +15 -0
- llava/eval/eval_audio_bench.py +117 -0
- llava/eval/mmmu_utils/__pycache__/eval_utils.cpython-311.pyc +0 -0
- llava/eval/mmmu_utils/eval_utils.py +61 -0
- llava/eval/registry_audio.yaml +93 -0
- llava/media.py +47 -0
- llava/mm_utils.py +641 -0
- llava/model/FloatPointQuantizeTorch.py +85 -0
- llava/model/FloatPointQuantizeTriton.py +199 -0
- llava/model/__init__.py +35 -0
- llava/model/apply_delta.py +77 -0
- llava/model/builder.py +161 -0
- llava/model/coat/activation/__init__.py +6 -0
- llava/model/coat/activation/fake_quantization/FloatPointQuantizeTorch.py +101 -0
- llava/model/coat/activation/fake_quantization/FloatPointQuantizeTriton.py +181 -0
- llava/model/coat/activation/fake_quantization/quantize_function.py +239 -0
- llava/model/coat/activation/fake_quantization/utils.py +115 -0
- llava/model/coat/activation/models/_fp8_quantization_config.py +67 -0
- llava/model/coat/activation/models/_fp8_weightcache.py +48 -0
- llava/model/coat/activation/models/_fp8manager.py +31 -0
- llava/model/coat/activation/models/coat_llama.py +1479 -0
- llava/model/coat/activation/models/coat_llama_convert_from_hf.py +71 -0
- llava/model/coat/activation/models/coat_olmo.py +1942 -0
- llava/model/coat/activation/real_quantization/__init__.py +31 -0
- llava/model/coat/activation/real_quantization/_dequantize.py +162 -0
- llava/model/coat/activation/real_quantization/_division.py +212 -0
- llava/model/coat/activation/real_quantization/_division_transpose.py +215 -0
- llava/model/coat/activation/real_quantization/_memory_io.py +180 -0
- llava/model/coat/activation/real_quantization/_quantize.py +176 -0
- llava/model/coat/activation/real_quantization/_quantize_pertensor.py +152 -0
- llava/model/coat/activation/real_quantization/_quantize_pertensor_transpose.py +155 -0
- llava/model/coat/activation/real_quantization/_transpose.py +121 -0
- llava/model/coat/activation/real_quantization/add_bwd.py +205 -0
- llava/model/coat/activation/real_quantization/add_fwd.py +219 -0
.gitattributes
CHANGED
@@ -33,3 +33,23 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
llava/model/coat/optimizer/kernels/build/lib.linux-x86_64-cpython-310/qoptim_cuda.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
37 |
+
llava/model/coat/optimizer/kernels/build/temp.linux-x86_64-cpython-310/bindings.o filter=lfs diff=lfs merge=lfs -text
|
38 |
+
llava/model/coat/optimizer/kernels/build/temp.linux-x86_64-cpython-310/fp8_adamw_cuda.o filter=lfs diff=lfs merge=lfs -text
|
39 |
+
llava/model/coat/optimizer/kernels/build/temp.linux-x86_64-cpython-310/fp8_adamw_expand_cuda.o filter=lfs diff=lfs merge=lfs -text
|
40 |
+
static/af3_main_diagram-1.png filter=lfs diff=lfs merge=lfs -text
|
41 |
+
static/af3_radial-1.png filter=lfs diff=lfs merge=lfs -text
|
42 |
+
static/af3_sota.png filter=lfs diff=lfs merge=lfs -text
|
43 |
+
static/audio/audio2.wav filter=lfs diff=lfs merge=lfs -text
|
44 |
+
static/chat/audio1.mp3 filter=lfs diff=lfs merge=lfs -text
|
45 |
+
static/chat/audio2.mp3 filter=lfs diff=lfs merge=lfs -text
|
46 |
+
static/emergent/audio1.wav filter=lfs diff=lfs merge=lfs -text
|
47 |
+
static/logo-no-bg.png filter=lfs diff=lfs merge=lfs -text
|
48 |
+
static/speech/339a1acd-afcb-466b-a7b1-8661e59b1e56.wav filter=lfs diff=lfs merge=lfs -text
|
49 |
+
static/speech/audio3.wav filter=lfs diff=lfs merge=lfs -text
|
50 |
+
static/speech/bcc6057d-0dda-435d-b956-a96ab27bc9e4.wav filter=lfs diff=lfs merge=lfs -text
|
51 |
+
static/speech/be84d293-5e9c-4158-9a1e-b4dd1acb7d70.wav filter=lfs diff=lfs merge=lfs -text
|
52 |
+
static/speech/fec3402e-7883-45c0-90d4-38647f615dc3.wav filter=lfs diff=lfs merge=lfs -text
|
53 |
+
static/think/audio1.wav filter=lfs diff=lfs merge=lfs -text
|
54 |
+
static/think/audio2.wav filter=lfs diff=lfs merge=lfs -text
|
55 |
+
static/voice/voice_2.mp3 filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,14 +1,139 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
<div align="center" style="display: flex; justify-content: center; align-items: center; text-align: center;">
|
3 |
+
<a href="https://github.com/NVIDIA/audio-flamingo" style="margin-right: 20px; text-decoration: none; display: flex; align-items: center;">
|
4 |
+
<img src="static/logo-no-bg.png" alt="Audio Flamingo 3 🔥🚀🔥" width="120">
|
5 |
+
</a>
|
6 |
+
</div>
|
7 |
+
<div align="center" style="display: flex; justify-content: center; align-items: center; text-align: center;">
|
8 |
+
<h2>
|
9 |
+
Audio Flamingo 3: Advancing Audio Intelligence with Fully Open Large Audio-Language Models
|
10 |
+
</h2>
|
11 |
+
</div>
|
12 |
+
|
13 |
+
<div align="center" style="display: flex; justify-content: center; margin-top: 10px;">
|
14 |
+
<a href=""><img src="https://img.shields.io/badge/arXiv-2503.03983-AD1C18" style="margin-right: 5px;"></a>
|
15 |
+
<a href="https://research.nvidia.com/labs/adlr/AF3/"><img src="https://img.shields.io/badge/Demo page-228B22" style="margin-right: 5px;"></a>
|
16 |
+
<a href="https://github.com/NVIDIA/audio-flamingo"><img src='https://img.shields.io/badge/Github-Audio Flamingo 3-9C276A' style="margin-right: 5px;"></a>
|
17 |
+
<a href="https://github.com/NVIDIA/audio-flamingo/stargazers"><img src="https://img.shields.io/github/stars/NVIDIA/audio-flamingo.svg?style=social"></a>
|
18 |
+
</div>
|
19 |
+
|
20 |
+
<div align="center" style="display: flex; justify-content: center; margin-top: 10px; flex-wrap: wrap; gap: 5px;">
|
21 |
+
<a href="https://huggingface.co/nvidia/audio-flamingo-3">
|
22 |
+
<img src="https://img.shields.io/badge/🤗-Checkpoints-ED5A22.svg">
|
23 |
+
</a>
|
24 |
+
<a href="https://huggingface.co/nvidia/audio-flamingo-3-chat">
|
25 |
+
<img src="https://img.shields.io/badge/🤗-Checkpoints (Chat)-ED5A22.svg">
|
26 |
+
</a>
|
27 |
+
<a href="https://huggingface.co/datasets/nvidia/AudioSkills">
|
28 |
+
<img src="https://img.shields.io/badge/🤗-Dataset: AudioSkills--XL-ED5A22.svg">
|
29 |
+
</a>
|
30 |
+
<a href="https://huggingface.co/datasets/nvidia/LongAudio">
|
31 |
+
<img src="https://img.shields.io/badge/🤗-Dataset: LongAudio--XL-ED5A22.svg">
|
32 |
+
</a>
|
33 |
+
<a href="https://huggingface.co/datasets/nvidia/AF-Chat">
|
34 |
+
<img src="https://img.shields.io/badge/🤗-Dataset: AF--Chat-ED5A22.svg">
|
35 |
+
</a>
|
36 |
+
<a href="https://huggingface.co/datasets/nvidia/AF-Think">
|
37 |
+
<img src="https://img.shields.io/badge/🤗-Dataset: AF--Think-ED5A22.svg">
|
38 |
+
</a>
|
39 |
+
</div>
|
40 |
+
|
41 |
+
<div align="center" style="display: flex; justify-content: center; margin-top: 10px;">
|
42 |
+
<a href="https://huggingface.co/spaces/nvidia/audio_flamingo_3"><img src="https://img.shields.io/badge/🤗-Gradio Demo (7B)-5F9EA0.svg" style="margin-right: 5px;"></a>
|
43 |
+
</div>
|
44 |
+
|
45 |
+
## Overview
|
46 |
+
|
47 |
+
This repo contains the PyTorch implementation of [Audio Flamingo 3: Advancing Audio Intelligence with Fully Open Large Audio-Language Models](). Audio Flamingo 3 (AF3) is a fully open, state-of-the-art Large Audio-Language Model (LALM) that advances reasoning and understanding across speech, sounds, and music. AF3 builds on previous work with innovations in:
|
48 |
+
|
49 |
+
- Unified audio representation learning (speech, sound, music)
|
50 |
+
- Flexible, on-demand chain-of-thought reasoning (Thinking in Audio)
|
51 |
+
- Long-context audio comprehension (including speech and up to 10 minutes)
|
52 |
+
- Multi-turn, multi-audio conversational dialogue (AF3-Chat)
|
53 |
+
- Voice-to-voice interaction (AF3-Chat)
|
54 |
+
|
55 |
+
Extensive evaluations confirm AF3’s effectiveness, setting new benchmarks on over 20 public audio understanding and reasoning tasks.
|
56 |
+
|
57 |
+
|
58 |
+
## Main Results
|
59 |
+
|
60 |
+
Audio Flamingo 3 outperforms prior SOTA models including GAMA, Audio Flamingo, Audio Flamingo 2, Qwen-Audio, Qwen2-Audio, Qwen2.5-Omni.LTU, LTU-AS, SALMONN, AudioGPT, Gemini Flash v2 and Gemini Pro v1.5 on a number of understanding and reasoning benchmarks.
|
61 |
+
|
62 |
+
<div align="center">
|
63 |
+
<img class="img-full" src="static/af3_radial-1.png" width="300">
|
64 |
+
</div>
|
65 |
+
|
66 |
+
<div align="center">
|
67 |
+
<img class="img-full" src="static/af3_sota.png" width="400">
|
68 |
+
</div>
|
69 |
+
|
70 |
+
## Audio Flamingo 3 Architecture
|
71 |
+
|
72 |
+
Audio Flamingo 3 uses AF-Whisper unified audio encoder, MLP-based audio adaptor, Decoder-only LLM backbone (Qwen2.5-7B), and Streaming TTS module (AF3-Chat).
|
73 |
+
Audio Flamingo 3 can take up to 10 minutes of audio inputs.
|
74 |
+
|
75 |
+
<div align="center">
|
76 |
+
<img class="img-full" src="static/af3_main_diagram-1.png" width="800">
|
77 |
+
</div>
|
78 |
+
|
79 |
+
## Installation
|
80 |
+
|
81 |
+
```bash
|
82 |
+
./environment_setup.sh af3
|
83 |
+
```
|
84 |
+
|
85 |
+
## Code Structure
|
86 |
+
|
87 |
+
- The folder ```audio_flamingo_3/``` contains the main training and inference code of Audio Flamingo 3.
|
88 |
+
- The folder ```audio_flamingo_3/scripts``` contains the inference scripts of Audio Flamingo 3 in case you would like to use our pretrained checkpoints on HuggingFace.
|
89 |
+
|
90 |
+
Each folder is self-contained and we expect no cross dependencies between these folders. This repo does not contain the code for Streaming-TTS pipeline which will released in the near future.
|
91 |
+
|
92 |
+
## Single Line Inference
|
93 |
+
|
94 |
+
To infer stage 3 model directly, run the command below:
|
95 |
+
```bash
|
96 |
+
python llava/cli/infer_audio.py --model-base /path/to/checkpoint/af3-7b --conv-mode auto --text "Please describe the audio in detail" --media static/audio1.wav
|
97 |
+
```
|
98 |
+
|
99 |
+
To infer the model in stage 3.5 model, run the command below:
|
100 |
+
```bash
|
101 |
+
python llava/cli/infer_audio.py --model-base /path/to/checkpoint/af3-7b --model-path /path/to/checkpoint/af3-7b/stage35 --conv-mode auto --text "Please describe the audio in detail" --media static/audio1.wav --peft-mode
|
102 |
+
```
|
103 |
+
|
104 |
+
## References
|
105 |
+
|
106 |
+
The main training and inferencing code within each folder are modified from [NVILA](https://github.com/NVlabs/VILA/tree/main) [Apache license](incl_licenses/License_1.md).
|
107 |
+
|
108 |
+
## License
|
109 |
+
|
110 |
+
- The code in this repo is under [MIT license](incl_licenses/MIT_license.md).
|
111 |
+
- The checkpoints are for non-commercial use only [NVIDIA OneWay Noncommercial License](incl_licenses/NVIDIA_OneWay_Noncommercial_License.docx). They are also subject to the [Qwen Research license](https://huggingface.co/Qwen/Qwen2.5-7B/blob/main/LICENSE), the [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and the original licenses accompanying each training dataset.
|
112 |
+
- Notice: Audio Flamingo 3 is built with Qwen-2.5. Qwen is licensed under the Qwen RESEARCH LICENSE AGREEMENT, Copyright (c) Alibaba Cloud. All Rights Reserved.
|
113 |
+
|
114 |
+
|
115 |
+
## Citation
|
116 |
+
|
117 |
+
- Audio Flamingo 2
|
118 |
+
```
|
119 |
+
@article{ghosh2025audio,
|
120 |
+
title={Audio Flamingo 2: An Audio-Language Model with Long-Audio Understanding and Expert Reasoning Abilities},
|
121 |
+
author={Ghosh, Sreyan and Kong, Zhifeng and Kumar, Sonal and Sakshi, S and Kim, Jaehyeon and Ping, Wei and Valle, Rafael and Manocha, Dinesh and Catanzaro, Bryan},
|
122 |
+
journal={arXiv preprint arXiv:2503.03983},
|
123 |
+
year={2025}
|
124 |
+
}
|
125 |
+
```
|
126 |
+
|
127 |
+
- Audio Flamingo
|
128 |
+
```
|
129 |
+
@inproceedings{kong2024audio,
|
130 |
+
title={Audio Flamingo: A Novel Audio Language Model with Few-Shot Learning and Dialogue Abilities},
|
131 |
+
author={Kong, Zhifeng and Goel, Arushi and Badlani, Rohan and Ping, Wei and Valle, Rafael and Catanzaro, Bryan},
|
132 |
+
booktitle={International Conference on Machine Learning},
|
133 |
+
pages={25125--25148},
|
134 |
+
year={2024},
|
135 |
+
organization={PMLR}
|
136 |
+
}
|
137 |
+
```
|
138 |
+
|
139 |
+
|
llava/__init__.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 NVIDIA CORPORATION.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
|
5 |
+
# LICENSE is in incl_licenses directory.
|
6 |
+
|
7 |
+
from .entry import *
|
8 |
+
from .media import *
|
llava/cli/infer_audio.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 NVIDIA CORPORATION.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
|
5 |
+
# LICENSE is in incl_licenses directory.
|
6 |
+
|
7 |
+
import argparse
|
8 |
+
import importlib.util
|
9 |
+
import json
|
10 |
+
import os
|
11 |
+
|
12 |
+
from pydantic import BaseModel
|
13 |
+
from termcolor import colored
|
14 |
+
|
15 |
+
import llava
|
16 |
+
from llava import conversation as clib
|
17 |
+
from llava.media import Image, Video, Sound
|
18 |
+
from llava.model.configuration_llava import JsonSchemaResponseFormat, ResponseFormat
|
19 |
+
from peft import PeftModel
|
20 |
+
import torch
|
21 |
+
|
22 |
+
def get_schema_from_python_path(path: str) -> str:
|
23 |
+
schema_path = os.path.abspath(path)
|
24 |
+
spec = importlib.util.spec_from_file_location("schema_module", schema_path)
|
25 |
+
schema_module = importlib.util.module_from_spec(spec)
|
26 |
+
spec.loader.exec_module(schema_module)
|
27 |
+
|
28 |
+
# Get the Main class from the loaded module
|
29 |
+
Main = schema_module.Main
|
30 |
+
assert issubclass(
|
31 |
+
Main, BaseModel
|
32 |
+
), f"The provided python file {path} does not contain a class Main that describes a JSON schema"
|
33 |
+
return Main.schema_json()
|
34 |
+
|
35 |
+
|
36 |
+
def main() -> None:
|
37 |
+
parser = argparse.ArgumentParser()
|
38 |
+
parser.add_argument("--model-base", "-mb", type=str, required=True)
|
39 |
+
parser.add_argument("--model-path", "-mp", type=str, required=True)
|
40 |
+
parser.add_argument("--conv-mode", "-c", type=str, default="auto")
|
41 |
+
parser.add_argument("--text", type=str)
|
42 |
+
parser.add_argument("--media", type=str, nargs="+")
|
43 |
+
parser.add_argument("--json-mode", action="store_true")
|
44 |
+
parser.add_argument("--peft-mode", action="store_true")
|
45 |
+
parser.add_argument("--json-schema", type=str, default=None)
|
46 |
+
args = parser.parse_args()
|
47 |
+
|
48 |
+
# Convert json mode to response format
|
49 |
+
if not args.json_mode:
|
50 |
+
response_format = None
|
51 |
+
elif args.json_schema is None:
|
52 |
+
response_format = ResponseFormat(type="json_object")
|
53 |
+
else:
|
54 |
+
schema_str = get_schema_from_python_path(args.json_schema)
|
55 |
+
print(schema_str)
|
56 |
+
response_format = ResponseFormat(type="json_schema", json_schema=JsonSchemaResponseFormat(schema=schema_str))
|
57 |
+
|
58 |
+
# Load model
|
59 |
+
model = llava.load(args.model_base)
|
60 |
+
if args.peft_mode:
|
61 |
+
model = PeftModel.from_pretrained(
|
62 |
+
model,
|
63 |
+
args.model_path,
|
64 |
+
device_map="auto",
|
65 |
+
torch_dtype=torch.float16,
|
66 |
+
)
|
67 |
+
# Set conversation mode
|
68 |
+
clib.default_conversation = clib.conv_templates[args.conv_mode].copy()
|
69 |
+
|
70 |
+
# Prepare multi-modal prompt
|
71 |
+
prompt = []
|
72 |
+
if args.media is not None:
|
73 |
+
for media in args.media or []:
|
74 |
+
if any(media.endswith(ext) for ext in [".wav",".mp3", ".flac"]):
|
75 |
+
media = Sound(media)
|
76 |
+
else:
|
77 |
+
raise ValueError(f"Unsupported media type: {media}")
|
78 |
+
prompt.append(media)
|
79 |
+
if args.text is not None:
|
80 |
+
prompt.append(args.text)
|
81 |
+
|
82 |
+
# Generate response
|
83 |
+
response = model.generate_content(prompt, response_format=response_format)
|
84 |
+
print(colored(response, "cyan", attrs=["bold"]))
|
85 |
+
|
86 |
+
|
87 |
+
if __name__ == "__main__":
|
88 |
+
main()
|
llava/constants.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 NVIDIA CORPORATION.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
|
5 |
+
# LICENSE is in incl_licenses directory.
|
6 |
+
|
7 |
+
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
#
|
21 |
+
# SPDX-License-Identifier: Apache-2.0
|
22 |
+
|
23 |
+
# This file is modified from https://github.com/haotian-liu/LLaVA/
|
24 |
+
|
25 |
+
CONTROLLER_HEART_BEAT_EXPIRATION = 30
|
26 |
+
WORKER_HEART_BEAT_INTERVAL = 15
|
27 |
+
|
28 |
+
LOGDIR = "."
|
29 |
+
|
30 |
+
# Model Constants
|
31 |
+
IGNORE_INDEX = -100
|
32 |
+
DEFAULT_SOUND_TOKEN = "<sound>"
|
33 |
+
DEFAULT_SPEECH_TOKEN = "<speech>"
|
34 |
+
SENTINEL_TOKEN = "<vila/sentinel>"
|
35 |
+
|
36 |
+
MEDIA_TOKENS = {
|
37 |
+
"speech": "<speech>",
|
38 |
+
"sound": "<sound>",
|
39 |
+
}
|
40 |
+
|
41 |
+
|
42 |
+
"""
|
43 |
+
151643: AddedToken("<|endoftext|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
|
44 |
+
151644: AddedToken("<|im_start|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
|
45 |
+
151645: AddedToken("<|im_end|>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
|
46 |
+
151646: AddedToken("[BOS]", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
|
47 |
+
151647: AddedToken("[PAD]", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
|
48 |
+
151648: AddedToken("<vila/sentinel>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
|
49 |
+
151649: AddedToken("<image>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
|
50 |
+
151650: AddedToken("<vila/video>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
|
51 |
+
151651: AddedToken("<sound>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
|
52 |
+
151652: AddedToken("<speech>", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True),
|
53 |
+
|
54 |
+
"""
|
55 |
+
NUM_EXTRA_TOKENS = 10
|
llava/conversation.py
ADDED
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 NVIDIA CORPORATION.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
|
5 |
+
# LICENSE is in incl_licenses directory.
|
6 |
+
|
7 |
+
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
#
|
21 |
+
# SPDX-License-Identifier: Apache-2.0
|
22 |
+
# This file is modified from https://github.com/haotian-liu/LLaVA/
|
23 |
+
|
24 |
+
import dataclasses
|
25 |
+
from enum import Enum, auto
|
26 |
+
from typing import List
|
27 |
+
|
28 |
+
from llava.utils.logging import logger
|
29 |
+
|
30 |
+
|
31 |
+
class SeparatorStyle(Enum):
|
32 |
+
"""Different separator style."""
|
33 |
+
|
34 |
+
AUTO = auto()
|
35 |
+
TWO = auto()
|
36 |
+
MPT = auto()
|
37 |
+
PLAIN = auto()
|
38 |
+
LLAMA_3 = auto()
|
39 |
+
|
40 |
+
|
41 |
+
@dataclasses.dataclass
|
42 |
+
class Conversation:
|
43 |
+
"""A class that keeps all conversation history."""
|
44 |
+
|
45 |
+
system: str
|
46 |
+
roles: List[str]
|
47 |
+
messages: List[List[str]]
|
48 |
+
sep_style: SeparatorStyle = SeparatorStyle.AUTO
|
49 |
+
sep: str = "###"
|
50 |
+
sep2: str = None
|
51 |
+
version: str = "Unknown"
|
52 |
+
|
53 |
+
def get_prompt(self):
|
54 |
+
messages = self.messages
|
55 |
+
if len(messages) > 0 and type(messages[0][1]) is tuple:
|
56 |
+
messages = self.messages.copy()
|
57 |
+
init_role, init_msg = messages[0].copy()
|
58 |
+
init_msg = init_msg[0].replace("<image>", "").strip()
|
59 |
+
messages[0] = (init_role, "<image>\n" + init_msg)
|
60 |
+
|
61 |
+
if self.sep_style == SeparatorStyle.TWO:
|
62 |
+
seps = [self.sep, self.sep2]
|
63 |
+
ret = self.system + seps[0]
|
64 |
+
for i, (role, message) in enumerate(messages):
|
65 |
+
if message:
|
66 |
+
if type(message) is tuple:
|
67 |
+
message, _, _ = message
|
68 |
+
ret += role + ": " + message + seps[i % 2]
|
69 |
+
else:
|
70 |
+
ret += role + ":"
|
71 |
+
elif self.sep_style == SeparatorStyle.LLAMA_3:
|
72 |
+
ret = self.system + self.sep
|
73 |
+
for rid, (role, message) in enumerate(messages):
|
74 |
+
if message:
|
75 |
+
if type(message) is tuple:
|
76 |
+
message = message[0]
|
77 |
+
sep = self.sep if rid < len(messages) - 1 else self.sep2
|
78 |
+
ret += role + message + sep
|
79 |
+
else:
|
80 |
+
ret += role
|
81 |
+
elif self.sep_style == SeparatorStyle.MPT:
|
82 |
+
ret = self.system + self.sep
|
83 |
+
for role, message in messages:
|
84 |
+
if message:
|
85 |
+
if type(message) is tuple:
|
86 |
+
message, _, _ = message
|
87 |
+
ret += role + message + self.sep
|
88 |
+
else:
|
89 |
+
ret += role
|
90 |
+
elif self.sep_style == SeparatorStyle.PLAIN:
|
91 |
+
seps = [self.sep, self.sep2]
|
92 |
+
ret = self.system
|
93 |
+
for i, (role, message) in enumerate(messages):
|
94 |
+
if message:
|
95 |
+
if type(message) is tuple:
|
96 |
+
message, _, _ = message
|
97 |
+
ret += message + seps[i % 2]
|
98 |
+
else:
|
99 |
+
ret += ""
|
100 |
+
else:
|
101 |
+
raise ValueError(f"Invalid style: {self.sep_style}")
|
102 |
+
|
103 |
+
return ret
|
104 |
+
|
105 |
+
def append_message(self, role, message):
|
106 |
+
self.messages.append([role, message])
|
107 |
+
|
108 |
+
def copy(self):
|
109 |
+
return Conversation(
|
110 |
+
system=self.system,
|
111 |
+
roles=self.roles,
|
112 |
+
messages=[[x, y] for x, y in self.messages],
|
113 |
+
sep_style=self.sep_style,
|
114 |
+
sep=self.sep,
|
115 |
+
sep2=self.sep2,
|
116 |
+
version=self.version,
|
117 |
+
)
|
118 |
+
|
119 |
+
|
120 |
+
conv_auto = Conversation(
|
121 |
+
system="",
|
122 |
+
roles=("", ""),
|
123 |
+
messages=(),
|
124 |
+
sep_style=SeparatorStyle.AUTO,
|
125 |
+
sep="\n",
|
126 |
+
)
|
127 |
+
|
128 |
+
conv_vicuna_v1 = Conversation(
|
129 |
+
system="A chat between a curious user and an artificial intelligence assistant. "
|
130 |
+
"The assistant gives helpful, detailed, and polite answers to the user's questions.",
|
131 |
+
roles=("USER", "ASSISTANT"),
|
132 |
+
version="v1",
|
133 |
+
messages=(),
|
134 |
+
sep_style=SeparatorStyle.TWO,
|
135 |
+
sep=" ",
|
136 |
+
sep2="</s>",
|
137 |
+
)
|
138 |
+
|
139 |
+
conv_llava_plain = Conversation(
|
140 |
+
system="",
|
141 |
+
roles=("", ""),
|
142 |
+
messages=(),
|
143 |
+
sep_style=SeparatorStyle.PLAIN,
|
144 |
+
sep="\n",
|
145 |
+
)
|
146 |
+
|
147 |
+
hermes_2 = Conversation(
|
148 |
+
system="<|im_start|>system\nAnswer the questions.",
|
149 |
+
roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
|
150 |
+
sep_style=SeparatorStyle.MPT,
|
151 |
+
sep="<|im_end|>",
|
152 |
+
messages=(),
|
153 |
+
version="hermes-2",
|
154 |
+
)
|
155 |
+
|
156 |
+
# Template added by Yukang. Note (kentang-mit@): sep is <|eot_id|> for official template.
|
157 |
+
llama_3_chat = Conversation(
|
158 |
+
system="<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\nYou are a helpful language and vision assistant. "
|
159 |
+
"You are able to understand the visual content that the user provides, "
|
160 |
+
"and assist the user with a variety of tasks using natural language.",
|
161 |
+
roles=("<|start_header_id|>user<|end_header_id|>\n\n", "<|start_header_id|>assistant<|end_header_id|>\n\n"),
|
162 |
+
version="llama_v3",
|
163 |
+
messages=(),
|
164 |
+
sep_style=SeparatorStyle.LLAMA_3,
|
165 |
+
sep="<|eot_id|>",
|
166 |
+
sep2="<|end_of_text|>",
|
167 |
+
)
|
168 |
+
|
169 |
+
|
170 |
+
default_conversation = conv_auto
|
171 |
+
conv_templates = {
|
172 |
+
"auto": conv_auto,
|
173 |
+
"hermes-2": hermes_2,
|
174 |
+
"llama_3": llama_3_chat,
|
175 |
+
"v1": conv_vicuna_v1,
|
176 |
+
"vicuna_v1": conv_vicuna_v1,
|
177 |
+
"plain": conv_llava_plain,
|
178 |
+
}
|
179 |
+
|
180 |
+
|
181 |
+
CONVERSATION_MODE_MAPPING = {
|
182 |
+
"vila1.5-3b": "vicuna_v1",
|
183 |
+
"vila1.5-8b": "llama_3",
|
184 |
+
"vila1.5-13b": "vicuna_v1",
|
185 |
+
"vila1.5-40b": "hermes-2",
|
186 |
+
"llama-3": "llama_3",
|
187 |
+
"llama3": "llama_3",
|
188 |
+
}
|
189 |
+
|
190 |
+
|
191 |
+
def auto_set_conversation_mode(model_name_or_path: str) -> str:
|
192 |
+
global default_conversation
|
193 |
+
for k, v in CONVERSATION_MODE_MAPPING.items():
|
194 |
+
if k in model_name_or_path.lower():
|
195 |
+
logger.info(f"Setting conversation mode to `{v}` based on model name/path `{model_name_or_path}`.")
|
196 |
+
default_conversation = conv_templates[v]
|
197 |
+
return
|
llava/data/__init__.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 NVIDIA CORPORATION.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
|
5 |
+
# LICENSE is in incl_licenses directory.
|
6 |
+
|
7 |
+
from .builder import *
|
8 |
+
from .dataset import *
|
9 |
+
from .datasets_mixture import *
|
llava/data/base.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 NVIDIA CORPORATION.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
|
5 |
+
# LICENSE is in incl_licenses directory.
|
6 |
+
|
7 |
+
import random
|
8 |
+
from typing import Any, Dict, List
|
9 |
+
|
10 |
+
import torch
|
11 |
+
from torch.utils.data import Dataset
|
12 |
+
from transformers import PreTrainedTokenizer
|
13 |
+
|
14 |
+
from llava.mm_utils import dynamic_process_images_and_prompt, dynamic_s2_process_images_and_prompt, process_images
|
15 |
+
from llava.train.args import DataArguments
|
16 |
+
from llava.utils.logging import logger
|
17 |
+
from llava.utils.media import extract_media
|
18 |
+
from llava.utils.tokenizer import preprocess_conversation
|
19 |
+
|
20 |
+
__all__ = ["BaseDataset"]
|
21 |
+
|
22 |
+
def _process_speech(speech: List[Any], data_args: DataArguments) -> torch.Tensor:
|
23 |
+
return torch.tensor(speech)
|
24 |
+
|
25 |
+
def _process_sound(sound: List[Any], data_args: DataArguments) -> torch.Tensor:
|
26 |
+
return torch.tensor(sound)
|
27 |
+
|
28 |
+
def _process_sound_masks(sound_masks: List[Any], data_args: DataArguments) -> torch.Tensor:
|
29 |
+
return torch.tensor(sound_masks)
|
30 |
+
|
31 |
+
|
32 |
+
class BaseDataset(Dataset):
|
33 |
+
def __init__(
|
34 |
+
self,
|
35 |
+
tokenizer: PreTrainedTokenizer,
|
36 |
+
data_args: DataArguments,
|
37 |
+
no_system_prompt: bool = False,
|
38 |
+
**kwargs: Any,
|
39 |
+
) -> None:
|
40 |
+
super().__init__()
|
41 |
+
self.tokenizer = tokenizer
|
42 |
+
self.data_args = data_args
|
43 |
+
self.no_system_prompt = no_system_prompt
|
44 |
+
self.instances = []
|
45 |
+
self.enable_dynamic_res = False
|
46 |
+
self.enable_dynamic_res_s2 = False
|
47 |
+
# global_batch_size: int,
|
48 |
+
self.global_batch_size = kwargs.get("global_batch_size", 1)
|
49 |
+
|
50 |
+
# by default, dataset cls will resample on failure
|
51 |
+
self.resample_on_failure = kwargs.get("resample_on_failure", True)
|
52 |
+
|
53 |
+
# by default, dataset cls will resample on failure
|
54 |
+
self.resample_on_failure = kwargs.get("resample_on_failure", True)
|
55 |
+
|
56 |
+
def process(self, instance: Dict[str, Any]) -> List[Dict[str, Any]]:
|
57 |
+
raise NotImplementedError
|
58 |
+
|
59 |
+
def __getitem__(self, index: int) -> Dict[str, Any]:
|
60 |
+
instance = self.instances[index]
|
61 |
+
|
62 |
+
try:
|
63 |
+
# Process instance to conversation
|
64 |
+
conversation = self.process(instance)
|
65 |
+
|
66 |
+
# Extract media from conversation
|
67 |
+
media, media_meta = extract_media(conversation, self.data_args)
|
68 |
+
|
69 |
+
if "speech" in media:
|
70 |
+
processed_speech = _process_speech(media["speech"], self.data_args)
|
71 |
+
if "sound" in media:
|
72 |
+
processed_sound = _process_sound(media["sound"], self.data_args)
|
73 |
+
processed_sound_feature_masks = _process_sound_masks(media_meta["sound_feature_masks"], self.data_args)
|
74 |
+
processed_sound_embed_masks = _process_sound_masks(media_meta["sound_embed_masks"], self.data_args)
|
75 |
+
# Prepare "input_ids" and "labels" for training
|
76 |
+
data = preprocess_conversation(conversation, self.tokenizer, no_system_prompt=self.no_system_prompt)
|
77 |
+
|
78 |
+
if "speech" in media:
|
79 |
+
data["speech"] = processed_speech
|
80 |
+
if "sound" in media:
|
81 |
+
data["sound"] = processed_sound
|
82 |
+
data["sound_feature_masks"] = processed_sound_feature_masks
|
83 |
+
data["sound_embed_masks"] = processed_sound_embed_masks
|
84 |
+
|
85 |
+
except Exception as e:
|
86 |
+
if not self.resample_on_failure:
|
87 |
+
raise e
|
88 |
+
else:
|
89 |
+
logger.exception(f"Error processing instance '{instance}': '{e}'. Resampling.")
|
90 |
+
return self.__getitem__(random.randint(0, len(self.instances) - 1))
|
91 |
+
|
92 |
+
return data
|
93 |
+
|
94 |
+
def __len__(self) -> int:
|
95 |
+
return len(self.instances)
|
llava/data/builder.py
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 NVIDIA CORPORATION.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
|
5 |
+
# LICENSE is in incl_licenses directory.
|
6 |
+
|
7 |
+
import os
|
8 |
+
import os.path as osp
|
9 |
+
from itertools import chain
|
10 |
+
from typing import Any, List, Optional
|
11 |
+
|
12 |
+
import torch
|
13 |
+
import torch.distributed as dist
|
14 |
+
from hydra.utils import instantiate
|
15 |
+
from torch.utils.data import ConcatDataset, Dataset
|
16 |
+
from transformers import PreTrainedTokenizer
|
17 |
+
|
18 |
+
from llava.data.datasets_mixture import DATASETS_LEGACY
|
19 |
+
from llava.train.args import DataArguments, TrainingArguments
|
20 |
+
from llava.utils import io
|
21 |
+
from llava.utils.logging import logger
|
22 |
+
import time
|
23 |
+
import numpy as np
|
24 |
+
__all__ = ["DATASETS", "MIXTURES", "register_datasets", "register_mixtures", "parse_mixture", "build_dataset"]
|
25 |
+
|
26 |
+
|
27 |
+
def load_dataset_yaml(name):
|
28 |
+
fname = f"{name}.yaml" if not name.endswith(".yaml") else name
|
29 |
+
|
30 |
+
# yaml under llava/data/registry/datasets
|
31 |
+
repo_path = osp.join(osp.dirname(__file__), "registry", "datasets", fname)
|
32 |
+
if osp.exists(repo_path):
|
33 |
+
return repo_path
|
34 |
+
|
35 |
+
# # yaml under <fs yaml path>
|
36 |
+
abs_path = osp.expanduser(fname)
|
37 |
+
if osp.exists(abs_path):
|
38 |
+
return abs_path
|
39 |
+
|
40 |
+
raise FileNotFoundError(f"Dataset '{name}' is not found in the {repo_path} or {abs_path}.")
|
41 |
+
|
42 |
+
|
43 |
+
def register_datasets(name: Optional[str] = None):
|
44 |
+
if name is None:
|
45 |
+
name = os.environ.get("VILA_DATASETS", "default")
|
46 |
+
logger.info(f"Registering datasets from environment: '{name}'.")
|
47 |
+
# return io.load(osp.join(osp.dirname(__file__), "registry", "datasets", f"{name}.yaml"))
|
48 |
+
dataset_meta = {}
|
49 |
+
for _name in name.split(","):
|
50 |
+
yamlpath = load_dataset_yaml(_name)
|
51 |
+
logger.info(f"Registering datasets from: '{yamlpath}'.")
|
52 |
+
meta = io.load(yamlpath)
|
53 |
+
dataset_meta.update(meta)
|
54 |
+
return dataset_meta
|
55 |
+
|
56 |
+
|
57 |
+
def register_mixtures():
|
58 |
+
return io.load(os.path.join(os.path.dirname(__file__), "registry", "mixtures.yaml"))
|
59 |
+
|
60 |
+
|
61 |
+
DATASETS = register_datasets()
|
62 |
+
MIXTURES = register_mixtures()
|
63 |
+
|
64 |
+
|
65 |
+
def parse_mixture(mixture: str) -> List[str]:
|
66 |
+
names = mixture.split("+") if "+" in mixture else [mixture]
|
67 |
+
while any(name in MIXTURES for name in names):
|
68 |
+
names = list(chain(*[MIXTURES.get(name, [name]) for name in names]))
|
69 |
+
return sorted(names)
|
70 |
+
|
71 |
+
|
72 |
+
class SubsetDataset(Dataset):
|
73 |
+
def __init__(self, dataset: Dataset, limit: int) -> None:
|
74 |
+
super().__init__()
|
75 |
+
self.dataset = dataset
|
76 |
+
self.limit = limit
|
77 |
+
|
78 |
+
def __len__(self) -> int:
|
79 |
+
return int(len(self.dataset) * self.limit)
|
80 |
+
|
81 |
+
def __getitem__(self, index: int) -> Any:
|
82 |
+
return self.dataset[index % len(self.dataset)]
|
83 |
+
|
84 |
+
class RepeatedDataset(Dataset):
|
85 |
+
def __init__(self, dataset: Dataset, times: int) -> None:
|
86 |
+
super().__init__()
|
87 |
+
self.dataset = dataset
|
88 |
+
self.times = times
|
89 |
+
|
90 |
+
def __len__(self) -> int:
|
91 |
+
return len(self.dataset) * self.times
|
92 |
+
|
93 |
+
def __getitem__(self, index: int) -> Any:
|
94 |
+
return self.dataset[index % len(self.dataset)]
|
95 |
+
|
96 |
+
|
97 |
+
def get_world_size():
|
98 |
+
if torch.distributed.is_initialized():
|
99 |
+
return torch.distributed.get_world_size()
|
100 |
+
else:
|
101 |
+
return 1
|
102 |
+
|
103 |
+
|
104 |
+
def build_dataset(
|
105 |
+
mixture: str,
|
106 |
+
data_args: DataArguments,
|
107 |
+
training_args: TrainingArguments,
|
108 |
+
tokenizer: PreTrainedTokenizer,
|
109 |
+
) -> Dataset:
|
110 |
+
logger.warning(f"Training VILA with mixture '{mixture}'.")
|
111 |
+
datasets = []
|
112 |
+
dataset_rng = np.random.default_rng(1234)
|
113 |
+
for name in parse_mixture(mixture):
|
114 |
+
|
115 |
+
if "*" in name:
|
116 |
+
name, times = name.split("*")
|
117 |
+
times = int(times)
|
118 |
+
else:
|
119 |
+
times = 1
|
120 |
+
limit_dataset = False
|
121 |
+
if "#" in name:
|
122 |
+
# we limit the max length of this dataset
|
123 |
+
name, max_length_percent = name.split("#")
|
124 |
+
limit_dataset = True
|
125 |
+
if DATASETS is not None and name in DATASETS:
|
126 |
+
if name in DATASETS_LEGACY:
|
127 |
+
logger.warning(f"Dataset '{name}' exists in both new and legacy registries. Using the new one.")
|
128 |
+
dataset = instantiate(DATASETS[name], _partial_=True)(
|
129 |
+
tokenizer=tokenizer,
|
130 |
+
data_args=data_args,
|
131 |
+
global_batch_size=(
|
132 |
+
training_args.per_device_train_batch_size
|
133 |
+
# * torch.distributed.get_world_size()
|
134 |
+
* get_world_size()
|
135 |
+
* training_args.gradient_accumulation_steps
|
136 |
+
),
|
137 |
+
)
|
138 |
+
elif name in DATASETS_LEGACY:
|
139 |
+
logger.warning(f"Dataset '{name}' is from the legacy registry. Please consider migrating it.")
|
140 |
+
dataset = build_dataset_legacy(
|
141 |
+
name,
|
142 |
+
data_args=data_args,
|
143 |
+
training_args=training_args,
|
144 |
+
tokenizer=tokenizer,
|
145 |
+
)
|
146 |
+
else:
|
147 |
+
raise ValueError(f"Dataset '{name}' is not found in the registries.")
|
148 |
+
|
149 |
+
|
150 |
+
if limit_dataset:
|
151 |
+
# we limit the max length of this dataset
|
152 |
+
max_length = int(float(int(max_length_percent) / 100.) * len(dataset))
|
153 |
+
dataset = SubsetDataset(dataset, float(int(max_length_percent) / 100.))
|
154 |
+
|
155 |
+
if times > 1:
|
156 |
+
dataset = RepeatedDataset(dataset, times)
|
157 |
+
datasets.append(dataset)
|
158 |
+
return ConcatDataset(datasets)
|
159 |
+
|
160 |
+
|
161 |
+
def build_dataset_legacy(
|
162 |
+
name: str,
|
163 |
+
data_args: DataArguments,
|
164 |
+
training_args: TrainingArguments,
|
165 |
+
tokenizer: PreTrainedTokenizer,
|
166 |
+
) -> Dataset:
|
167 |
+
from llava.data.dataset import (
|
168 |
+
LazySupervisedDataset,
|
169 |
+
LazyWDSDataset,
|
170 |
+
)
|
171 |
+
|
172 |
+
dataset = DATASETS_LEGACY[name]
|
173 |
+
dataset_type = dataset.dataset_type
|
174 |
+
if dataset_type == "torch":
|
175 |
+
dataset_cls = LazySupervisedDataset
|
176 |
+
elif dataset_type == "wds":
|
177 |
+
dataset_cls = LazyWDSDataset
|
178 |
+
else:
|
179 |
+
raise NotImplementedError(f"{dataset_type} is not supported.")
|
180 |
+
|
181 |
+
data_args.meta_path = getattr(dataset, "meta_path", None)
|
182 |
+
data_args.caption_choice = getattr(dataset, "caption_choice", None)
|
183 |
+
data_args.caption_choice_2 = getattr(dataset, "caption_choice_2", None)
|
184 |
+
data_args.start_idx = getattr(dataset, "start_idx", None)
|
185 |
+
data_args.end_idx = getattr(dataset, "end_idx", None)
|
186 |
+
|
187 |
+
return dataset_cls(
|
188 |
+
tokenizer=tokenizer,
|
189 |
+
data_path=dataset.data_path,
|
190 |
+
image_folder=getattr(dataset, "image_path"),
|
191 |
+
data_args=data_args,
|
192 |
+
training_args=training_args,
|
193 |
+
)
|
llava/data/collate.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 NVIDIA CORPORATION.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
|
5 |
+
# LICENSE is in incl_licenses directory.
|
6 |
+
|
7 |
+
from dataclasses import dataclass
|
8 |
+
from typing import Any, Dict, Sequence
|
9 |
+
|
10 |
+
import torch
|
11 |
+
from transformers import PreTrainedTokenizer
|
12 |
+
|
13 |
+
from llava.constants import IGNORE_INDEX
|
14 |
+
from llava.utils.logging import logger
|
15 |
+
|
16 |
+
__all__ = ["DataCollator"]
|
17 |
+
|
18 |
+
|
19 |
+
@dataclass
|
20 |
+
class DataCollator:
|
21 |
+
tokenizer: PreTrainedTokenizer
|
22 |
+
|
23 |
+
def __init__(self, tokenizer: PreTrainedTokenizer):
|
24 |
+
super().__init__()
|
25 |
+
self.tokenizer = tokenizer
|
26 |
+
|
27 |
+
def __call__(self, instances: Sequence[Dict[str, Any]]) -> Dict[str, Any]:
|
28 |
+
# Gather everything from the batch
|
29 |
+
input_ids, labels, media, block_sizes = [], [], {name: [] for name in self.tokenizer.media_tokens}, []
|
30 |
+
|
31 |
+
media_meta = {}
|
32 |
+
|
33 |
+
media_meta["sound_feature_masks"] = []
|
34 |
+
media_meta["sound_embed_masks"] = []
|
35 |
+
media_meta["frame_times"] = []
|
36 |
+
for instance in instances:
|
37 |
+
if isinstance(instance["input_ids"], torch.Tensor):
|
38 |
+
input_ids.append(instance["input_ids"])
|
39 |
+
labels.append(instance["labels"])
|
40 |
+
for name in media:
|
41 |
+
objs = instance.get(name)
|
42 |
+
objs = objs if objs is not None else []
|
43 |
+
media[name].append([obj for obj in objs])
|
44 |
+
if instance.get("sound") is not None:
|
45 |
+
for name_k in media_meta:
|
46 |
+
if "sound" in name_k:
|
47 |
+
objs = instance.get(name_k)
|
48 |
+
media_meta[name_k].append([obj for obj in objs])
|
49 |
+
if instance.get("video") is not None or instance.get("image") is not None:
|
50 |
+
for name_k in media_meta:
|
51 |
+
if "frame" in name_k:
|
52 |
+
objs = instance.get(name_k)
|
53 |
+
media_meta[name_k].append([obj for obj in objs])
|
54 |
+
if "block_sizes" in instance:
|
55 |
+
block_sizes.append(instance["block_sizes"])
|
56 |
+
else:
|
57 |
+
block_sizes.append(
|
58 |
+
[None for _ in range(len(instance.get("image")))] if instance.get("image") is not None else []
|
59 |
+
)
|
60 |
+
else:
|
61 |
+
input_ids.extend(instance["input_ids"])
|
62 |
+
labels.extend(instance["labels"])
|
63 |
+
for name in media:
|
64 |
+
objs = instance.get(name)
|
65 |
+
objs = objs if objs is not None else [[] for _ in range(len(instance["input_ids"]))]
|
66 |
+
media[name].extend(objs)
|
67 |
+
if instance.get("sound") is not None:
|
68 |
+
for name_k in media_meta:
|
69 |
+
if "sound" in name_k:
|
70 |
+
objs = instance.get(name_k)
|
71 |
+
media_meta[name_k].extend(objs)
|
72 |
+
if instance.get("video") is not None or instance.get("image") is not None:
|
73 |
+
for name_k in media_meta:
|
74 |
+
if "frame" in name_k:
|
75 |
+
objs = instance.get(name_k)
|
76 |
+
media_meta[name_k].append([obj for obj in objs])
|
77 |
+
if "block_sizes" in instance:
|
78 |
+
block_sizes.extend(instance["block_sizes"])
|
79 |
+
else:
|
80 |
+
block_sizes.extend(
|
81 |
+
[[None for _ in range(len(objs))] for objs in instance.get("image")]
|
82 |
+
if instance.get("image") is not None
|
83 |
+
else [[] for _ in range(len(instance["input_ids"]))]
|
84 |
+
)
|
85 |
+
|
86 |
+
batch_size = len(input_ids)
|
87 |
+
|
88 |
+
|
89 |
+
# Check if the number of media objects (or the number of block sizes) matches the number of media tokens
|
90 |
+
for name in media:
|
91 |
+
for k in range(batch_size):
|
92 |
+
if name == "image" and not all([_ is None for _ in block_sizes[k]]):
|
93 |
+
actual = len(block_sizes[k])
|
94 |
+
else:
|
95 |
+
actual = len(media[name][k])
|
96 |
+
expected = (input_ids[k] == self.tokenizer.media_token_ids[name]).sum().item()
|
97 |
+
if actual != expected:
|
98 |
+
raise ValueError(
|
99 |
+
f"Number mismatch between {name} objects and {name} tokens. "
|
100 |
+
f"There are {expected} {name} tokens but {actual} {name} objects."
|
101 |
+
)
|
102 |
+
|
103 |
+
# Batchify the inputs
|
104 |
+
input_ids = torch.nn.utils.rnn.pad_sequence(
|
105 |
+
input_ids,
|
106 |
+
batch_first=True,
|
107 |
+
padding_value=self.tokenizer.pad_token_id,
|
108 |
+
)
|
109 |
+
labels = torch.nn.utils.rnn.pad_sequence(
|
110 |
+
labels,
|
111 |
+
batch_first=True,
|
112 |
+
padding_value=IGNORE_INDEX,
|
113 |
+
)
|
114 |
+
input_ids = input_ids[:, : self.tokenizer.model_max_length]
|
115 |
+
labels = labels[:, : self.tokenizer.model_max_length]
|
116 |
+
attention_mask = input_ids.ne(self.tokenizer.pad_token_id)
|
117 |
+
|
118 |
+
# Truncate media objects if necessary
|
119 |
+
for name in media:
|
120 |
+
objects = []
|
121 |
+
for k in range(batch_size):
|
122 |
+
if name == "image" and not all([_ is None for _ in block_sizes[k]]):
|
123 |
+
actual = len(media[name][k])
|
124 |
+
num_large_scale_blocks = sum([x * y for x, y in block_sizes[k]])
|
125 |
+
num_small_scale_blocks = actual - num_large_scale_blocks
|
126 |
+
num_small_scale_blocks_each_img = num_small_scale_blocks // len(block_sizes[k])
|
127 |
+
expected_full_image = (input_ids[k] == self.tokenizer.media_token_ids[name]).sum().item()
|
128 |
+
expected = (
|
129 |
+
sum([x * y for x, y in block_sizes[k][:expected_full_image]])
|
130 |
+
+ num_small_scale_blocks_each_img * expected_full_image
|
131 |
+
)
|
132 |
+
if actual > expected:
|
133 |
+
logger.warning(f"Truncating the number of {name} objects from {actual} to {expected}")
|
134 |
+
media[name][k] = media[name][k][:expected]
|
135 |
+
objects.extend(media[name][k])
|
136 |
+
block_sizes[k] = block_sizes[k][:expected_full_image]
|
137 |
+
else:
|
138 |
+
actual = len(media[name][k])
|
139 |
+
expected = (input_ids[k] == self.tokenizer.media_token_ids[name]).sum().item()
|
140 |
+
if actual > expected:
|
141 |
+
logger.warning(f"Truncating the number of {name} objects from {actual} to {expected}")
|
142 |
+
media[name][k] = media[name][k][:expected]
|
143 |
+
objects.extend(media[name][k])
|
144 |
+
if name == "image":
|
145 |
+
block_sizes[k] = block_sizes[k][:expected]
|
146 |
+
media[name] = objects
|
147 |
+
|
148 |
+
for name in media_meta:
|
149 |
+
objects = []
|
150 |
+
for k in range(batch_size):
|
151 |
+
try:
|
152 |
+
objects.extend(media_meta[name][k])
|
153 |
+
except:
|
154 |
+
continue
|
155 |
+
media_meta[name] = objects
|
156 |
+
|
157 |
+
# Flatten block sizes from [[bls_im1_instance1, bls_im2_instance1], [bls_im1_instance2, bls_im2_instance2], ...] to [bls_im1_instance1, bls_im2_instance1, bls_im1_instance2, bls_im2_instance2, ...]
|
158 |
+
block_sizes = sum(block_sizes, [])
|
159 |
+
return {
|
160 |
+
"input_ids": input_ids,
|
161 |
+
"media": media,
|
162 |
+
"media_config": {"image": {"block_sizes": block_sizes}, "video": {}, "speech": {}, "sound": {}},
|
163 |
+
"labels": labels,
|
164 |
+
"attention_mask": attention_mask,
|
165 |
+
"media_meta": media_meta,
|
166 |
+
}
|
llava/data/dataset.py
ADDED
@@ -0,0 +1,1635 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 NVIDIA CORPORATION.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
|
5 |
+
# LICENSE is in incl_licenses directory.
|
6 |
+
|
7 |
+
# Adopted from tatsu-lab@stanford_alpaca. Below is the original copyright:
|
8 |
+
# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
|
9 |
+
#
|
10 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
11 |
+
# you may not use this file except in compliance with the License.
|
12 |
+
# You may obtain a copy of the License at
|
13 |
+
#
|
14 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
15 |
+
#
|
16 |
+
# Unless required by applicable law or agreed to in writing, software
|
17 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
18 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
19 |
+
# See the License for the specific language governing permissions and
|
20 |
+
# limitations under the License.
|
21 |
+
|
22 |
+
import base64
|
23 |
+
import copy
|
24 |
+
import io
|
25 |
+
import json
|
26 |
+
import os
|
27 |
+
import os.path as osp
|
28 |
+
import random
|
29 |
+
import time
|
30 |
+
import warnings
|
31 |
+
from dataclasses import dataclass
|
32 |
+
from typing import Dict, Sequence
|
33 |
+
import math
|
34 |
+
import numpy as np
|
35 |
+
import PIL
|
36 |
+
import torch
|
37 |
+
import transformers
|
38 |
+
from PIL import Image, ImageFile
|
39 |
+
from torch.utils.data import Dataset, default_collate
|
40 |
+
from transformers import PreTrainedTokenizer
|
41 |
+
from transformers import AutoFeatureExtractor
|
42 |
+
import kaldiio
|
43 |
+
import llava.data.datasets_mixture as datasets_mixture
|
44 |
+
from llava import conversation as conversation_lib
|
45 |
+
from llava.constants import DEFAULT_SOUND_TOKEN,DEFAULT_SPEECH_TOKEN, IGNORE_INDEX
|
46 |
+
from llava.data.collate import DataCollator
|
47 |
+
from llava.mm_utils import (
|
48 |
+
load_audio,
|
49 |
+
get_num_windows,
|
50 |
+
tokenizer_image_token,
|
51 |
+
)
|
52 |
+
from torchvision import transforms
|
53 |
+
from llava.train.args import DataArguments, TrainingArguments
|
54 |
+
from llava.train.sequence_parallel import (
|
55 |
+
extract_local_from_list,
|
56 |
+
extract_local_input_ids,
|
57 |
+
extract_local_position_ids,
|
58 |
+
get_pg_manager,
|
59 |
+
)
|
60 |
+
from llava.utils.tokenizer import preprocess_conversation
|
61 |
+
# import torchaudio
|
62 |
+
from pytorchvideo.data.clip_sampling import ConstantClipsPerVideoSampler, UniformClipSampler
|
63 |
+
import soundfile as sf
|
64 |
+
from librosa import resample as librosa_resample
|
65 |
+
import whisper
|
66 |
+
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
67 |
+
PIL.Image.MAX_IMAGE_PIXELS = 1000000000
|
68 |
+
|
69 |
+
def int16_to_float32(x):
|
70 |
+
return (x / 32767.0).astype(np.float32)
|
71 |
+
|
72 |
+
|
73 |
+
def float32_to_int16(x):
|
74 |
+
x = np.clip(x, a_min=-1., a_max=1.)
|
75 |
+
return (x * 32767.).astype(np.int16)
|
76 |
+
|
77 |
+
|
78 |
+
|
79 |
+
def preprocess_multimodal(sources: Sequence[str], data_args: DataArguments) -> Dict:
|
80 |
+
is_multimodal = data_args.is_multimodal
|
81 |
+
if not is_multimodal:
|
82 |
+
return sources
|
83 |
+
|
84 |
+
for source in sources:
|
85 |
+
concat_values = "".join([sentence["value"] for sentence in source])
|
86 |
+
for sid, sentence in enumerate(source):
|
87 |
+
# In multimodal conversations, we automatically prepend '<image>' at the start of the first sentence if it doesn't already contain one.
|
88 |
+
|
89 |
+
if DEFAULT_SOUND_TOKEN in sentence["value"]:
|
90 |
+
sentence["value"] = sentence["value"].replace(DEFAULT_SOUND_TOKEN, f"{DEFAULT_SOUND_TOKEN}\n")
|
91 |
+
sentence["value"] = sentence["value"].replace(f"{DEFAULT_SOUND_TOKEN}\n\n", f"{DEFAULT_SOUND_TOKEN}\n")
|
92 |
+
if DEFAULT_SPEECH_TOKEN in sentence["value"]:
|
93 |
+
sentence["value"] = sentence["value"].replace(DEFAULT_SPEECH_TOKEN, f"{DEFAULT_SPEECH_TOKEN}\n")
|
94 |
+
sentence["value"] = sentence["value"].replace(f"{DEFAULT_SPEECH_TOKEN}\n\n", f"{DEFAULT_SPEECH_TOKEN}\n")
|
95 |
+
return sources
|
96 |
+
|
97 |
+
|
98 |
+
def preprocess_plain(
|
99 |
+
sources: Sequence[str],
|
100 |
+
tokenizer: transformers.PreTrainedTokenizer,
|
101 |
+
) -> Dict:
|
102 |
+
# add end signal and concatenate together
|
103 |
+
conversations = []
|
104 |
+
for source in sources:
|
105 |
+
assert len(source) == 2
|
106 |
+
assert DEFAULT_IMAGE_TOKEN in source[0]["value"]
|
107 |
+
source[0]["value"] = DEFAULT_IMAGE_TOKEN
|
108 |
+
conversation = source[0]["value"] + source[1]["value"] + conversation_lib.default_conversation.sep
|
109 |
+
conversations.append(conversation)
|
110 |
+
# tokenize conversations
|
111 |
+
input_ids = [tokenizer_image_token(prompt, tokenizer, return_tensors="pt") for prompt in conversations]
|
112 |
+
targets = copy.deepcopy(input_ids)
|
113 |
+
for target, source in zip(targets, sources):
|
114 |
+
tokenized_len = len(tokenizer_image_token(source[0]["value"], tokenizer))
|
115 |
+
target[:tokenized_len] = IGNORE_INDEX
|
116 |
+
|
117 |
+
return dict(input_ids=input_ids, labels=targets)
|
118 |
+
|
119 |
+
|
120 |
+
def preprocess(
|
121 |
+
sources: Sequence[str],
|
122 |
+
tokenizer: transformers.PreTrainedTokenizer,
|
123 |
+
has_image: bool = False,
|
124 |
+
no_system_prompt: bool = False,
|
125 |
+
) -> Dict:
|
126 |
+
if conversation_lib.default_conversation.sep_style == conversation_lib.SeparatorStyle.PLAIN:
|
127 |
+
return preprocess_plain(sources, tokenizer)
|
128 |
+
return default_collate(
|
129 |
+
[
|
130 |
+
preprocess_conversation(conversation, tokenizer, no_system_prompt=no_system_prompt)
|
131 |
+
for conversation in sources
|
132 |
+
]
|
133 |
+
)
|
134 |
+
|
135 |
+
|
136 |
+
class LazySupervisedDataset(Dataset):
|
137 |
+
"""Dataset for supervised fine-tuning.
|
138 |
+
This class is originally implemented by the LLaVA team and modified by
|
139 |
+
Ji Lin and Haotian Tang.
|
140 |
+
"""
|
141 |
+
|
142 |
+
def __init__(
|
143 |
+
self,
|
144 |
+
data_path: str,
|
145 |
+
image_folder: str,
|
146 |
+
tokenizer: transformers.PreTrainedTokenizer,
|
147 |
+
data_args: DataArguments,
|
148 |
+
training_args: TrainingArguments,
|
149 |
+
):
|
150 |
+
super().__init__()
|
151 |
+
try:
|
152 |
+
with open(data_path) as fp:
|
153 |
+
list_data_dict = json.load(fp)
|
154 |
+
except:
|
155 |
+
with open(data_path) as fp:
|
156 |
+
list_data_dict = [json.loads(q) for q in fp]
|
157 |
+
|
158 |
+
# rank0_print("Formatting inputs...Skip in lazy mode")
|
159 |
+
print("Formatting inputs...Skip in lazy mode")
|
160 |
+
self.tokenizer = tokenizer
|
161 |
+
self.list_data_dict = list_data_dict
|
162 |
+
self.data_args = data_args
|
163 |
+
self.image_folder = image_folder
|
164 |
+
self.wav_processor = AutoFeatureExtractor.from_pretrained('/lustre/fsw/portfolios/adlr/users/sreyang/flamingo_v2/NV-Whisper')
|
165 |
+
|
166 |
+
def __len__(self):
|
167 |
+
return len(self.list_data_dict)
|
168 |
+
|
169 |
+
@property
|
170 |
+
def lengths(self):
|
171 |
+
length_list = []
|
172 |
+
for sample in self.list_data_dict:
|
173 |
+
img_tokens = 128 if "image" in sample else 0
|
174 |
+
length_list.append(sum(len(conv["value"].split()) for conv in sample["conversations"]) + img_tokens)
|
175 |
+
return length_list
|
176 |
+
|
177 |
+
@property
|
178 |
+
def modality_lengths(self):
|
179 |
+
length_list = []
|
180 |
+
for sample in self.list_data_dict:
|
181 |
+
if 'duration' in sample.keys():
|
182 |
+
duration = sample["duration"]
|
183 |
+
else:
|
184 |
+
duration = 10.
|
185 |
+
try:
|
186 |
+
cur_len = sum(len(conv["value"].split()) for conv in sample["conversations"]) + int(math.ceil(duration * 25))
|
187 |
+
cur_len = cur_len if "sound" in sample else -cur_len
|
188 |
+
length_list.append(cur_len)
|
189 |
+
except:
|
190 |
+
try:
|
191 |
+
cur_len = 0 + int(math.ceil(duration * 25))
|
192 |
+
cur_len = cur_len if "sound" in sample else -cur_len
|
193 |
+
length_list.append(cur_len)
|
194 |
+
except:
|
195 |
+
cur_len = 0 + int(math.ceil(10. * 25))
|
196 |
+
cur_len = cur_len if "sound" in sample else -cur_len
|
197 |
+
length_list.append(cur_len)
|
198 |
+
return length_list
|
199 |
+
|
200 |
+
@staticmethod
|
201 |
+
def _load_sound(sound_file, wav_processor, sample_rate=16000, window_length=30.0, window_overlap=0.0, max_num_window=3, audio_start = 0.0):
|
202 |
+
if sound_file is None:
|
203 |
+
return None
|
204 |
+
window_length = int(window_length * sample_rate)
|
205 |
+
window_overlap = int(window_overlap * sample_rate)
|
206 |
+
max_num_window = int(max_num_window)
|
207 |
+
duration = max_num_window * (window_length - window_overlap) + window_overlap
|
208 |
+
|
209 |
+
sound_outputs = []
|
210 |
+
audio_feature_masks = []
|
211 |
+
audio_embed_masks = []
|
212 |
+
|
213 |
+
try:
|
214 |
+
sound_filename = str.split(sound_file, '/')[-1]
|
215 |
+
if '.ark' in sound_filename:
|
216 |
+
sound = kaldiio.load_mat(sound_file)
|
217 |
+
audio_data = sound[1]
|
218 |
+
audio_data=audio_data.astype(np.float16)
|
219 |
+
else:
|
220 |
+
audio_data = load_audio(sound_file, sample_rate, duration, audio_start) # already cuts to max duration
|
221 |
+
T = len(audio_data)
|
222 |
+
audio_data = audio_data.reshape(1, -1)
|
223 |
+
num_windows, full_length = get_num_windows(T, sample_rate, max_num_window)
|
224 |
+
|
225 |
+
audio_data_tensor = torch.from_numpy(int16_to_float32(float32_to_int16(audio_data))).float()
|
226 |
+
|
227 |
+
for i in range(num_windows):
|
228 |
+
audio_embed_mask = torch.zeros(750)
|
229 |
+
start = i * (window_length - window_overlap)
|
230 |
+
audio_data_tensor_this = audio_data_tensor[:, start:start+window_length]
|
231 |
+
orig_length = audio_data_tensor_this.shape[1]
|
232 |
+
audio_data_tensor_this = wav_processor(audio_data_tensor_this.cpu().numpy(), sampling_rate=sample_rate, return_tensors="pt") #.squeeze(0) text="dummy", audios=audio_data_tensor_this, return_tensors="pt") #
|
233 |
+
sound_outputs.append(audio_data_tensor_this["input_features"])
|
234 |
+
# calculate the mask for the input melspec to Whisper
|
235 |
+
melspec_frames_this_window = int(math.ceil(orig_length / 160))
|
236 |
+
feature_attention_mask = torch.zeros(3000, dtype=torch.int32)
|
237 |
+
feature_attention_mask[:melspec_frames_this_window] = 1
|
238 |
+
audio_feature_masks.append(feature_attention_mask.unsqueeze(0))
|
239 |
+
# calculate the mask for the output embedding for use in AF2
|
240 |
+
conv_lengths = (melspec_frames_this_window - 1) // 2 + 1
|
241 |
+
output_embedding_lengths = (conv_lengths - 2) // 2 + 1
|
242 |
+
audio_embed_mask[:output_embedding_lengths] = 1
|
243 |
+
audio_embed_masks.append(audio_embed_mask)
|
244 |
+
except:
|
245 |
+
print('error loading file', sound_file)
|
246 |
+
sound_outputs.append(torch.zeros(1,128,3000))
|
247 |
+
audio_feature_masks.append(torch.zeros(1,3000, dtype=torch.int32))
|
248 |
+
audio_embed_masks.append(torch.zeros(750))
|
249 |
+
|
250 |
+
return torch.stack(sound_outputs, dim=0), torch.stack(audio_feature_masks, dim=0), torch.stack(audio_embed_masks, dim=0)
|
251 |
+
|
252 |
+
@staticmethod
|
253 |
+
def _load_speech(speech_path,sample_rate=16000):
|
254 |
+
if speech_path is None:
|
255 |
+
return None
|
256 |
+
|
257 |
+
speech_outputs = []
|
258 |
+
try:
|
259 |
+
speech = whisper.load_audio(speech_path)
|
260 |
+
speech = whisper.pad_or_trim(speech)
|
261 |
+
mel = whisper.log_mel_spectrogram(speech)
|
262 |
+
speech_outputs.append(mel.unsqueeze(0))
|
263 |
+
except:
|
264 |
+
speech_outputs.append(torch.zeros(1,80,3000))
|
265 |
+
return torch.stack(speech_outputs, dim=0)
|
266 |
+
|
267 |
+
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
|
268 |
+
sources = self.list_data_dict[i]
|
269 |
+
if isinstance(i, int):
|
270 |
+
sources = [sources]
|
271 |
+
assert len(sources) == 1, "Don't know why it is wrapped to a list" # FIXME
|
272 |
+
|
273 |
+
import re
|
274 |
+
if "sound" in self.list_data_dict[i]:
|
275 |
+
# chat data loading
|
276 |
+
if isinstance(self.list_data_dict[i]["sound"],list):
|
277 |
+
sound_files = self.list_data_dict[i]["sound"]
|
278 |
+
conversations_raw = self.list_data_dict[i]["conversations"]
|
279 |
+
|
280 |
+
# Step 1: Extract <sound-X> tags in order of appearance
|
281 |
+
sound_tag_pattern = re.compile(r"<sound-(\d+)>")
|
282 |
+
ordered_sound_tags = []
|
283 |
+
|
284 |
+
for turn in conversations_raw:
|
285 |
+
tags = sound_tag_pattern.findall(turn["value"])
|
286 |
+
ordered_sound_tags.extend([f"<sound-{tag}>" for tag in tags])
|
287 |
+
|
288 |
+
# Step 2: Load sound tensors in the order of tags
|
289 |
+
sound_tensor = []
|
290 |
+
audio_feature_masks = []
|
291 |
+
audio_embed_masks = []
|
292 |
+
sound_token_map = {}
|
293 |
+
|
294 |
+
for tag in ordered_sound_tags:
|
295 |
+
idx = int(tag.split('-')[1][:-1])
|
296 |
+
if tag not in sound_token_map:
|
297 |
+
this_sound_tensor, af_mask, ae_mask = self._load_sound(sound_file, self.wav_processor, max_num_window=self.data_args.audio_frames)
|
298 |
+
this_sound_tensor = this_sound_tensor.squeeze(1) # (windows x 750 x 2048)
|
299 |
+
sound_token_map[tag] = ("<sound>\n" * this_sound_tensor.shape[0]).rstrip()
|
300 |
+
sound_tensor.append(this_sound_tensor)
|
301 |
+
audio_feature_masks.append(af_mask)
|
302 |
+
audio_embed_masks.append(ae_mask)
|
303 |
+
else:
|
304 |
+
# If already loaded, still append to match sequence
|
305 |
+
this_sound_tensor, af_mask, ae_mask = self._load_sound(sound_file, self.wav_processor, max_num_window=self.data_args.audio_frames)
|
306 |
+
this_sound_tensor = this_sound_tensor.squeeze(1)
|
307 |
+
sound_tensor.append(this_sound_tensor)
|
308 |
+
audio_feature_masks.append(af_mask)
|
309 |
+
audio_embed_masks.append(ae_mask)
|
310 |
+
|
311 |
+
|
312 |
+
# Process conversations and inject sound markers
|
313 |
+
conversation = []
|
314 |
+
for turn in conversations_raw:
|
315 |
+
role = turn["from"]
|
316 |
+
value = turn["value"]
|
317 |
+
|
318 |
+
# Replace any <sound-X> tag with corresponding repeated <sound>\n
|
319 |
+
for tag, sound_token in sound_token_map.items():
|
320 |
+
value = value.replace(tag, sound_token)
|
321 |
+
|
322 |
+
conversation.append({
|
323 |
+
"from": role,
|
324 |
+
"value": value.rstrip()
|
325 |
+
})
|
326 |
+
|
327 |
+
sources = [conversation]
|
328 |
+
sound_tensor = torch.cat(sound_tensor, dim=0)
|
329 |
+
audio_feature_masks = torch.cat(audio_feature_masks, dim=0)
|
330 |
+
audio_embed_masks = torch.cat(audio_embed_masks, dim=0)
|
331 |
+
else:
|
332 |
+
sound_file = self.list_data_dict[i]["sound"]
|
333 |
+
question = str(self.list_data_dict[i]["conversations"][0]["value"].rstrip())
|
334 |
+
answer = str(self.list_data_dict[i]["conversations"][1]["value"]).rstrip()
|
335 |
+
question = question.replace("<speech>\n", "").replace("\n<speech>", "").replace("<speech>", "")
|
336 |
+
question = question.replace("<sound>\n", "").replace("\n<sound>", "").replace("<sound>", "")
|
337 |
+
question = question.replace("<en><asr>\n", "").replace("\n<en><asr>", "").replace("<en><asr>", "")
|
338 |
+
question = question.replace("<eng><asr>\n", "").replace("\n<eng><asr>", "").replace("<eng><asr>", "")
|
339 |
+
sound_tensor, audio_feature_masks, audio_embed_masks = self._load_sound(sound_file, self.wav_processor, max_num_window=self.data_args.audio_frames)
|
340 |
+
sound_tensor=sound_tensor.squeeze(1) # squeeze the irrelevant dimension which was caused due to processor getting 1 batch for processing --> (windows x 750 x 2048)
|
341 |
+
question = "<sound>\n" * sound_tensor.shape[0] + question
|
342 |
+
conversation = [
|
343 |
+
{"from": "human", "value": question},
|
344 |
+
{"from": "gpt", "value": answer},
|
345 |
+
]
|
346 |
+
|
347 |
+
sources = [conversation]
|
348 |
+
data_dict = preprocess(
|
349 |
+
sources,
|
350 |
+
self.tokenizer,
|
351 |
+
has_image=(
|
352 |
+
"sound" in self.list_data_dict[i]
|
353 |
+
),
|
354 |
+
)
|
355 |
+
if isinstance(i, int):
|
356 |
+
data_dict = dict(input_ids=data_dict["input_ids"][0], labels=data_dict["labels"][0])
|
357 |
+
|
358 |
+
if "sound" in self.list_data_dict[i]:
|
359 |
+
data_dict["sound"] = sound_tensor
|
360 |
+
data_dict["sound_feature_masks"] = audio_feature_masks
|
361 |
+
data_dict["sound_embed_masks"] = audio_embed_masks
|
362 |
+
if "speech" in self.list_data_dict[i]:
|
363 |
+
data_dict["speech"] = speech_tensor
|
364 |
+
|
365 |
+
return data_dict
|
366 |
+
|
367 |
+
|
368 |
+
class LazyMMC4Dataset(Dataset):
|
369 |
+
"""Dataset for supervised fine-tuning.
|
370 |
+
This class is implemented by Ji Lin and Haotian Tang."""
|
371 |
+
|
372 |
+
def __init__(
|
373 |
+
self,
|
374 |
+
data_path: str,
|
375 |
+
image_folder: str,
|
376 |
+
tokenizer: transformers.PreTrainedTokenizer,
|
377 |
+
data_args: DataArguments,
|
378 |
+
training_args: TrainingArguments,
|
379 |
+
image_following_text_only=False,
|
380 |
+
text_only=False,
|
381 |
+
):
|
382 |
+
super().__init__()
|
383 |
+
|
384 |
+
import pickle
|
385 |
+
|
386 |
+
n_samples = []
|
387 |
+
# actually shards and stats info
|
388 |
+
n_shards = len(os.listdir(data_path)) // 2
|
389 |
+
# n_shards = 100
|
390 |
+
count_info_list = sorted([f for f in os.listdir(data_path) if f.endswith(".count")])[:n_shards]
|
391 |
+
n_samples = [int(open(os.path.join(data_path, f)).read().strip()) for f in count_info_list]
|
392 |
+
|
393 |
+
print("total MMC4 samples", sum(n_samples)) # 10,881,869
|
394 |
+
|
395 |
+
PROCESS_GROUP_MANAGER = get_pg_manager()
|
396 |
+
if PROCESS_GROUP_MANAGER is not None:
|
397 |
+
import torch.distributed as dist
|
398 |
+
|
399 |
+
sequence_parallel_size = training_args.seq_parallel_size
|
400 |
+
else:
|
401 |
+
sequence_parallel_size = 1
|
402 |
+
print("sequence_parallel_size", sequence_parallel_size)
|
403 |
+
rank = training_args.process_index // sequence_parallel_size # int(os.environ["RANK"])
|
404 |
+
world_size = training_args.world_size // sequence_parallel_size # int(os.environ["WORLD_SIZE"])
|
405 |
+
shared_size = n_shards // world_size
|
406 |
+
|
407 |
+
gpu_samples = [sum(n_samples[i * shared_size : (i + 1) * shared_size]) for i in range(world_size)]
|
408 |
+
self.n_samples = min(gpu_samples) * world_size # total size
|
409 |
+
self.idx_offset = rank * min(gpu_samples)
|
410 |
+
shard_start, shard_end = rank * shared_size, (rank + 1) * shared_size
|
411 |
+
print(f" * loading data from shard {shard_start}-{shard_end}")
|
412 |
+
|
413 |
+
shard_names = [d.replace(".count", ".pkl") for d in count_info_list]
|
414 |
+
shard_names = shard_names[shard_start:shard_end]
|
415 |
+
|
416 |
+
full_data_list = []
|
417 |
+
# now load data
|
418 |
+
for shard_name in shard_names:
|
419 |
+
# load shard
|
420 |
+
with open(os.path.join(data_path, shard_name), "rb") as f:
|
421 |
+
data_list = pickle.load(f)
|
422 |
+
|
423 |
+
full_data_list.extend(data_list)
|
424 |
+
|
425 |
+
print(f"* loaded totally {len(full_data_list)} samples")
|
426 |
+
|
427 |
+
self.data_list = full_data_list
|
428 |
+
|
429 |
+
self.tokenizer = tokenizer
|
430 |
+
self.data_args = data_args
|
431 |
+
self.image_folder = image_folder
|
432 |
+
|
433 |
+
self.image_following_text_only = image_following_text_only
|
434 |
+
self.text_only = text_only
|
435 |
+
|
436 |
+
def __len__(self):
|
437 |
+
# return len(self.data_list)
|
438 |
+
return self.n_samples
|
439 |
+
|
440 |
+
@property
|
441 |
+
def modality_lengths(self):
|
442 |
+
# Estimate the number of tokens after tokenization, used for length-grouped sampling
|
443 |
+
length_list = []
|
444 |
+
for info in self.data_list:
|
445 |
+
num_images = min(6, len(info["image_info"]))
|
446 |
+
sentences = [info["text_list"][x["matched_text_index"]] for x in info["image_info"][:num_images]]
|
447 |
+
# The unit of cur_len is "words". We assume 1 word = 2 tokens.
|
448 |
+
cur_len = num_images * self.num_image_tokens // 2 + sum([len(x) for x in sentences])
|
449 |
+
length_list.append(cur_len)
|
450 |
+
return length_list
|
451 |
+
|
452 |
+
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
|
453 |
+
info = self.data_list[i - self.idx_offset]
|
454 |
+
|
455 |
+
sentences = info["text_list"]
|
456 |
+
# kentang-mit@: remove existing <image> tokens in the sentences
|
457 |
+
for ix in range(len(sentences)):
|
458 |
+
# if this is an html tag, we still preserve its semantic meaning
|
459 |
+
sentences[ix] = sentences[ix].replace("<image>", "<IMAGE>")
|
460 |
+
sim_matrix = info["similarity_matrix"] # we do not use this...
|
461 |
+
|
462 |
+
# convert images from base64 to PIL and filter based on image-text similarity
|
463 |
+
images, sentence_ixs = [], []
|
464 |
+
if not self.text_only:
|
465 |
+
for sample_image, sim_vec in zip(info["image_info"], sim_matrix):
|
466 |
+
image_base64 = sample_image["image_base64"]
|
467 |
+
rawbytes = base64.b64decode(image_base64)
|
468 |
+
|
469 |
+
sim_ix = sample_image["matched_text_index"]
|
470 |
+
# sim_ix = np.argmax(sim_vec)
|
471 |
+
# sim_score = sim_vec[sim_ix]
|
472 |
+
|
473 |
+
# filter to images >= 5KB
|
474 |
+
# if len(rawbytes) // 1000 <= 5:
|
475 |
+
# continue
|
476 |
+
# if sim_score < 0.24:
|
477 |
+
# continue
|
478 |
+
image = Image.open(io.BytesIO(rawbytes)).convert("RGB")
|
479 |
+
|
480 |
+
images.append(image)
|
481 |
+
sentence_ixs.append(sim_ix)
|
482 |
+
|
483 |
+
# constrain max num 6 images
|
484 |
+
max_num_images = 6
|
485 |
+
if len(images) > max_num_images:
|
486 |
+
images = images[:max_num_images]
|
487 |
+
sentence_ixs = sentence_ixs[:max_num_images]
|
488 |
+
|
489 |
+
# reorder images according to text insertion
|
490 |
+
images = [images[iii] for iii in np.argsort(sentence_ixs)]
|
491 |
+
|
492 |
+
# preprocess and tokenize text
|
493 |
+
for ix in sentence_ixs:
|
494 |
+
sentences[ix] = f"<image>\n{sentences[ix]}"
|
495 |
+
|
496 |
+
if self.image_following_text_only:
|
497 |
+
# use pad tokens to divide sentence pieces
|
498 |
+
text = self.tokenizer.pad_token.join(sentences)
|
499 |
+
else:
|
500 |
+
text = " ".join(sentences)
|
501 |
+
# whitespace cleanup
|
502 |
+
text = text.replace("<image> ", "<image>").replace(" <image>", "<image>")
|
503 |
+
text = f"{text}{self.tokenizer.eos_token}" # add eos token
|
504 |
+
|
505 |
+
if len(images) > 0:
|
506 |
+
if self.data_args.image_aspect_ratio == "dynamic_s2":
|
507 |
+
images, block_sizes = dynamic_s2_process_images_and_prompt(
|
508 |
+
images, text, self.data_args, self.image_folder
|
509 |
+
)
|
510 |
+
elif self.data_args.image_aspect_ratio == "dynamic":
|
511 |
+
images, text = dynamic_process_images_and_prompt(
|
512 |
+
images, text, self.data_args, self.image_folder, max_tiles=6
|
513 |
+
)
|
514 |
+
else:
|
515 |
+
images = torch.stack([process_image(image, self.data_args, self.image_folder) for image in images])
|
516 |
+
|
517 |
+
# the same size for all images, so we concat
|
518 |
+
# cur_token_len = (
|
519 |
+
# images[0].shape[-2] // self.multimodal_cfg["patch_size"]
|
520 |
+
# ) * (images[0].shape[-1] // self.multimodal_cfg["patch_size"])
|
521 |
+
# cur_token_len += self.multimodal_cfg["n_extra_patch"]
|
522 |
+
else:
|
523 |
+
images = None
|
524 |
+
# cur_token_len = 0
|
525 |
+
|
526 |
+
input_ids = tokenizer_image_token(
|
527 |
+
text,
|
528 |
+
self.tokenizer,
|
529 |
+
return_tensors="pt",
|
530 |
+
)
|
531 |
+
|
532 |
+
image_token_id = self.tokenizer.media_token_ids["image"]
|
533 |
+
|
534 |
+
# now check the case where the last token is image patch token
|
535 |
+
if input_ids[-1] == image_token_id: # need to remove one last image
|
536 |
+
last_non_im_patch_indices = torch.where(input_ids != image_token_id)[0][-1] + 1
|
537 |
+
input_ids = input_ids[:last_non_im_patch_indices]
|
538 |
+
|
539 |
+
n_im_patch = (input_ids == image_token_id).sum().item()
|
540 |
+
|
541 |
+
if self.data_args.image_aspect_ratio != "dynamic_s2":
|
542 |
+
images = images[:n_im_patch]
|
543 |
+
assert len(images) == n_im_patch, print(text, input_ids)
|
544 |
+
assert len(input_ids.shape) == 1, "Unexpected shape of 'input_ids' from MMC4."
|
545 |
+
input_ids = (
|
546 |
+
torch.concat([torch.tensor([self.tokenizer.bos_token_id]), input_ids])
|
547 |
+
if self.tokenizer.bos_token_id is not None and input_ids[0] != self.tokenizer.bos_token_id
|
548 |
+
else input_ids
|
549 |
+
)
|
550 |
+
targets = input_ids.clone()
|
551 |
+
|
552 |
+
if self.image_following_text_only: # keep only text after leading image token
|
553 |
+
# remove loss for any token before the first <image> token
|
554 |
+
label_idx = 0
|
555 |
+
while label_idx < targets.shape[-1] and targets[label_idx] != image_token_id:
|
556 |
+
targets[label_idx] = IGNORE_INDEX
|
557 |
+
label_idx += 1
|
558 |
+
|
559 |
+
pad_token = self.tokenizer.convert_tokens_to_ids([self.tokenizer.pad_token])[0]
|
560 |
+
|
561 |
+
pad_token_idxs = torch.where(targets == pad_token)[0]
|
562 |
+
for pad_token_idx in pad_token_idxs:
|
563 |
+
token_idx = pad_token_idx + 1
|
564 |
+
while token_idx < targets.shape[-1] and targets[token_idx] != image_token_id:
|
565 |
+
targets[token_idx] = IGNORE_INDEX
|
566 |
+
token_idx += 1
|
567 |
+
# do not train on padding tokens
|
568 |
+
targets[targets == pad_token] = IGNORE_INDEX
|
569 |
+
|
570 |
+
# mask image tokens is unnecessary for llava-1.5
|
571 |
+
# targets[targets == IMAGE_TOKEN_INDEX] = IGNORE_INDEX
|
572 |
+
# print(input_ids.shape)
|
573 |
+
|
574 |
+
data_dict = dict(input_ids=input_ids, labels=targets, image=images)
|
575 |
+
if self.data_args.image_aspect_ratio == "dynamic_s2":
|
576 |
+
data_dict["block_sizes"] = block_sizes
|
577 |
+
|
578 |
+
return data_dict
|
579 |
+
|
580 |
+
|
581 |
+
class LazyCoyoDataset(Dataset):
|
582 |
+
"""Dataset for supervised fine-tuning.
|
583 |
+
This class is implemented by Ji Lin and Haotian Tang."""
|
584 |
+
|
585 |
+
num_image_tokens = 576
|
586 |
+
|
587 |
+
def __init__(
|
588 |
+
self,
|
589 |
+
data_path: str,
|
590 |
+
image_folder: str,
|
591 |
+
tokenizer: transformers.PreTrainedTokenizer,
|
592 |
+
data_args: DataArguments,
|
593 |
+
training_args: TrainingArguments,
|
594 |
+
# kentang-mit@: balance the total number of tokens for Coyo and MMC4.
|
595 |
+
n_samples_per_idx=4,
|
596 |
+
):
|
597 |
+
super().__init__()
|
598 |
+
|
599 |
+
import pickle
|
600 |
+
|
601 |
+
n_samples = []
|
602 |
+
# actually shards and stats info
|
603 |
+
n_shards = len(os.listdir(data_path)) // 2
|
604 |
+
# n_shards = 100
|
605 |
+
count_info_list = sorted([f for f in os.listdir(data_path) if f.endswith(".count")])[:n_shards]
|
606 |
+
n_samples = [int(open(os.path.join(data_path, f)).read().strip()) for f in count_info_list]
|
607 |
+
|
608 |
+
print("total COYO samples", sum(n_samples))
|
609 |
+
|
610 |
+
PROCESS_GROUP_MANAGER = get_pg_manager()
|
611 |
+
if PROCESS_GROUP_MANAGER is not None:
|
612 |
+
import torch.distributed as dist
|
613 |
+
|
614 |
+
sequence_parallel_size = training_args.seq_parallel_size
|
615 |
+
else:
|
616 |
+
sequence_parallel_size = 1
|
617 |
+
print("sequence_parallel_size", sequence_parallel_size)
|
618 |
+
rank = training_args.process_index // sequence_parallel_size # int(os.environ["RANK"])
|
619 |
+
world_size = training_args.world_size // sequence_parallel_size # int(os.environ["WORLD_SIZE"])
|
620 |
+
shared_size = n_shards // world_size
|
621 |
+
|
622 |
+
gpu_samples = [
|
623 |
+
sum(n_samples[i * shared_size : (i + 1) * shared_size]) // n_samples_per_idx for i in range(world_size)
|
624 |
+
]
|
625 |
+
self.n_samples = min(gpu_samples) * world_size # total size
|
626 |
+
self.idx_offset = rank * min(gpu_samples)
|
627 |
+
|
628 |
+
shard_start, shard_end = rank * shared_size, (rank + 1) * shared_size
|
629 |
+
print(f" * loading data from shard {shard_start}-{shard_end}")
|
630 |
+
|
631 |
+
shard_names = [d.replace(".count", ".pkl") for d in count_info_list]
|
632 |
+
shard_names = shard_names[shard_start:shard_end]
|
633 |
+
|
634 |
+
full_data_list = []
|
635 |
+
# now load data
|
636 |
+
for shard_name in shard_names:
|
637 |
+
# load shard
|
638 |
+
with open(os.path.join(data_path, shard_name), "rb") as f:
|
639 |
+
shard_data = pickle.load(f)
|
640 |
+
random.seed(42)
|
641 |
+
if "mmc4" in data_path:
|
642 |
+
random.shuffle(shard_data) # shuffle for MMC4cap only
|
643 |
+
full_data_list.extend(shard_data)
|
644 |
+
|
645 |
+
print(f"* loaded totally {len(full_data_list)} samples")
|
646 |
+
|
647 |
+
# now pack the samples into groups
|
648 |
+
n_groups = len(full_data_list) // n_samples_per_idx
|
649 |
+
full_data_list = [
|
650 |
+
full_data_list[i : i + n_samples_per_idx] for i in range(0, len(full_data_list), n_samples_per_idx)
|
651 |
+
]
|
652 |
+
if len(full_data_list[-1]) < n_samples_per_idx:
|
653 |
+
full_data_list = full_data_list[:-1]
|
654 |
+
assert len(full_data_list) == n_groups
|
655 |
+
print(f"split into {n_groups} groups")
|
656 |
+
|
657 |
+
self.data_list = full_data_list
|
658 |
+
|
659 |
+
self.tokenizer = tokenizer
|
660 |
+
self.data_args = data_args
|
661 |
+
self.image_folder = image_folder
|
662 |
+
|
663 |
+
def __len__(self):
|
664 |
+
# return len(self.data_list)
|
665 |
+
return self.n_samples
|
666 |
+
|
667 |
+
@property
|
668 |
+
def modality_lengths(self):
|
669 |
+
# Estimate the number of tokens after tokenization, used for length-grouped sampling
|
670 |
+
length_list = []
|
671 |
+
for samples in self.data_list:
|
672 |
+
cur_len = sum([len(conv["text" if "text" in conv else "caption"].split()) for conv in samples])
|
673 |
+
# The unit of cur_len is "words". We assume 1 word = 2 tokens.
|
674 |
+
cur_len = cur_len + len(samples) * self.num_image_tokens // 2
|
675 |
+
length_list.append(cur_len)
|
676 |
+
return length_list
|
677 |
+
|
678 |
+
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
|
679 |
+
CONCAT_SAMPLES = False
|
680 |
+
info_list = self.data_list[i - self.idx_offset]
|
681 |
+
|
682 |
+
text_list = []
|
683 |
+
image_list = []
|
684 |
+
|
685 |
+
for sample in info_list:
|
686 |
+
caption_key = (
|
687 |
+
"text" if "text" in sample else "caption"
|
688 |
+
) # kentang-mit@: remove existing <image> tokens in the sentences
|
689 |
+
# kentang-mit@: remove existing <image> token.
|
690 |
+
# if this is an html tag, we still preserve its semantic meaning
|
691 |
+
sample[caption_key] = sample[caption_key].replace("<image>", "<IMAGE>")
|
692 |
+
text_list.append(DEFAULT_IMAGE_TOKEN + "\n" + sample[caption_key] + self.tokenizer.eos_token)
|
693 |
+
if "image" in sample:
|
694 |
+
image_base64 = sample["image"]
|
695 |
+
rawbytes = base64.b64decode(image_base64)
|
696 |
+
else:
|
697 |
+
rawbytes = sample["rawbytes"]
|
698 |
+
image = Image.open(io.BytesIO(rawbytes)).convert("RGB")
|
699 |
+
image_list.append(image)
|
700 |
+
|
701 |
+
image_list = torch.stack([process_image(image, self.data_args, self.image_folder) for image in image_list])
|
702 |
+
|
703 |
+
if CONCAT_SAMPLES:
|
704 |
+
# into <image>cap<eos><image>cap<eos>...
|
705 |
+
text_list = "".join(text_list)
|
706 |
+
|
707 |
+
input_ids = self.tokenizer(
|
708 |
+
text_list,
|
709 |
+
return_tensors="pt",
|
710 |
+
padding="longest",
|
711 |
+
max_length=self.tokenizer.model_max_length,
|
712 |
+
truncation=True,
|
713 |
+
).input_ids # 4, seq_len
|
714 |
+
|
715 |
+
input_ids = input_ids[0]
|
716 |
+
|
717 |
+
else:
|
718 |
+
input_ids = [
|
719 |
+
tokenizer_image_token(
|
720 |
+
prompt,
|
721 |
+
self.tokenizer,
|
722 |
+
return_tensors="pt",
|
723 |
+
)
|
724 |
+
for prompt in text_list
|
725 |
+
]
|
726 |
+
# print([x.shape[0] for x in input_ids], [len(x.split()) for x in text_list], [len(re.findall(r"<image[^>]*>", x)) for x in text_list])
|
727 |
+
|
728 |
+
# input_ids = torch.nn.utils.rnn.pad_sequence(
|
729 |
+
# input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id
|
730 |
+
# )
|
731 |
+
|
732 |
+
targets = copy.deepcopy(input_ids)
|
733 |
+
for i in range(len(targets)):
|
734 |
+
targets[i][targets[i] == self.tokenizer.pad_token_id] = IGNORE_INDEX
|
735 |
+
|
736 |
+
return dict(input_ids=input_ids, labels=targets, image=image_list)
|
737 |
+
|
738 |
+
|
739 |
+
class LazyWDSDataset(Dataset):
|
740 |
+
"""Dataset for supervised fine-tuning.
|
741 |
+
This class is implemented by Ji Lin and Ligeng Zhu."""
|
742 |
+
|
743 |
+
def __init__(
|
744 |
+
self,
|
745 |
+
data_path: str,
|
746 |
+
tokenizer: transformers.PreTrainedTokenizer,
|
747 |
+
data_args: DataArguments,
|
748 |
+
image_folder: str,
|
749 |
+
training_args: TrainingArguments,
|
750 |
+
):
|
751 |
+
super().__init__()
|
752 |
+
n_samples = []
|
753 |
+
n_shards = len(os.listdir(data_path)) // 3
|
754 |
+
for shard in range(n_shards):
|
755 |
+
with open(os.path.join(data_path, f"{shard:05d}_stats.json")) as f:
|
756 |
+
info = json.load(f)
|
757 |
+
n_samples.append(info["successes"])
|
758 |
+
|
759 |
+
# print(f"[DEBUG] {data_path} total samples", sum(n_samples)) # 10,881,869
|
760 |
+
|
761 |
+
PROCESS_GROUP_MANAGER = get_pg_manager()
|
762 |
+
if PROCESS_GROUP_MANAGER is not None:
|
763 |
+
import torch.distributed as dist
|
764 |
+
|
765 |
+
sequence_parallel_size = training_args.seq_parallel_size
|
766 |
+
else:
|
767 |
+
sequence_parallel_size = 1
|
768 |
+
print("sequence_parallel_size", sequence_parallel_size)
|
769 |
+
rank = training_args.process_index // sequence_parallel_size # int(os.environ["RANK"])
|
770 |
+
world_size = training_args.world_size // sequence_parallel_size # int(os.environ["WORLD_SIZE"])
|
771 |
+
shared_size = n_shards // world_size
|
772 |
+
print("rank", rank, "world_size", world_size, "shared_size", shared_size)
|
773 |
+
gpu_samples = [sum(n_samples[i * shared_size : (i + 1) * shared_size]) for i in range(world_size)]
|
774 |
+
self.n_samples = min(gpu_samples) * world_size # total size
|
775 |
+
self.idx_offset = rank * min(gpu_samples)
|
776 |
+
shard_start, shard_end = rank * shared_size, (rank + 1) * shared_size
|
777 |
+
print(f" * loading data from shard {shard_start}-{shard_end}")
|
778 |
+
|
779 |
+
tar_list = [f"{shard_idx:05d}.tar" for shard_idx in range(shard_start, shard_end)]
|
780 |
+
|
781 |
+
self.data_list = []
|
782 |
+
t1 = time.time()
|
783 |
+
for tar in tar_list:
|
784 |
+
tmp_path = f"/tmp/ccs{tar}"
|
785 |
+
tar_path = os.path.join(data_path, tar)
|
786 |
+
|
787 |
+
if PROCESS_GROUP_MANAGER is not None:
|
788 |
+
dist.barrier()
|
789 |
+
if PROCESS_GROUP_MANAGER.sp_rank == 0:
|
790 |
+
os.makedirs(tmp_path, exist_ok=True)
|
791 |
+
os.system(f"tar -xkf {tar_path} -C {tmp_path}")
|
792 |
+
dist.barrier()
|
793 |
+
else:
|
794 |
+
os.makedirs(tmp_path, exist_ok=True)
|
795 |
+
os.system(f"tar -xkf {tar_path} -C {tmp_path}")
|
796 |
+
|
797 |
+
txt_list = [f for f in os.listdir(tmp_path) if f.endswith(".txt")]
|
798 |
+
|
799 |
+
for txt in txt_list:
|
800 |
+
caption = open(os.path.join(tmp_path, txt)).read().strip()
|
801 |
+
image_path = os.path.join(tmp_path, txt.split(".")[0] + ".jpg")
|
802 |
+
self.data_list.append({"caption": caption, "image": image_path})
|
803 |
+
t2 = time.time()
|
804 |
+
print(f"Loading done. Total time: {t2 - t1:.2f} seconds")
|
805 |
+
|
806 |
+
self.tokenizer = tokenizer
|
807 |
+
self.data_args = data_args
|
808 |
+
self.image_folder = image_folder
|
809 |
+
|
810 |
+
def __len__(self):
|
811 |
+
return self.n_samples
|
812 |
+
|
813 |
+
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
|
814 |
+
|
815 |
+
# print("i", i, "idx_offset", self.idx_offset, "len", len(self.data_list))
|
816 |
+
info = self.data_list[i - self.idx_offset]
|
817 |
+
caption, image_path = info["caption"], info["image"]
|
818 |
+
|
819 |
+
rand_prompt = "<image>\n"
|
820 |
+
sources = [
|
821 |
+
{
|
822 |
+
"image": image_path,
|
823 |
+
"conversations": [
|
824 |
+
{"from": "human", "value": rand_prompt},
|
825 |
+
{"from": "gpt", "value": caption},
|
826 |
+
],
|
827 |
+
}
|
828 |
+
]
|
829 |
+
|
830 |
+
# one example of sources
|
831 |
+
# [{'id': 'GCC_train_001738742', 'image': 'GCC_train_001738742.jpg', 'conversations': [{'from': 'human', 'value': 'Provide a brief description of the given image.\n<image>'}, {'from': 'gpt', 'value': 'a sketch of an ostrich'}]}]
|
832 |
+
if "image" in sources[0]:
|
833 |
+
image = process_image(sources[0]["image"], self.data_args, self.image_folder)
|
834 |
+
image = torch.unsqueeze(image, dim=0)
|
835 |
+
# now random pick some context samples for training
|
836 |
+
if hasattr(self.data_args, "num_shots"):
|
837 |
+
if self.data_args.num_shots > 0:
|
838 |
+
raise NotImplementedError
|
839 |
+
else:
|
840 |
+
raise NotImplementedError
|
841 |
+
|
842 |
+
data_dict = preprocess([sources[0]["conversations"]], self.tokenizer, has_image=True)
|
843 |
+
|
844 |
+
if isinstance(i, int):
|
845 |
+
data_dict = dict(input_ids=data_dict["input_ids"][0], labels=data_dict["labels"][0])
|
846 |
+
|
847 |
+
# image exist in the data
|
848 |
+
if image is not None:
|
849 |
+
data_dict["image"] = image
|
850 |
+
else:
|
851 |
+
raise NotImplementedError
|
852 |
+
|
853 |
+
return data_dict
|
854 |
+
|
855 |
+
|
856 |
+
class LazyCCSWebDataset(Dataset):
|
857 |
+
"""Dataset for supervised fine-tuning.
|
858 |
+
This class is implemented by Ligeng Zhu."""
|
859 |
+
|
860 |
+
def __init__(
|
861 |
+
self,
|
862 |
+
data_path: str,
|
863 |
+
image_folder: str,
|
864 |
+
tokenizer: transformers.PreTrainedTokenizer,
|
865 |
+
data_args: DataArguments,
|
866 |
+
training_args: TrainingArguments,
|
867 |
+
):
|
868 |
+
super().__init__()
|
869 |
+
t1 = time.time()
|
870 |
+
|
871 |
+
from llava.data.simple_vila_webdataset import VILAWebDataset
|
872 |
+
|
873 |
+
print("[DEBUG] ", osp.abspath(data_path))
|
874 |
+
self.dataset = VILAWebDataset(data_path=osp.abspath(data_path))
|
875 |
+
|
876 |
+
t2 = time.time()
|
877 |
+
print(f"Loading done. Total time: {t2 - t1:.2f} seconds")
|
878 |
+
|
879 |
+
self.tokenizer = tokenizer
|
880 |
+
self.data_args = data_args
|
881 |
+
|
882 |
+
def __len__(self):
|
883 |
+
return len(self.dataset)
|
884 |
+
|
885 |
+
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
|
886 |
+
# info = self.data_list[i - self.idx_offset]
|
887 |
+
# caption, image_path = info["caption"], info["image"]
|
888 |
+
info = self.dataset[i]
|
889 |
+
if ".jpg" in info:
|
890 |
+
caption, image_path = info[".txt"], info[".jpg"]
|
891 |
+
elif ".png" in info:
|
892 |
+
caption, image_path = info[".txt"], info[".png"]
|
893 |
+
elif ".webp" in info:
|
894 |
+
caption, image_path = info[".txt"], info[".webp"]
|
895 |
+
elif ".bmp" in info:
|
896 |
+
caption, image_path = info[".txt"], info[".bmp"]
|
897 |
+
elif ".tiff" in info:
|
898 |
+
caption, image_path = info[".txt"], info[".tiff"]
|
899 |
+
else:
|
900 |
+
print(info.keys())
|
901 |
+
print(info)
|
902 |
+
raise KeyError
|
903 |
+
|
904 |
+
caption = caption.replace("<image>", "<IMAGE>")
|
905 |
+
if isinstance(image_path, io.BytesIO):
|
906 |
+
image_path = Image.open(image_path).convert("RGB")
|
907 |
+
|
908 |
+
if not isinstance(image_path, PIL.Image.Image):
|
909 |
+
print(image_path)
|
910 |
+
print(info.keys())
|
911 |
+
print(type(image_path))
|
912 |
+
raise NotImplementedError
|
913 |
+
|
914 |
+
rand_prompt = "<image>\n"
|
915 |
+
sources = [
|
916 |
+
{
|
917 |
+
"image": image_path,
|
918 |
+
"conversations": [
|
919 |
+
{"from": "human", "value": rand_prompt},
|
920 |
+
{"from": "gpt", "value": caption},
|
921 |
+
],
|
922 |
+
}
|
923 |
+
]
|
924 |
+
|
925 |
+
# one example of sources
|
926 |
+
# [{'id': 'GCC_train_001738742', 'image': 'GCC_train_001738742.jpg', 'conversations': [{'from': 'human', 'value': 'Provide a brief description of the given image.\n<image>'}, {'from': 'gpt', 'value': 'a sketch of an ostrich'}]}]
|
927 |
+
if "image" in sources[0]:
|
928 |
+
image = process_image(sources[0]["image"], self.data_args, image_folder=None)
|
929 |
+
image = torch.unsqueeze(image, dim=0)
|
930 |
+
# now random pick some context samples for training
|
931 |
+
if hasattr(self.data_args, "num_shots"):
|
932 |
+
if self.data_args.num_shots > 0:
|
933 |
+
raise NotImplementedError
|
934 |
+
else:
|
935 |
+
raise NotImplementedError
|
936 |
+
|
937 |
+
data_dict = preprocess([sources[0]["conversations"]], self.tokenizer, has_image=True)
|
938 |
+
|
939 |
+
if isinstance(i, int):
|
940 |
+
data_dict = dict(input_ids=data_dict["input_ids"][0], labels=data_dict["labels"][0])
|
941 |
+
|
942 |
+
# image exist in the data
|
943 |
+
if image is not None:
|
944 |
+
data_dict["image"] = image
|
945 |
+
else:
|
946 |
+
raise NotImplementedError
|
947 |
+
|
948 |
+
return data_dict
|
949 |
+
|
950 |
+
|
951 |
+
from functools import lru_cache
|
952 |
+
|
953 |
+
|
954 |
+
@lru_cache(maxsize=16)
|
955 |
+
def lru_json_load(fpath):
|
956 |
+
with open(fpath) as fp:
|
957 |
+
return json.load(fp)
|
958 |
+
|
959 |
+
|
960 |
+
class LazyCoyoWebDataset(Dataset):
|
961 |
+
"""Dataset for supervised fine-tuning.
|
962 |
+
This class is implemented by Ligeng Zhu."""
|
963 |
+
|
964 |
+
num_image_tokens = 576
|
965 |
+
|
966 |
+
def __init__(
|
967 |
+
self,
|
968 |
+
data_path: str,
|
969 |
+
image_folder: str,
|
970 |
+
tokenizer: transformers.PreTrainedTokenizer,
|
971 |
+
data_args: DataArguments,
|
972 |
+
training_args: TrainingArguments,
|
973 |
+
# kentang-mit@: balance the total number of tokens for Coyo and MMC4.
|
974 |
+
n_samples_per_idx=4,
|
975 |
+
):
|
976 |
+
super().__init__()
|
977 |
+
|
978 |
+
from llava.data.simple_vila_webdataset import VILAWebDataset
|
979 |
+
|
980 |
+
print("[DEBUG] ", osp.abspath(data_path))
|
981 |
+
self.dataset = VILAWebDataset(data_path=osp.abspath(data_path), meta_path=data_args.meta_path)
|
982 |
+
|
983 |
+
if data_args.start_idx >= 0 and data_args.end_idx >= 0:
|
984 |
+
# Ligeng: support slicing for ablate different subsets.
|
985 |
+
total = len(self.dataset)
|
986 |
+
start_idx = int(total * data_args.start_idx)
|
987 |
+
end_idx = int(total * data_args.end_idx)
|
988 |
+
print(f"loading subset from {start_idx} to {end_idx}, total {total}")
|
989 |
+
self.dataset = torch.utils.data.Subset(self.dataset, range(start_idx, end_idx))
|
990 |
+
|
991 |
+
# For caption choice,
|
992 |
+
# if None: use original caption
|
993 |
+
# if a folder path: use specified caption to override original one (choice1)
|
994 |
+
# if a folder path: use specified caption and concat with original one (choice2)
|
995 |
+
self.caption_choice = None
|
996 |
+
self.caption_choice_2 = None
|
997 |
+
self.data_path = data_path
|
998 |
+
|
999 |
+
if data_args.caption_choice is not None:
|
1000 |
+
self.caption_choice = data_args.caption_choice
|
1001 |
+
print("[recap] Override coyo caption using ", self.caption_choice)
|
1002 |
+
|
1003 |
+
if data_args.caption_choice_2 is not None:
|
1004 |
+
self.caption_choice_2 = data_args.caption_choice_2
|
1005 |
+
print("[recapv2] Override coyo caption using ", self.caption_choice_2)
|
1006 |
+
|
1007 |
+
print("total samples", len(self.dataset))
|
1008 |
+
PROCESS_GROUP_MANAGER = get_pg_manager()
|
1009 |
+
if PROCESS_GROUP_MANAGER is not None:
|
1010 |
+
import torch.distributed as dist
|
1011 |
+
|
1012 |
+
sequence_parallel_size = training_args.seq_parallel_size
|
1013 |
+
sequence_parallel_rank = PROCESS_GROUP_MANAGER.sp_rank
|
1014 |
+
else:
|
1015 |
+
sequence_parallel_size = 1
|
1016 |
+
print("sequence_parallel_size", sequence_parallel_size)
|
1017 |
+
rank = (
|
1018 |
+
training_args.process_index // sequence_parallel_size if "RANK" in os.environ else 2
|
1019 |
+
) # int(os.environ["RANK"])
|
1020 |
+
world_size = (
|
1021 |
+
training_args.world_size // sequence_parallel_size if "WORLD_SIZE" in os.environ else 32
|
1022 |
+
) # int(os.environ["WORLD_SIZE"])
|
1023 |
+
print(
|
1024 |
+
"rank",
|
1025 |
+
rank,
|
1026 |
+
"world_size",
|
1027 |
+
world_size,
|
1028 |
+
)
|
1029 |
+
|
1030 |
+
self.n_samples_per_idx = n_samples_per_idx
|
1031 |
+
# self.n_samples = len(self.dataset) // n_samples_per_idx
|
1032 |
+
self.tokenizer = tokenizer
|
1033 |
+
self.data_args = data_args
|
1034 |
+
|
1035 |
+
def __len__(self):
|
1036 |
+
return len(self.dataset) // self.n_samples_per_idx
|
1037 |
+
|
1038 |
+
@property
|
1039 |
+
def modality_lengths(self):
|
1040 |
+
# Estimate the number of tokens after tokenization, used for length-grouped sampling
|
1041 |
+
length_list = []
|
1042 |
+
for samples in self.data_list:
|
1043 |
+
cur_len = sum([len(conv["text" if "text" in conv else "caption"].split()) for conv in samples])
|
1044 |
+
# The unit of cur_len is "words". We assume 1 word = 2 tokens.
|
1045 |
+
cur_len = cur_len + len(samples) * self.num_image_tokens // 2
|
1046 |
+
length_list.append(cur_len)
|
1047 |
+
return length_list
|
1048 |
+
|
1049 |
+
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
|
1050 |
+
CONCAT_SAMPLES = False
|
1051 |
+
# info_list = self.dataset[i - self.idx_offset]
|
1052 |
+
|
1053 |
+
begin_idx, end_idx = (
|
1054 |
+
i * self.n_samples_per_idx,
|
1055 |
+
(i + 1) * self.n_samples_per_idx,
|
1056 |
+
)
|
1057 |
+
end_idx = min(end_idx, len(self.dataset))
|
1058 |
+
|
1059 |
+
text_list = []
|
1060 |
+
image_list = []
|
1061 |
+
|
1062 |
+
for idx in range(begin_idx, end_idx):
|
1063 |
+
info = self.dataset[idx]
|
1064 |
+
if ".jpg" in info:
|
1065 |
+
caption, image_path = info[".txt"], info[".jpg"]
|
1066 |
+
elif ".png" in info:
|
1067 |
+
caption, image_path = info[".txt"], info[".png"]
|
1068 |
+
elif ".webp" in info:
|
1069 |
+
caption, image_path = info[".txt"], info[".webp"]
|
1070 |
+
elif ".bmp" in info:
|
1071 |
+
caption, image_path = info[".txt"], info[".bmp"]
|
1072 |
+
elif ".tiff" in info:
|
1073 |
+
caption, image_path = info[".txt"], info[".tiff"]
|
1074 |
+
else:
|
1075 |
+
print(info.keys())
|
1076 |
+
print(info)
|
1077 |
+
raise KeyError
|
1078 |
+
|
1079 |
+
if self.caption_choice is not None:
|
1080 |
+
# load new captions
|
1081 |
+
shard = info["__shard__"]
|
1082 |
+
url = info[".json"]["url"]
|
1083 |
+
tar_name = osp.relpath(osp.realpath(shard), osp.realpath(self.data_path))
|
1084 |
+
# tar_name = osp.dirname(shard)
|
1085 |
+
shard_json_path = osp.join(self.caption_choice, tar_name + ".json")
|
1086 |
+
try:
|
1087 |
+
shard_json = lru_json_load(shard_json_path)
|
1088 |
+
try:
|
1089 |
+
caption = shard_json[url]["output"]
|
1090 |
+
except KeyError:
|
1091 |
+
print(f"{url} not in caption. fallback to original caption temporarially")
|
1092 |
+
except:
|
1093 |
+
print(f"shard_json_path {shard_json_path} not found. fallback to original caption temporarially")
|
1094 |
+
caption = caption.replace("<image>", "<IMAGE>")
|
1095 |
+
text_list.append(DEFAULT_IMAGE_TOKEN + caption + self.tokenizer.eos_token)
|
1096 |
+
|
1097 |
+
if isinstance(image_path, io.BytesIO):
|
1098 |
+
image_path = Image.open(image_path).convert("RGB")
|
1099 |
+
|
1100 |
+
if not isinstance(image_path, PIL.Image.Image):
|
1101 |
+
print(image_path)
|
1102 |
+
print(info.keys())
|
1103 |
+
print(type(image_path))
|
1104 |
+
raise NotImplementedError
|
1105 |
+
|
1106 |
+
image_list.append(image_path)
|
1107 |
+
|
1108 |
+
# image_list = torch.stack([process_image(image, self.data_args, image_folder=None) for image in image_list])
|
1109 |
+
# NOTE(fix by ligeng)
|
1110 |
+
# now image_list should return a list of image tensor where each has a dimension of (1, c, h, w)
|
1111 |
+
image_list = [process_image(image, self.data_args, image_folder=None).unsqueeze(0) for image in image_list]
|
1112 |
+
|
1113 |
+
if CONCAT_SAMPLES:
|
1114 |
+
# into <image>cap<eos><image>cap<eos>...
|
1115 |
+
text_list = "".join(text_list)
|
1116 |
+
|
1117 |
+
input_ids = self.tokenizer(
|
1118 |
+
text_list,
|
1119 |
+
return_tensors="pt",
|
1120 |
+
padding="longest",
|
1121 |
+
max_length=self.tokenizer.model_max_length,
|
1122 |
+
truncation=True,
|
1123 |
+
).input_ids # 4, seq_len
|
1124 |
+
|
1125 |
+
input_ids = input_ids[0]
|
1126 |
+
else:
|
1127 |
+
input_ids = [
|
1128 |
+
tokenizer_image_token(
|
1129 |
+
prompt,
|
1130 |
+
self.tokenizer,
|
1131 |
+
return_tensors="pt",
|
1132 |
+
)
|
1133 |
+
for prompt in text_list
|
1134 |
+
]
|
1135 |
+
input_ids = [
|
1136 |
+
(
|
1137 |
+
torch.concat([torch.tensor([self.tokenizer.bos_token_id]), input_ids_i])
|
1138 |
+
if input_ids_i[0] != self.tokenizer.bos_token_id
|
1139 |
+
else input_ids_i
|
1140 |
+
)
|
1141 |
+
for input_ids_i in input_ids
|
1142 |
+
]
|
1143 |
+
|
1144 |
+
targets = copy.deepcopy(input_ids)
|
1145 |
+
for i in range(len(targets)):
|
1146 |
+
targets[i][targets[i] == self.tokenizer.pad_token_id] = IGNORE_INDEX
|
1147 |
+
|
1148 |
+
return dict(input_ids=input_ids, labels=targets, image=image_list)
|
1149 |
+
|
1150 |
+
|
1151 |
+
class LazyVideoWebDataset(Dataset):
|
1152 |
+
"""Dataset for supervised fine-tuning."""
|
1153 |
+
|
1154 |
+
def __init__(
|
1155 |
+
self,
|
1156 |
+
data_path: str,
|
1157 |
+
image_folder: str,
|
1158 |
+
tokenizer: transformers.PreTrainedTokenizer,
|
1159 |
+
data_args: DataArguments,
|
1160 |
+
training_args: TrainingArguments,
|
1161 |
+
# cache_path: str,
|
1162 |
+
# n_samples_per_idx=4,
|
1163 |
+
):
|
1164 |
+
super().__init__()
|
1165 |
+
|
1166 |
+
# from llava.data.simple_video_dataset import SimpleVideoDataset
|
1167 |
+
|
1168 |
+
from llava.data.simple_vila_webdataset import VILAWebDataset
|
1169 |
+
|
1170 |
+
print("[DEBUG] ", osp.abspath(data_path))
|
1171 |
+
self.dataset = VILAWebDataset(
|
1172 |
+
data_path=osp.abspath(data_path),
|
1173 |
+
meta_path=f"{osp.abspath(data_path)}/wids-meta.json",
|
1174 |
+
# cache_dir=cache_path,
|
1175 |
+
)
|
1176 |
+
|
1177 |
+
# None: use original caption
|
1178 |
+
# Folder path: use original caption
|
1179 |
+
self.caption_choice = None
|
1180 |
+
self.data_path = data_path
|
1181 |
+
|
1182 |
+
if data_args.caption_choice is not None:
|
1183 |
+
self.caption_choice = data_args.caption_choice
|
1184 |
+
print("[recap] Override LazyVideo caption using ", self.caption_choice)
|
1185 |
+
|
1186 |
+
print("total samples", len(self.dataset))
|
1187 |
+
# InternVid: TODO
|
1188 |
+
PROCESS_GROUP_MANAGER = get_pg_manager()
|
1189 |
+
if PROCESS_GROUP_MANAGER is not None:
|
1190 |
+
import torch.distributed as dist
|
1191 |
+
|
1192 |
+
sequence_parallel_size = training_args.seq_parallel_size
|
1193 |
+
sequence_parallel_rank = PROCESS_GROUP_MANAGER.sp_rank
|
1194 |
+
else:
|
1195 |
+
sequence_parallel_size = 1
|
1196 |
+
print("sequence_parallel_size", sequence_parallel_size)
|
1197 |
+
rank = (
|
1198 |
+
training_args.process_index // sequence_parallel_size if "RANK" in os.environ else 2
|
1199 |
+
) # int(os.environ["RANK"])
|
1200 |
+
world_size = (
|
1201 |
+
training_args.world_size // sequence_parallel_size if "WORLD_SIZE" in os.environ else 32
|
1202 |
+
) # int(os.environ["WORLD_SIZE"])
|
1203 |
+
print(
|
1204 |
+
"rank",
|
1205 |
+
rank,
|
1206 |
+
"world_size",
|
1207 |
+
world_size,
|
1208 |
+
)
|
1209 |
+
self.rank = rank
|
1210 |
+
# rank = int(os.environ["RANK"]) if "RANK" in os.environ else 2
|
1211 |
+
# world_size = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 32
|
1212 |
+
|
1213 |
+
self.tokenizer = tokenizer
|
1214 |
+
self.data_args = data_args
|
1215 |
+
|
1216 |
+
self.missing_uids = set()
|
1217 |
+
|
1218 |
+
def __len__(self):
|
1219 |
+
return len(self.dataset)
|
1220 |
+
|
1221 |
+
@property
|
1222 |
+
def modality_lengths(self):
|
1223 |
+
# Estimate the number of tokens after tokenization, used for length-grouped sampling
|
1224 |
+
length_list = []
|
1225 |
+
for samples in self.data_list:
|
1226 |
+
cur_len = sum([len(conv["text" if "text" in conv else "caption"].split()) for conv in samples])
|
1227 |
+
# The unit of cur_len is "words". We assume 1 word = 2 tokens.
|
1228 |
+
cur_len = cur_len + len(samples) * self.num_image_tokens // 2
|
1229 |
+
length_list.append(cur_len)
|
1230 |
+
return length_list
|
1231 |
+
|
1232 |
+
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
|
1233 |
+
ADD_TEXT_PROMPT = False
|
1234 |
+
num_video_frames = self.data_args.num_video_frames if hasattr(self.data_args, "num_video_frames") else 8
|
1235 |
+
loader_fps = self.data_args.fps if hasattr(self.data_args, "fps") else 0.0
|
1236 |
+
|
1237 |
+
info = self.dataset[i]
|
1238 |
+
|
1239 |
+
caption = ""
|
1240 |
+
# print(info)
|
1241 |
+
if ".mp4" in info:
|
1242 |
+
caption, video_path = info[".txt"], info[".mp4"]
|
1243 |
+
else:
|
1244 |
+
video_path = None
|
1245 |
+
caption = "Empty video."
|
1246 |
+
|
1247 |
+
images, frames_loaded, _ = LazySupervisedDataset._load_video(
|
1248 |
+
video_path, num_video_frames, loader_fps, self.data_args
|
1249 |
+
)
|
1250 |
+
|
1251 |
+
if frames_loaded == 0:
|
1252 |
+
caption = "Empty video."
|
1253 |
+
|
1254 |
+
if self.caption_choice is not None:
|
1255 |
+
shard = info["__shard__"]
|
1256 |
+
uuid = osp.join(info["__shard__"], info["__key__"])
|
1257 |
+
url = info["__key__"]
|
1258 |
+
tar_name = osp.basename(info["__shard__"])
|
1259 |
+
|
1260 |
+
try:
|
1261 |
+
shard_json_path = osp.join(self.caption_choice, tar_name.replace(".tar", ".json"))
|
1262 |
+
shard_json = lru_json_load(shard_json_path)
|
1263 |
+
caption = shard_json[url]["summary"]["output"]
|
1264 |
+
except (KeyError, FileNotFoundError, json.decoder.JSONDecodeError):
|
1265 |
+
if uuid not in self.missing_uids:
|
1266 |
+
print("override caption not found for ", uuid)
|
1267 |
+
self.missing_uids.add(uuid)
|
1268 |
+
|
1269 |
+
# print(f"[DEBUG {uuid}]", caption)
|
1270 |
+
|
1271 |
+
frames_loaded_successfully = len(images)
|
1272 |
+
if caption is None:
|
1273 |
+
caption = ""
|
1274 |
+
prompt = "<image>\n" * frames_loaded_successfully + caption
|
1275 |
+
image_tensor = torch.stack([process_image(image, self.data_args, None) for image in images])
|
1276 |
+
|
1277 |
+
input_ids = tokenizer_image_token(
|
1278 |
+
prompt,
|
1279 |
+
self.tokenizer,
|
1280 |
+
return_tensors="pt",
|
1281 |
+
)
|
1282 |
+
targets = copy.deepcopy(input_ids)
|
1283 |
+
data_dict = dict(input_ids=input_ids, labels=targets, image=image_tensor)
|
1284 |
+
|
1285 |
+
return data_dict
|
1286 |
+
|
1287 |
+
|
1288 |
+
class DataCollatorForSupervisedDatasetSeqParallel:
|
1289 |
+
"""Collate examples for supervised fine-tuning.
|
1290 |
+
This class is originally implemented by the LLaVA team and
|
1291 |
+
modified by Haotian Tang."""
|
1292 |
+
|
1293 |
+
def __init__(
|
1294 |
+
self,
|
1295 |
+
tokenizer: transformers.PreTrainedTokenizer,
|
1296 |
+
data_args: DataArguments,
|
1297 |
+
training_args: TrainingArguments,
|
1298 |
+
sp_degree: int,
|
1299 |
+
sp_rank: int,
|
1300 |
+
ring_degree: int,
|
1301 |
+
ring_type: str,
|
1302 |
+
):
|
1303 |
+
self.tokenizer = tokenizer
|
1304 |
+
self.data_args = data_args
|
1305 |
+
self.training_args = training_args
|
1306 |
+
self.sp_degree = sp_degree
|
1307 |
+
self.sp_rank = sp_rank
|
1308 |
+
self.ring_degree = ring_degree
|
1309 |
+
self.ring_type = ring_type
|
1310 |
+
|
1311 |
+
def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
|
1312 |
+
input_ids, labels, images = [], [], []
|
1313 |
+
image_token_id = self.tokenizer.media_token_ids["image"]
|
1314 |
+
video_token_id = self.tokenizer.media_token_ids["video"]
|
1315 |
+
|
1316 |
+
for instance in instances:
|
1317 |
+
if not isinstance(instance["input_ids"], list):
|
1318 |
+
input_ids.append(instance["input_ids"])
|
1319 |
+
else:
|
1320 |
+
input_ids += instance["input_ids"]
|
1321 |
+
if not isinstance(instance["labels"], list):
|
1322 |
+
labels.append(instance["labels"])
|
1323 |
+
else:
|
1324 |
+
labels += instance["labels"]
|
1325 |
+
# Note (kentang-mit@: we do not directly push tensors to
|
1326 |
+
# images, but list of tensors.
|
1327 |
+
if "video" in instance:
|
1328 |
+
instance["image"] = torch.cat(instance["video"])
|
1329 |
+
video_id_pos = torch.where(input_ids[-1] == video_token_id)[0][0]
|
1330 |
+
replace_ids = torch.Tensor(
|
1331 |
+
([image_token_id] + self.tokenizer.encode("\n")) * instance["image"].shape[0],
|
1332 |
+
device=input_ids[-1].device,
|
1333 |
+
)
|
1334 |
+
input_ids[-1] = torch.cat(
|
1335 |
+
[input_ids[-1][:video_id_pos], replace_ids, input_ids[-1][video_id_pos + 1 :]]
|
1336 |
+
).to(input_ids[-1].dtype)
|
1337 |
+
labels[-1] = torch.cat(
|
1338 |
+
[
|
1339 |
+
labels[-1][:video_id_pos],
|
1340 |
+
torch.Tensor([IGNORE_INDEX] * instance["image"].shape[0] * 2),
|
1341 |
+
labels[-1][video_id_pos + 1 :],
|
1342 |
+
]
|
1343 |
+
).to(labels[-1].dtype)
|
1344 |
+
instance.pop("video")
|
1345 |
+
|
1346 |
+
if "image" in instance:
|
1347 |
+
cur_image = instance["image"]
|
1348 |
+
assert len(cur_image.shape) == 4
|
1349 |
+
# n_images, 3, size, size
|
1350 |
+
if cur_image.shape[0] == 0:
|
1351 |
+
warnings.warn("loaded one sample without images.")
|
1352 |
+
if not isinstance(instance["input_ids"], list):
|
1353 |
+
# datasets other than coyo, not packing >1 samples together
|
1354 |
+
images.append(cur_image)
|
1355 |
+
else:
|
1356 |
+
# coyo-like datasets
|
1357 |
+
images.extend(cur_image.chunk(cur_image.size(0), 0))
|
1358 |
+
else:
|
1359 |
+
warnings.warn("loaded one sample without images.")
|
1360 |
+
images.append([])
|
1361 |
+
# kentang-mit@: we need to make sure these two lists have
|
1362 |
+
# the same length. We will use input_ids to filter out images corresponding
|
1363 |
+
# to truncated <image> tokens later.
|
1364 |
+
|
1365 |
+
max_num_images = max([len(_images) for _images in images])
|
1366 |
+
for _images, _input_ids in zip(images, input_ids):
|
1367 |
+
assert (
|
1368 |
+
len(_images) == (_input_ids == image_token_id).sum().item()
|
1369 |
+
), f"Number mismatch between images and placeholder image tokens in 'len(_images) == (_input_ids == image_token_id).sum().item()'.\
|
1370 |
+
Expect to have {len(_images)} images but only found {(_input_ids == image_token_id).sum().item()} images in tokens. \
|
1371 |
+
Error input_ids: {_input_ids} {self.tokenizer.decode([x if x != -200 else 200 for x in _input_ids])}"
|
1372 |
+
|
1373 |
+
NUM_TOKENS_PER_IMAGE = self.data_args.num_image_tokens
|
1374 |
+
if hasattr(self.data_args.image_processor, "crop_size"):
|
1375 |
+
crop_size = self.data_args.image_processor.crop_size
|
1376 |
+
else:
|
1377 |
+
crop_size = self.data_args.image_processor.size
|
1378 |
+
|
1379 |
+
# Init the padding sample
|
1380 |
+
seq_id = 0
|
1381 |
+
while seq_id < len(input_ids):
|
1382 |
+
# Skip the samples without images
|
1383 |
+
dummy_image = torch.ones((1, 3, crop_size["height"], crop_size["width"]), device=input_ids[seq_id].device)
|
1384 |
+
# dummy input_ids include one bos, one image token, and one eos
|
1385 |
+
dummy_input_ids = torch.zeros_like(input_ids[seq_id][:3])
|
1386 |
+
dummy_input_ids[0] = self.tokenizer.bos_token_id
|
1387 |
+
dummy_input_ids[1] = image_token_id
|
1388 |
+
dummy_input_ids[2] = self.tokenizer.eos_token_id
|
1389 |
+
dummy_labels = copy.deepcopy(dummy_input_ids)
|
1390 |
+
dummy_labels[:2] = IGNORE_INDEX
|
1391 |
+
dummy_seqlen = NUM_TOKENS_PER_IMAGE + 2 # TODO: Check the hard coding of 2
|
1392 |
+
dummy_position_ids = torch.arange(start=0, end=dummy_seqlen, dtype=torch.int32)
|
1393 |
+
break
|
1394 |
+
|
1395 |
+
# Sort with the real length of the sequence
|
1396 |
+
combined = sorted(
|
1397 |
+
zip(input_ids, labels, images),
|
1398 |
+
key=lambda x: len(x[2]) * (NUM_TOKENS_PER_IMAGE - 1) + x[0].size(-1),
|
1399 |
+
reverse=True, # Start Packing from the sequence with most images.
|
1400 |
+
)
|
1401 |
+
sorted_ids, sorted_labels, sorted_images = zip(*combined)
|
1402 |
+
sorted_ids, sorted_labels, sorted_images = list(sorted_ids), list(sorted_labels), list(sorted_images)
|
1403 |
+
max_seq_length = self.tokenizer.model_max_length # len(sorted_ids[0])
|
1404 |
+
max_sample_len = 0
|
1405 |
+
|
1406 |
+
batches = []
|
1407 |
+
label_batches = []
|
1408 |
+
position_ids = []
|
1409 |
+
batch_images = []
|
1410 |
+
seqlens_in_batch = []
|
1411 |
+
|
1412 |
+
i = 0
|
1413 |
+
while i < len(sorted_ids):
|
1414 |
+
current_batch = torch.tensor([], dtype=torch.int32)
|
1415 |
+
current_label_batch = torch.tensor([], dtype=torch.int32)
|
1416 |
+
current_position_ids = torch.tensor([], dtype=torch.int32)
|
1417 |
+
current_batch_images = []
|
1418 |
+
current_num_images = 0
|
1419 |
+
current_len = 0
|
1420 |
+
current_num_samples = 0
|
1421 |
+
|
1422 |
+
# Pack a few samples into one sample
|
1423 |
+
while i < len(sorted_ids):
|
1424 |
+
num_images = (sorted_ids[i] == image_token_id).sum().item()
|
1425 |
+
num_image_tokens_added = num_images * (NUM_TOKENS_PER_IMAGE - 1)
|
1426 |
+
num_incoming_tokens = sorted_ids[i].size(-1) + num_image_tokens_added
|
1427 |
+
|
1428 |
+
# Handle RingAttn_Varlen which requires `seqlens_in_batch` should be divisible by `ring_degree`
|
1429 |
+
if self.ring_degree > 1:
|
1430 |
+
RING_PAD_TOKEN_INDEX = 2
|
1431 |
+
if self.ring_type == "ring_varlen":
|
1432 |
+
if num_incoming_tokens % self.sp_degree != 0:
|
1433 |
+
pad_len = self.sp_degree - num_incoming_tokens % self.sp_degree
|
1434 |
+
num_incoming_tokens += pad_len
|
1435 |
+
# pad `input_ids`
|
1436 |
+
pad_tensor = torch.full(
|
1437 |
+
(pad_len,), RING_PAD_TOKEN_INDEX, dtype=sorted_ids[i].dtype, device=sorted_ids[i].device
|
1438 |
+
)
|
1439 |
+
sorted_ids[i] = torch.cat([sorted_ids[i], pad_tensor])
|
1440 |
+
|
1441 |
+
# pad `label`
|
1442 |
+
pad_label_tensor = torch.full(
|
1443 |
+
(pad_len,), IGNORE_INDEX, dtype=sorted_labels[i].dtype, device=sorted_labels[i].device
|
1444 |
+
)
|
1445 |
+
sorted_labels[i] = torch.cat([sorted_labels[i], pad_label_tensor])
|
1446 |
+
elif self.ring_type == "zigzag_ring_varlen":
|
1447 |
+
self.zigzag_sp_degree = self.sp_degree * 2
|
1448 |
+
if num_incoming_tokens % self.zigzag_sp_degree != 0:
|
1449 |
+
pad_len = self.zigzag_sp_degree - num_incoming_tokens % self.zigzag_sp_degree
|
1450 |
+
num_incoming_tokens += pad_len
|
1451 |
+
# pad `input_ids`
|
1452 |
+
pad_tensor = torch.full(
|
1453 |
+
(pad_len,), RING_PAD_TOKEN_INDEX, dtype=sorted_ids[i].dtype, device=sorted_ids[i].device
|
1454 |
+
)
|
1455 |
+
sorted_ids[i] = torch.cat([sorted_ids[i], pad_tensor])
|
1456 |
+
|
1457 |
+
# pad `label`
|
1458 |
+
pad_label_tensor = torch.full(
|
1459 |
+
(pad_len,), IGNORE_INDEX, dtype=sorted_labels[i].dtype, device=sorted_labels[i].device
|
1460 |
+
)
|
1461 |
+
sorted_labels[i] = torch.cat([sorted_labels[i], pad_label_tensor])
|
1462 |
+
else:
|
1463 |
+
raise ValueError(f"Invalid ring_type: {self.ring_type}")
|
1464 |
+
|
1465 |
+
if num_incoming_tokens > max_seq_length:
|
1466 |
+
print(
|
1467 |
+
f"Warning: Skipping one packed sample with {num_incoming_tokens} tokens,\
|
1468 |
+
please consider increase max seq len {max_seq_length}."
|
1469 |
+
)
|
1470 |
+
i += 1
|
1471 |
+
continue
|
1472 |
+
|
1473 |
+
if (
|
1474 |
+
(current_num_images == 0)
|
1475 |
+
or (current_num_images < self.sp_degree)
|
1476 |
+
or (
|
1477 |
+
(current_num_images + num_images <= max_num_images)
|
1478 |
+
and (current_len + num_incoming_tokens <= max_sample_len)
|
1479 |
+
)
|
1480 |
+
) and (current_len + num_incoming_tokens <= max_seq_length):
|
1481 |
+
current_num_images += num_images
|
1482 |
+
current_len += num_incoming_tokens
|
1483 |
+
current_num_samples += 1
|
1484 |
+
current_position_ids = torch.cat(
|
1485 |
+
(current_position_ids, torch.arange(start=0, end=num_incoming_tokens)), dim=0
|
1486 |
+
)
|
1487 |
+
current_batch = torch.cat((current_batch, sorted_ids[i]), dim=0)
|
1488 |
+
sorted_labels[i][0] = IGNORE_INDEX
|
1489 |
+
current_label_batch = torch.cat((current_label_batch, sorted_labels[i]), dim=0)
|
1490 |
+
seqlens_in_batch.append(num_incoming_tokens)
|
1491 |
+
current_batch_images.extend(sorted_images[i])
|
1492 |
+
i += 1
|
1493 |
+
assert current_num_images == len(current_batch_images)
|
1494 |
+
else:
|
1495 |
+
break
|
1496 |
+
|
1497 |
+
# Padding the sample with the dummy image sample, if there are no enough images
|
1498 |
+
MAX_RETRY = self.sp_degree
|
1499 |
+
num_retry = 0
|
1500 |
+
while current_num_images < self.sp_degree and current_len < max_seq_length and num_retry <= MAX_RETRY:
|
1501 |
+
current_num_images += dummy_image.size(0)
|
1502 |
+
current_len += dummy_seqlen
|
1503 |
+
current_num_samples += 1
|
1504 |
+
current_position_ids = torch.cat((current_position_ids, dummy_position_ids), dim=0)
|
1505 |
+
current_batch = torch.cat((current_batch, dummy_input_ids), dim=0)
|
1506 |
+
current_label_batch = torch.cat((current_label_batch, dummy_labels), dim=0)
|
1507 |
+
seqlens_in_batch.append(dummy_seqlen)
|
1508 |
+
current_batch_images.extend(dummy_image)
|
1509 |
+
# We pad from left side to ensure correct grad flow
|
1510 |
+
# current_batch = torch.cat((dummy_input_ids, current_batch), dim=0)
|
1511 |
+
# current_label_batch = torch.cat((dummy_labels, current_label_batch), dim=0)
|
1512 |
+
# seqlens_in_batch.insert(0, dummy_seqlen)
|
1513 |
+
# current_batch_images = torch.cat((dummy_image, current_batch_images), dim=0)
|
1514 |
+
num_retry += 1
|
1515 |
+
|
1516 |
+
# Drop the samples that do not have enough images
|
1517 |
+
if current_num_images < self.sp_degree:
|
1518 |
+
print(f"Warning: Skipping one packed sample with {current_num_images} images")
|
1519 |
+
seqlens_in_batch = seqlens_in_batch[:-current_num_samples]
|
1520 |
+
continue
|
1521 |
+
|
1522 |
+
max_sample_len = max(max_sample_len, current_len)
|
1523 |
+
batches.append(current_batch)
|
1524 |
+
label_batches.append(current_label_batch)
|
1525 |
+
position_ids.append(current_position_ids)
|
1526 |
+
batch_images.append(current_batch_images)
|
1527 |
+
|
1528 |
+
try:
|
1529 |
+
assert current_num_images == len(torch.where(current_batch == image_token_id)[0].tolist())
|
1530 |
+
except AssertionError:
|
1531 |
+
print(f"Error num_images on {self.sp_rank}", current_num_images)
|
1532 |
+
print("current_batch", current_batch)
|
1533 |
+
print(
|
1534 |
+
f"Error len(torch.where(batches[i] == image_token_id)[0].tolist() on {self.sp_rank}:",
|
1535 |
+
len(torch.where(current_batch == image_token_id)[0].tolist()),
|
1536 |
+
)
|
1537 |
+
print(f"Error len(current_batch_images) on {self.sp_rank}:", len(current_batch_images))
|
1538 |
+
raise AssertionError
|
1539 |
+
|
1540 |
+
# Split for sequence parallelism
|
1541 |
+
for i in range(len(batches)):
|
1542 |
+
image_token_indices = torch.where(batches[i] == image_token_id)[0].tolist()
|
1543 |
+
image_ids = torch.arange(0, len(image_token_indices), dtype=torch.int32)
|
1544 |
+
batches[i] = extract_local_input_ids(
|
1545 |
+
batches[i], image_token_indices, self.sp_rank, self.sp_degree, self.tokenizer.bos_token_id
|
1546 |
+
)
|
1547 |
+
label_batches[i] = extract_local_input_ids(
|
1548 |
+
label_batches[i], image_token_indices, self.sp_rank, self.sp_degree, self.tokenizer.bos_token_id
|
1549 |
+
)
|
1550 |
+
batch_images[i] = torch.concat(
|
1551 |
+
extract_local_from_list(batch_images[i], self.sp_rank, self.sp_degree), dim=0
|
1552 |
+
)
|
1553 |
+
H, W = batch_images[i].size(-2), batch_images[i].size(-1)
|
1554 |
+
batch_images[i] = batch_images[i].reshape(-1, 3, W, H)
|
1555 |
+
num_images = len(batch_images[i])
|
1556 |
+
|
1557 |
+
try:
|
1558 |
+
assert num_images == len(torch.where(batches[i] == image_token_id)[0].tolist())
|
1559 |
+
except AssertionError:
|
1560 |
+
print(f"Error num_images on {self.sp_rank}", num_images)
|
1561 |
+
print("batches[i]", batches[i])
|
1562 |
+
print(
|
1563 |
+
f"Error len(torch.where(batches[i] == image_token_id)[0].tolist() on {self.sp_rank}:",
|
1564 |
+
len(torch.where(batches[i] == image_token_id)[0].tolist()),
|
1565 |
+
)
|
1566 |
+
print(f"Error batch_images[i] on {self.sp_rank}:", batch_images[i].shape)
|
1567 |
+
raise AssertionError
|
1568 |
+
position_ids[i] = extract_local_position_ids(
|
1569 |
+
position_ids[i], image_token_indices, image_ids, self.sp_rank, self.sp_degree, NUM_TOKENS_PER_IMAGE - 1
|
1570 |
+
)
|
1571 |
+
|
1572 |
+
input_ids = torch.nn.utils.rnn.pad_sequence(
|
1573 |
+
batches, batch_first=True, padding_value=self.tokenizer.pad_token_id
|
1574 |
+
)
|
1575 |
+
labels = torch.nn.utils.rnn.pad_sequence(label_batches, batch_first=True, padding_value=IGNORE_INDEX)
|
1576 |
+
seqlens_in_batch = [torch.tensor(x) for x in seqlens_in_batch]
|
1577 |
+
seqlens_in_batch = torch.stack(seqlens_in_batch, axis=0)
|
1578 |
+
seqlens_in_batch = seqlens_in_batch.flatten()
|
1579 |
+
position_ids = torch.nn.utils.rnn.pad_sequence(position_ids, batch_first=True, padding_value=-1)
|
1580 |
+
|
1581 |
+
if batch_images:
|
1582 |
+
batch_images = [torch.unbind(images) for images in batch_images]
|
1583 |
+
flat_batch_images = [item for sublist in batch_images for item in sublist]
|
1584 |
+
else:
|
1585 |
+
flat_batch_images = None
|
1586 |
+
batch = dict(
|
1587 |
+
input_ids=input_ids,
|
1588 |
+
labels=labels,
|
1589 |
+
# notice that we inject attention mask here
|
1590 |
+
attention_mask=input_ids.ne(self.tokenizer.pad_token_id),
|
1591 |
+
seqlens_in_batch=seqlens_in_batch,
|
1592 |
+
media={"image": flat_batch_images},
|
1593 |
+
media_config={"image": {}},
|
1594 |
+
position_ids=position_ids,
|
1595 |
+
)
|
1596 |
+
return batch
|
1597 |
+
|
1598 |
+
|
1599 |
+
def make_supervised_data_module(
|
1600 |
+
tokenizer: PreTrainedTokenizer,
|
1601 |
+
data_args: DataArguments,
|
1602 |
+
training_args: TrainingArguments,
|
1603 |
+
) -> Dict:
|
1604 |
+
"""Make dataset and collator for supervised fine-tuning.
|
1605 |
+
This function is originally implemented by the LLaVA team and
|
1606 |
+
modified by Jason Lu, Haotian Tang and Ligeng Zhu."""
|
1607 |
+
datasets_mixture.register_datasets_mixtures()
|
1608 |
+
|
1609 |
+
from .builder import build_dataset
|
1610 |
+
|
1611 |
+
train_dataset = build_dataset(data_args.data_mixture, data_args, training_args, tokenizer)
|
1612 |
+
training_args.sample_lens = [len(d) for d in train_dataset.datasets]
|
1613 |
+
|
1614 |
+
PROCESS_GROUP_MANAGER = get_pg_manager()
|
1615 |
+
if PROCESS_GROUP_MANAGER is None:
|
1616 |
+
data_collator = DataCollator(tokenizer=tokenizer)
|
1617 |
+
else:
|
1618 |
+
sp_degree = training_args.seq_parallel_size
|
1619 |
+
sp_rank = PROCESS_GROUP_MANAGER.sp_rank
|
1620 |
+
ring_degree = PROCESS_GROUP_MANAGER.ring_degree
|
1621 |
+
ring_type = PROCESS_GROUP_MANAGER.ring_type
|
1622 |
+
data_collator = DataCollatorForSupervisedDatasetSeqParallel(
|
1623 |
+
tokenizer=tokenizer,
|
1624 |
+
data_args=data_args,
|
1625 |
+
training_args=training_args,
|
1626 |
+
sp_degree=sp_degree,
|
1627 |
+
sp_rank=sp_rank,
|
1628 |
+
ring_degree=ring_degree,
|
1629 |
+
ring_type=ring_type,
|
1630 |
+
)
|
1631 |
+
|
1632 |
+
return dict(
|
1633 |
+
train_dataset=train_dataset,
|
1634 |
+
data_collator=data_collator,
|
1635 |
+
)
|
llava/data/datasets_mixture.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 NVIDIA CORPORATION.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
|
5 |
+
# LICENSE is in incl_licenses directory.
|
6 |
+
|
7 |
+
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
#
|
21 |
+
# SPDX-License-Identifier: Apache-2.0
|
22 |
+
|
23 |
+
import warnings
|
24 |
+
from dataclasses import dataclass, field
|
25 |
+
|
26 |
+
|
27 |
+
@dataclass
|
28 |
+
class Dataset:
|
29 |
+
dataset_name: str
|
30 |
+
dataset_type: str = field(default="torch")
|
31 |
+
data_path: str = field(default=None, metadata={"help": "Path to the training data."})
|
32 |
+
meta_path: str = field(default=None, metadata={"help": "Path to the meta data for webdataset."})
|
33 |
+
image_path: str = field(default=None, metadata={"help": "Path to the training image data."})
|
34 |
+
speech_path: str = field(default=None, metadata={"help": "Path to the training speech data."})
|
35 |
+
caption_choice: str = field(default=None, metadata={"help": "Path to the caption directory for recaption."})
|
36 |
+
description: str = field(
|
37 |
+
default=None,
|
38 |
+
metadata={
|
39 |
+
"help": "Detailed desciption of where the data is from, how it is labelled, intended use case and the size of the dataset."
|
40 |
+
},
|
41 |
+
)
|
42 |
+
test_script: str = (None,)
|
43 |
+
maintainer: str = (None,)
|
44 |
+
############## ############## ############## ############## ############## ##############
|
45 |
+
caption_choice: str = field(default=None, metadata={"help": "Path to the captions for webdataset."})
|
46 |
+
caption_choice_2: str = field(default=None, metadata={"help": "Path to the captions for webdataset."})
|
47 |
+
start_idx: float = field(default=-1, metadata={"help": "Start index of the dataset."})
|
48 |
+
end_idx: float = field(default=-1, metadata={"help": "Start index of the dataset."})
|
49 |
+
|
50 |
+
|
51 |
+
DATASETS_LEGACY = {}
|
52 |
+
|
53 |
+
|
54 |
+
def add_dataset(dataset):
|
55 |
+
if dataset.dataset_name in DATASETS_LEGACY:
|
56 |
+
# make sure the data_name is unique
|
57 |
+
warnings.warn(f"{dataset.dataset_name} already existed in DATASETS. Make sure the name is unique.")
|
58 |
+
assert "+" not in dataset.dataset_name, "Dataset name cannot include symbol '+'."
|
59 |
+
DATASETS_LEGACY.update({dataset.dataset_name: dataset})
|
60 |
+
|
61 |
+
|
62 |
+
def register_datasets_mixtures():
|
63 |
+
############## ############## ############## ############## ############## ##############
|
64 |
+
# Audio Datasets
|
65 |
+
############## ############## ############## ############## ############## ##############
|
66 |
+
|
67 |
+
data_mixture_1 = Dataset(
|
68 |
+
dataset_name="data_mixture_1",
|
69 |
+
dataset_type="torch",
|
70 |
+
data_path="/path/to/your/data_mixture_1/train.json",
|
71 |
+
)
|
72 |
+
add_dataset(data_mixture_1)
|
73 |
+
|
74 |
+
data_mixture_2 = Dataset(
|
75 |
+
dataset_name="data_mixture_2",
|
76 |
+
dataset_type="torch",
|
77 |
+
data_path="/path/to/your/data_mixture_2/train.json",
|
78 |
+
)
|
79 |
+
add_dataset(data_mixture_2)
|
80 |
+
# Add more data mixtures below
|
llava/data/registry/datasets/audio_test.yaml
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
Clotho-AQA-AQA:
|
3 |
+
_target_: llava.data.LLaVADataset
|
4 |
+
data_path: Clotho-AQA-AQA/test.json
|
5 |
+
Music-AVQA-AQA_All:
|
6 |
+
_target_: llava.data.LLaVADataset
|
7 |
+
data_path: Music-AVQA-AQA_All/test.json
|
8 |
+
CochlScene-SceneClassification:
|
9 |
+
_target_: llava.data.LLaVADataset
|
10 |
+
data_path: CochlScene-SceneClassification/test.json
|
11 |
+
NSynth-Source:
|
12 |
+
_target_: llava.data.LLaVADataset
|
13 |
+
data_path: NSynth-Source/test.json
|
14 |
+
NSynth-Instrument:
|
15 |
+
_target_: llava.data.LLaVADataset
|
16 |
+
data_path: NSynth-Instrument/test.json
|
17 |
+
FSD50k-EventClassification:
|
18 |
+
_target_: llava.data.LLaVADataset
|
19 |
+
data_path: FSD50k-EventClassification/test.json
|
20 |
+
Clotho-v2-AudioCaptioning:
|
21 |
+
_target_: llava.data.LLaVADataset
|
22 |
+
data_path: Clotho-v2-AudioCaptioning/test.json
|
23 |
+
audiocaps-AudioCaptioning:
|
24 |
+
_target_: llava.data.LLaVADataset
|
25 |
+
data_path: audiocaps-AudioCaptioning/test.json
|
26 |
+
ravdess-EmotionClassification:
|
27 |
+
_target_: llava.data.LLaVADataset
|
28 |
+
data_path: ravdess-EmotionClassification/val.json
|
29 |
+
GTZAN-GenreClassification:
|
30 |
+
_target_: llava.data.LLaVADataset
|
31 |
+
data_path: GTZAN-GenreClassification/test.json
|
32 |
+
UrbanSound8K-EventClassification:
|
33 |
+
_target_: llava.data.LLaVADataset
|
34 |
+
data_path: UrbanSound8K-EventClassification/train.json
|
35 |
+
Medley-solos-DB-InstrClassification:
|
36 |
+
_target_: llava.data.LLaVADataset
|
37 |
+
data_path: Medley-solos-DB-InstrClassification/test.json
|
38 |
+
ESC50-EventClassification:
|
39 |
+
_target_: llava.data.LLaVADataset
|
40 |
+
data_path: ESC50-EventClassification/train.json
|
41 |
+
CREMA-D-EmotionClassification:
|
42 |
+
_target_: llava.data.LLaVADataset
|
43 |
+
data_path: CREMA-D-EmotionClassification/test.json
|
44 |
+
IEMOCAP-EmotionClassification:
|
45 |
+
_target_: llava.data.LLaVADataset
|
46 |
+
data_path: IEMOCAP-EmotionClassification/test.json
|
47 |
+
MELD-EmotionClassification:
|
48 |
+
_target_: llava.data.LLaVADataset
|
49 |
+
data_path: MELD-EmotionClassification/test.json
|
50 |
+
MELD-SentimentClassification:
|
51 |
+
_target_: llava.data.LLaVADataset
|
52 |
+
data_path: MELD-SentimentClassification/test.json
|
53 |
+
MMAU:
|
54 |
+
_target_: llava.data.LLaVADataset
|
55 |
+
data_path: MMAU/test.json
|
56 |
+
MMAU-mini:
|
57 |
+
_target_: llava.data.LLaVADataset
|
58 |
+
data_path: MMAU/test-mini.json
|
59 |
+
AudioEntailmentQA:
|
60 |
+
_target_: llava.data.LLaVADataset
|
61 |
+
data_path: AudioEntailmentQA/test.json
|
62 |
+
SPGI-ASR:
|
63 |
+
_target_: llava.data.LLaVADataset
|
64 |
+
data_path: SPGI-ASR/val.json
|
65 |
+
SWBD-ASR:
|
66 |
+
_target_: llava.data.LLaVADataset
|
67 |
+
data_path: SWBD-ASR/val.json
|
68 |
+
LibriSpeech-ASR-clean:
|
69 |
+
_target_: llava.data.LLaVADataset
|
70 |
+
data_path: LibriSpeech-ASR/test_clean.json
|
71 |
+
LibriSpeech-ASR-other:
|
72 |
+
_target_: llava.data.LLaVADataset
|
73 |
+
data_path: LibriSpeech-ASR/test_other.json
|
74 |
+
VoxPopuli-ASR:
|
75 |
+
_target_: llava.data.LLaVADataset
|
76 |
+
data_path: VoxPopuli-ASR/test.json
|
77 |
+
Europarl-ASR:
|
78 |
+
_target_: llava.data.LLaVADataset
|
79 |
+
data_path: Europarl-ASR/test.json
|
80 |
+
CV-ASR:
|
81 |
+
_target_: llava.data.LLaVADataset
|
82 |
+
data_path: CV-ASR/test.json
|
83 |
+
GigaSpeech-ASR:
|
84 |
+
_target_: llava.data.LLaVADataset
|
85 |
+
data_path: GigaSpeech-ASR/test.json
|
86 |
+
CompA-R-AQA:
|
87 |
+
_target_: llava.data.LLaVADataset
|
88 |
+
data_path: CompA-R-AQA/test.json
|
89 |
+
MuschoMusicQA:
|
90 |
+
_target_: llava.data.LLaVADataset
|
91 |
+
data_path: MuschoMusicQA/test.json
|
92 |
+
CMM:
|
93 |
+
_target_: llava.data.LLaVADataset
|
94 |
+
data_path: CMM/test.json
|
95 |
+
AIR-Bench:
|
96 |
+
_target_: llava.data.LLaVADataset
|
97 |
+
data_path: AIR-Bench/test.json
|
llava/data/registry/datasets/default.yaml
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
dummy:
|
3 |
+
_target_: llava.data.DummyDataset
|
4 |
+
num_instances: 10000
|
5 |
+
comments: dummy dataset for testing
|
llava/data/registry/mixtures.yaml
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
audio_speech_all:
|
3 |
+
-CV-ASR_1
|
4 |
+
-MELD-EmotionClassification+
|
5 |
+
-BBCSoundEffects-AudioDescription
|
6 |
+
-SWBD-ASR_1
|
7 |
+
-WavCaps-SoundBible-AudioCaptioning
|
8 |
+
-AudioSet-Speech-Audio-QA
|
9 |
+
-SONYC-UST-EventClassification
|
10 |
+
-VoxPopuli-ASR_1
|
11 |
+
-FSD50k-EventClassification
|
12 |
+
-SalmonnQA
|
13 |
+
-emov-db-EmotionClassification
|
14 |
+
-LLARK_MagnaTagATune-mir+tess-EmotionClassification
|
15 |
+
-Europarl-ASR_1
|
16 |
+
-jl-corpus-EmotionClassification
|
17 |
+
-Ego-10-AudioCaptioning
|
18 |
+
-SPGI-ASR_1
|
19 |
+
-CREMA-D-EmotionClassification
|
20 |
+
-MusicBenchQA
|
21 |
+
-WavCaps-BBC_Sound_Effects-AudioCaptioning
|
22 |
+
-NSynth-Instrument
|
23 |
+
-SpokenSquadQA
|
24 |
+
-NSynth-MIR
|
25 |
+
-AudioEntailmentQA
|
26 |
+
-GigaSpeech-ASR_1
|
27 |
+
-WavCaps-AudioSet_SL-AudioCaptioning
|
28 |
+
-NonSpeech7k-EventClassification
|
29 |
+
-chime-home-EventClassification
|
30 |
+
-MusicCaps-AudioCaptioning
|
31 |
+
-LP-MusicCaps-MSD-AudioCaptioning
|
32 |
+
-Ego-30-AudioCaptioning
|
33 |
+
-NSynth-Source+Clotho-v2-AudioCaptioning
|
34 |
+
-LP-MusicCaps-MC-AudioCaptioning
|
35 |
+
-Clotho-AQA-EventClassification
|
36 |
+
-WavCaps-FreeSound-AudioCaptioning
|
37 |
+
-LLARK_MagnaTagATune-reasoning
|
38 |
+
-AudioSet-Temporal-Speech-Audio-QA
|
39 |
+
-TUT-EventClassification
|
40 |
+
-ESC50-EventClassification
|
41 |
+
-WavText5K-Tagging
|
42 |
+
-MELD-SentimentClassification
|
43 |
+
-Music-AVQA-AQA_All
|
44 |
+
-Music-AVQA-AVQA_All
|
45 |
+
-MACS-AudioCaptioning
|
46 |
+
-Medley-solos-DB-InstrClassification
|
47 |
+
-AudioSet-EventClassification
|
48 |
+
-OMGEmotion-EmotionClassification
|
49 |
+
-FMA-GenreClassification
|
50 |
+
-Epidemic_sound-AudioCaptioning
|
51 |
+
-CochlScene-SceneClassification
|
52 |
+
-LLARK_FMA-reasoning
|
53 |
+
-ravdess-EmotionClassification
|
54 |
+
-CompA-R-AQA
|
55 |
+
-MU-LLAMA-AQA
|
56 |
+
-musdbhq-InstrClassification
|
57 |
+
-UrbanSound8K-EventClassification
|
58 |
+
-audiocaps-AudioCaptioning
|
59 |
+
-VocalSound-VocalClassification
|
60 |
+
-CLAP_freesound-AudioCaptioning
|
61 |
+
-MMAUQA
|
62 |
+
-SongDescriber-AudioCaptioning
|
63 |
+
-HeySQuADQA
|
64 |
+
-Mira-AudioCaptioning
|
65 |
+
-Clotho-AQA-AQA
|
66 |
+
-LibriSpeech-ASR_1
|
67 |
+
-IEMOCAP-EmotionClassification
|
68 |
+
-AudioSetFullwoAudioMusicCaps-EventClassification
|
69 |
+
-MSP-PODCAST-Publish-1.9-EmotionClassification
|
70 |
+
-OpenAQA-AQA
|
71 |
+
-SoundDescs-AudioDescription
|
72 |
+
-LibriSQA
|
73 |
+
-LLARK_FMA-mir
|
74 |
+
-LP-MusicCaps-MTT-AudioCaptioning
|
75 |
+
-GTZAN-GenreClassification
|
76 |
+
-musdbhq-captioning
|
77 |
+
-YesNoQA
|
78 |
+
|
llava/entry.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 NVIDIA CORPORATION.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
|
5 |
+
# LICENSE is in incl_licenses directory.
|
6 |
+
|
7 |
+
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
#
|
21 |
+
# SPDX-License-Identifier: Apache-2.0
|
22 |
+
|
23 |
+
import os
|
24 |
+
import typing
|
25 |
+
from typing import List, Optional
|
26 |
+
|
27 |
+
if typing.TYPE_CHECKING:
|
28 |
+
from transformers import PreTrainedModel
|
29 |
+
else:
|
30 |
+
PreTrainedModel = None
|
31 |
+
|
32 |
+
__all__ = ["load"]
|
33 |
+
|
34 |
+
|
35 |
+
def load(
|
36 |
+
model_path: str,
|
37 |
+
model_base: Optional[str] = None,
|
38 |
+
devices: Optional[List[int]] = None,
|
39 |
+
**kwargs,
|
40 |
+
) -> PreTrainedModel:
|
41 |
+
import torch
|
42 |
+
|
43 |
+
from llava.conversation import auto_set_conversation_mode
|
44 |
+
from llava.mm_utils import get_model_name_from_path
|
45 |
+
from llava.model.builder import load_pretrained_model
|
46 |
+
|
47 |
+
auto_set_conversation_mode(model_path)
|
48 |
+
|
49 |
+
model_name = get_model_name_from_path(model_path)
|
50 |
+
model_path = os.path.expanduser(model_path)
|
51 |
+
if os.path.exists(os.path.join(model_path, "model")):
|
52 |
+
model_path = os.path.join(model_path, "model")
|
53 |
+
|
54 |
+
# Set `max_memory` to constrain which GPUs to use
|
55 |
+
if devices is not None:
|
56 |
+
assert "max_memory" not in kwargs, "`max_memory` should not be set when `devices` is set"
|
57 |
+
kwargs.update(max_memory={device: torch.cuda.get_device_properties(device).total_memory for device in devices})
|
58 |
+
|
59 |
+
model = load_pretrained_model(model_path, model_name, model_base, **kwargs)[1]
|
60 |
+
return model
|
llava/eval/__init__.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 NVIDIA CORPORATION.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
|
5 |
+
# LICENSE is in incl_licenses directory.
|
6 |
+
|
7 |
+
import os
|
8 |
+
|
9 |
+
from llava.utils import io
|
10 |
+
|
11 |
+
__all__ = ["EVAL_ROOT", "TASKS"]
|
12 |
+
|
13 |
+
|
14 |
+
EVAL_ROOT = "scripts/eval"
|
15 |
+
TASKS = io.load(os.path.join(os.path.dirname(__file__), "registry_audio.yaml"))
|
llava/eval/eval_audio_bench.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 NVIDIA CORPORATION.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
|
5 |
+
# LICENSE is in incl_licenses directory.
|
6 |
+
|
7 |
+
import argparse
|
8 |
+
import csv
|
9 |
+
import itertools
|
10 |
+
import json
|
11 |
+
import os
|
12 |
+
|
13 |
+
import torch
|
14 |
+
from datasets import load_dataset
|
15 |
+
from tqdm import tqdm
|
16 |
+
|
17 |
+
import llava
|
18 |
+
from llava import conversation as conversation_lib
|
19 |
+
from llava.data.builder import DATASETS
|
20 |
+
from llava.eval.mmmu_utils.eval_utils import parse_choice
|
21 |
+
from llava.utils import distributed as dist
|
22 |
+
from llava.utils import io
|
23 |
+
from llava.utils.logging import logger
|
24 |
+
|
25 |
+
|
26 |
+
def load_existing_ids(output_file):
|
27 |
+
if not os.path.exists(output_file):
|
28 |
+
return set(), []
|
29 |
+
try:
|
30 |
+
with open(output_file, "r") as f:
|
31 |
+
lines = f.readlines()
|
32 |
+
outputs = [json.loads(line) for line in lines]
|
33 |
+
processed_ids = {item["id"] for item in outputs}
|
34 |
+
return processed_ids, outputs
|
35 |
+
except Exception as e:
|
36 |
+
print(f"Error loading existing outputs: {e}")
|
37 |
+
return set(), []
|
38 |
+
|
39 |
+
|
40 |
+
def main() -> None:
|
41 |
+
parser = argparse.ArgumentParser()
|
42 |
+
parser.add_argument("--model-path", type=str, default=None)
|
43 |
+
parser.add_argument("--model-base", type=str, default=None)
|
44 |
+
parser.add_argument("--task", type=str, default=None)
|
45 |
+
parser.add_argument("--conv-mode", type=str, default="auto")
|
46 |
+
parser.add_argument("--generation-config", type=json.loads)
|
47 |
+
parser.add_argument("--output-dir", type=str, default=None)
|
48 |
+
args = parser.parse_args()
|
49 |
+
|
50 |
+
# Set up distributed environment
|
51 |
+
dist.init()
|
52 |
+
devices = range(dist.local_rank(), torch.cuda.device_count(), dist.local_size())
|
53 |
+
torch.cuda.set_device(devices[0])
|
54 |
+
|
55 |
+
# Load stage 3 model with line 56
|
56 |
+
model = llava.load(args.model_base, model_base=None, devices=devices)
|
57 |
+
# Uncomment line 58-63 to load stage 3.5 model on top of stage 3 for thinking mode and long audio mode
|
58 |
+
# model = PeftModel.from_pretrained(
|
59 |
+
# model,
|
60 |
+
# args.model_path,
|
61 |
+
# device_map="auto",
|
62 |
+
# torch_dtype=torch.float16,
|
63 |
+
# )
|
64 |
+
# Set up generation config
|
65 |
+
generation_config = model.default_generation_config
|
66 |
+
if args.generation_config is not None:
|
67 |
+
generation_config.update(**args.generation_config)
|
68 |
+
|
69 |
+
# Load data and chunk it
|
70 |
+
json_file = DATASETS[args.task]["data_path"]
|
71 |
+
instances = io.load(json_file)
|
72 |
+
instances = instances[dist.rank() :: dist.size()]
|
73 |
+
|
74 |
+
output_path = os.path.join(args.output_dir, f"outputs_{args.task}.jsonl")
|
75 |
+
processed_ids, outputs = load_existing_ids(output_path)
|
76 |
+
|
77 |
+
count = len(outputs)
|
78 |
+
# Run inference
|
79 |
+
new_outputs = []
|
80 |
+
for instance in tqdm(instances, disable=not dist.is_main()):
|
81 |
+
uuid = instance["id"]
|
82 |
+
sound_path = instance["sound"]
|
83 |
+
|
84 |
+
if sound_path in processed_ids:
|
85 |
+
continue # Skip if already processed
|
86 |
+
sound = llava.Sound(sound_path)
|
87 |
+
conversations = instance["conversations"]
|
88 |
+
question = conversations[0]["value"]
|
89 |
+
|
90 |
+
response = model.generate_content([sound, question], generation_config=generation_config)
|
91 |
+
|
92 |
+
print("response", response)
|
93 |
+
|
94 |
+
output = {"id": sound_path, "question": question, "gt_answer": conversations[1]["value"], "pred": response}
|
95 |
+
new_outputs.append(output)
|
96 |
+
count = count +1
|
97 |
+
if count % 20 == 0:
|
98 |
+
# Gather and save outputs
|
99 |
+
if dist.size() > 1:
|
100 |
+
outputs_new = dist.gather(new_outputs, dst=0)
|
101 |
+
if dist.is_main():
|
102 |
+
outputs_new = list(itertools.chain(*outputs_new))
|
103 |
+
final_outputs = outputs + outputs_new
|
104 |
+
io.save(os.path.join(args.output_dir, f"outputs_{args.task}.jsonl"), final_outputs)
|
105 |
+
else:
|
106 |
+
final_outputs = outputs + new_outputs
|
107 |
+
io.save(os.path.join(args.output_dir, f"outputs_{args.task}.jsonl"), final_outputs)
|
108 |
+
if dist.size() > 1:
|
109 |
+
new_outputs = dist.gather(new_outputs, dst=0)
|
110 |
+
if not dist.is_main():
|
111 |
+
return
|
112 |
+
new_outputs = list(itertools.chain(*new_outputs))
|
113 |
+
final_outputs = outputs + new_outputs
|
114 |
+
io.save(os.path.join(args.output_dir, "outputs_"+str(args.task)+".jsonl"), final_outputs)
|
115 |
+
|
116 |
+
if __name__ == "__main__":
|
117 |
+
main()
|
llava/eval/mmmu_utils/__pycache__/eval_utils.cpython-311.pyc
ADDED
Binary file (2.58 kB). View file
|
|
llava/eval/mmmu_utils/eval_utils.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is originated from the official MMMU codebase:
|
2 |
+
# https://github.com/MMMU-Benchmark/MMMU
|
3 |
+
|
4 |
+
import random
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
|
9 |
+
def parse_choice(response, all_choices, index2ans=None):
|
10 |
+
"""
|
11 |
+
Parse the prediction from the generated response.
|
12 |
+
Return the predicted index e.g., A, B, C, D.
|
13 |
+
"""
|
14 |
+
for char in [",", ".", "!", "?", ";", ":", "'"]:
|
15 |
+
response = response.strip(char)
|
16 |
+
response = " " + response + " " # add space to avoid partial match
|
17 |
+
|
18 |
+
index_ans = True
|
19 |
+
ans_with_brack = False
|
20 |
+
candidates = []
|
21 |
+
for choice in all_choices: # e.g., (A) (B) (C) (D)
|
22 |
+
if f"({choice})" in response:
|
23 |
+
candidates.append(choice)
|
24 |
+
ans_with_brack = True
|
25 |
+
|
26 |
+
if len(candidates) == 0:
|
27 |
+
for choice in all_choices: # e.g., A B C D
|
28 |
+
if f" {choice} " in response:
|
29 |
+
candidates.append(choice)
|
30 |
+
|
31 |
+
# if all above doesn't get candidates, check if the content is larger than 5 tokens and try to parse the example
|
32 |
+
if len(candidates) == 0 and len(response.split()) > 5 and index2ans is not None:
|
33 |
+
for index, ans in index2ans.items():
|
34 |
+
if ans.lower() in response.lower():
|
35 |
+
candidates.append(index)
|
36 |
+
index_ans = False # it's content ans.
|
37 |
+
|
38 |
+
if len(candidates) == 0: # still not get answer, randomly choose one.
|
39 |
+
pred_index = random.choice(all_choices)
|
40 |
+
elif len(candidates) > 1:
|
41 |
+
start_indexes = []
|
42 |
+
if index_ans:
|
43 |
+
if ans_with_brack:
|
44 |
+
for can in candidates:
|
45 |
+
index = response.rfind(f"({can})")
|
46 |
+
start_indexes.append(index) # -1 will be ignored anyway
|
47 |
+
# start_indexes = [generated_response.index(f'({can})') for can in candidates]
|
48 |
+
else:
|
49 |
+
for can in candidates:
|
50 |
+
index = response.rfind(f" {can} ")
|
51 |
+
start_indexes.append(index)
|
52 |
+
else:
|
53 |
+
for can in candidates:
|
54 |
+
index = response.lower().rfind(index2ans[can].lower())
|
55 |
+
start_indexes.append(index)
|
56 |
+
# get the last one
|
57 |
+
pred_index = candidates[np.argmax(start_indexes)]
|
58 |
+
else: # if only one candidate, use it.
|
59 |
+
pred_index = candidates[0]
|
60 |
+
|
61 |
+
return pred_index
|
llava/eval/registry_audio.yaml
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Clotho-AQA-AQA:
|
2 |
+
tags:
|
3 |
+
- local
|
4 |
+
Music-AVQA-AQA_All:
|
5 |
+
tags:
|
6 |
+
- local
|
7 |
+
CochlScene-SceneClassification:
|
8 |
+
tags:
|
9 |
+
- local
|
10 |
+
NSynth-Source:
|
11 |
+
tags:
|
12 |
+
- local
|
13 |
+
NSynth-Instrument:
|
14 |
+
tags:
|
15 |
+
- local
|
16 |
+
FSD50k-EventClassification:
|
17 |
+
tags:
|
18 |
+
- local
|
19 |
+
Clotho-v2-AudioCaptioning:
|
20 |
+
tags:
|
21 |
+
- local
|
22 |
+
audiocaps-AudioCaptioning:
|
23 |
+
tags:
|
24 |
+
- local
|
25 |
+
ravdess-EmotionClassification:
|
26 |
+
tags:
|
27 |
+
- local
|
28 |
+
GTZAN-GenreClassification:
|
29 |
+
tags:
|
30 |
+
- local
|
31 |
+
UrbanSound8K-EventClassification:
|
32 |
+
tags:
|
33 |
+
- local
|
34 |
+
Medley-solos-DB-InstrClassification:
|
35 |
+
tags:
|
36 |
+
- local
|
37 |
+
ESC50-EventClassification:
|
38 |
+
tags:
|
39 |
+
- local
|
40 |
+
CREMA-D-EmotionClassification:
|
41 |
+
tags:
|
42 |
+
- local
|
43 |
+
IEMOCAP-EmotionClassification:
|
44 |
+
tags:
|
45 |
+
- local
|
46 |
+
MELD-EmotionClassification:
|
47 |
+
tags:
|
48 |
+
- local
|
49 |
+
MELD-SentimentClassification:
|
50 |
+
tags:
|
51 |
+
- local
|
52 |
+
MMAU:
|
53 |
+
tags:
|
54 |
+
- local
|
55 |
+
AudioEntailmentQA:
|
56 |
+
tags:
|
57 |
+
- local
|
58 |
+
SPGI-ASR:
|
59 |
+
tags:
|
60 |
+
- local
|
61 |
+
SWBD-ASR:
|
62 |
+
tags:
|
63 |
+
- local
|
64 |
+
LibriSpeech-ASR-clean:
|
65 |
+
tags:
|
66 |
+
- local
|
67 |
+
LibriSpeech-ASR-other:
|
68 |
+
tags:
|
69 |
+
- local
|
70 |
+
VoxPopuli-ASR:
|
71 |
+
tags:
|
72 |
+
- local
|
73 |
+
Europarl-ASR:
|
74 |
+
tags:
|
75 |
+
- local
|
76 |
+
CV-ASR:
|
77 |
+
tags:
|
78 |
+
- local
|
79 |
+
GigaSpeech-ASR:
|
80 |
+
tags:
|
81 |
+
- local
|
82 |
+
CompA-R-AQA:
|
83 |
+
tags:
|
84 |
+
- local
|
85 |
+
MuschoMusicQA:
|
86 |
+
tags:
|
87 |
+
- local
|
88 |
+
CMM:
|
89 |
+
tags:
|
90 |
+
- local
|
91 |
+
AIR-Bench:
|
92 |
+
tags:
|
93 |
+
- local
|
llava/media.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 NVIDIA CORPORATION.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
|
5 |
+
# LICENSE is in incl_licenses directory.
|
6 |
+
|
7 |
+
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
#
|
21 |
+
# SPDX-License-Identifier: Apache-2.0
|
22 |
+
|
23 |
+
__all__ = ["Media", "File", "Image", "Video", "Speech", "Sound"]
|
24 |
+
|
25 |
+
|
26 |
+
class Media:
|
27 |
+
pass
|
28 |
+
|
29 |
+
|
30 |
+
class File(Media):
|
31 |
+
def __init__(self, path: str) -> None:
|
32 |
+
self.path = path
|
33 |
+
|
34 |
+
|
35 |
+
class Image(File):
|
36 |
+
pass
|
37 |
+
|
38 |
+
|
39 |
+
class Video(File):
|
40 |
+
pass
|
41 |
+
|
42 |
+
|
43 |
+
class Speech(File):
|
44 |
+
pass
|
45 |
+
|
46 |
+
class Sound(File):
|
47 |
+
pass
|
llava/mm_utils.py
ADDED
@@ -0,0 +1,641 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 NVIDIA CORPORATION.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
|
5 |
+
# LICENSE is in incl_licenses directory.
|
6 |
+
|
7 |
+
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
#
|
21 |
+
# SPDX-License-Identifier: Apache-2.0
|
22 |
+
|
23 |
+
# dynamic_preprocess and find_closest_aspect_ratio are referenced from https://github.com/OpenGVLab/InternVL
|
24 |
+
|
25 |
+
import base64
|
26 |
+
import os
|
27 |
+
import tempfile
|
28 |
+
from io import BytesIO
|
29 |
+
|
30 |
+
import numpy as np
|
31 |
+
import torch
|
32 |
+
from PIL import Image
|
33 |
+
from transformers import StoppingCriteria
|
34 |
+
|
35 |
+
from pydub import AudioSegment
|
36 |
+
from torchvision import transforms
|
37 |
+
import soundfile as sf
|
38 |
+
from librosa import resample as librosa_resample
|
39 |
+
import whisper
|
40 |
+
import random
|
41 |
+
from pytorchvideo.data.clip_sampling import ConstantClipsPerVideoSampler, UniformClipSampler
|
42 |
+
DEFAULT_AUDIO_FRAME_SHIFT_MS = 10 # in milliseconds
|
43 |
+
def get_frame_from_vcap(vidcap, num_frames=10, max_fps=0.0, fps=None, frame_count=None, video_file_name=None):
|
44 |
+
import cv2
|
45 |
+
|
46 |
+
if fps == None or frame_count == None:
|
47 |
+
# if one of fps or frame_count is None, still recompute
|
48 |
+
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
49 |
+
frame_count = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
50 |
+
if fps == 0 or frame_count == 0:
|
51 |
+
print(f"Video file not found. return empty images. {video_file_name}")
|
52 |
+
return [
|
53 |
+
Image.new("RGB", (720, 720)),
|
54 |
+
] * num_frames, 0, [0.]
|
55 |
+
|
56 |
+
duration = frame_count / fps
|
57 |
+
frame_interval = frame_count // num_frames
|
58 |
+
if frame_interval == 0 and frame_count <= 1:
|
59 |
+
print(f"frame_interval is equal to 0. return empty image. {video_file_name}")
|
60 |
+
return [
|
61 |
+
Image.new("RGB", (720, 720)),
|
62 |
+
] * num_frames, 0, [0.]
|
63 |
+
# print("duration:", duration, "frames:", frame_count, "intervals:", frame_interval)
|
64 |
+
|
65 |
+
images = []
|
66 |
+
count = 0
|
67 |
+
success = True
|
68 |
+
frame_indices = np.linspace(0, frame_count - 1, num_frames, dtype=int)
|
69 |
+
frame_times = [frame / fps for frame in frame_indices]
|
70 |
+
while success:
|
71 |
+
# print("frame_count:", frame_count, "count:", count, "num_frames:", num_frames, "frame_interval:", frame_interval)
|
72 |
+
if frame_count >= num_frames:
|
73 |
+
success, frame = vidcap.read()
|
74 |
+
if count in frame_indices:
|
75 |
+
try:
|
76 |
+
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
77 |
+
im_pil = Image.fromarray(img)
|
78 |
+
images.append(im_pil)
|
79 |
+
except BaseException:
|
80 |
+
continue
|
81 |
+
if len(images) >= num_frames:
|
82 |
+
return images, num_frames, frame_times
|
83 |
+
count += 1
|
84 |
+
else:
|
85 |
+
# Left padding frames if the video is not long enough
|
86 |
+
success, frame = vidcap.read()
|
87 |
+
if success:
|
88 |
+
try:
|
89 |
+
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
90 |
+
im_pil = Image.fromarray(img)
|
91 |
+
images.append(im_pil)
|
92 |
+
except BaseException:
|
93 |
+
continue
|
94 |
+
count += 1
|
95 |
+
else:
|
96 |
+
break
|
97 |
+
if len(images) == 0:
|
98 |
+
raise ValueError("Did not find enough frames in the video. return empty image.")
|
99 |
+
|
100 |
+
return images, len(images), frame_times
|
101 |
+
|
102 |
+
|
103 |
+
def get_frame_from_vcap_with_fps(vidcap, num_frames=10, max_fps=0.0, fps=None, frame_count=None, video_file_name=None):
|
104 |
+
"""
|
105 |
+
num_frames is the max number of frames the model can support.
|
106 |
+
frame_count is the number of frames in the input video.
|
107 |
+
max_fps is the max FPS of the model can support.
|
108 |
+
fps is the fps of the input video.
|
109 |
+
"""
|
110 |
+
|
111 |
+
import random
|
112 |
+
|
113 |
+
import cv2
|
114 |
+
|
115 |
+
if fps == None or frame_count == None:
|
116 |
+
# if one of fps or frame_count is None, still recompute
|
117 |
+
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
118 |
+
frame_count = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
119 |
+
|
120 |
+
if fps == 0 or frame_count == 0:
|
121 |
+
print(f"Video file not found. return empty images. {video_file_name}")
|
122 |
+
empty_video_frames = int(random.uniform(2, 8 * max_fps))
|
123 |
+
return [
|
124 |
+
Image.new("RGB", (720, 720)),
|
125 |
+
] * empty_video_frames, 0, [0.]
|
126 |
+
|
127 |
+
duration = frame_count / fps
|
128 |
+
# print("duration:", duration, "frames:", frame_count, "fps:", fps, "num_frames:", num_frames, "max_fps:", max_fps)
|
129 |
+
# If the video is too long (longer than max_fps and num_frames can support),
|
130 |
+
# we will use lower fps to sample frames.
|
131 |
+
if duration >= num_frames / max_fps:
|
132 |
+
frame_interval = frame_count // num_frames
|
133 |
+
|
134 |
+
# If the video is too short, we will skip the video if there is only one frame.
|
135 |
+
if frame_interval == 0 and frame_count <= 1:
|
136 |
+
print(f"frame_interval is equal to 0. return empty image. {video_file_name}")
|
137 |
+
empty_video_frames = int(random.uniform(2, 8 * max_fps))
|
138 |
+
return [
|
139 |
+
Image.new("RGB", (720, 720)),
|
140 |
+
] * empty_video_frames, 0, [0.]
|
141 |
+
|
142 |
+
images = []
|
143 |
+
count = 0
|
144 |
+
success = True
|
145 |
+
frame_indices = np.linspace(0, frame_count - 1, num_frames, dtype=int)
|
146 |
+
frame_times = [frame / fps for frame in frame_indices]
|
147 |
+
while success:
|
148 |
+
if frame_count >= num_frames:
|
149 |
+
# success, frame = vidcap.read()
|
150 |
+
if count in frame_indices:
|
151 |
+
success, frame = vidcap.read()
|
152 |
+
try:
|
153 |
+
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
154 |
+
im_pil = Image.fromarray(img)
|
155 |
+
images.append(im_pil)
|
156 |
+
except:
|
157 |
+
# print("Failed to read frame:", count)
|
158 |
+
continue
|
159 |
+
if len(images) >= num_frames:
|
160 |
+
return images, num_frames, frame_times
|
161 |
+
else:
|
162 |
+
success = vidcap.grab()
|
163 |
+
count += 1
|
164 |
+
else:
|
165 |
+
# Left padding frames if the video is not long enough
|
166 |
+
success, frame = vidcap.read()
|
167 |
+
if success:
|
168 |
+
try:
|
169 |
+
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
170 |
+
im_pil = Image.fromarray(img)
|
171 |
+
images.append(im_pil)
|
172 |
+
except:
|
173 |
+
# print("Failed to read frame:", count)
|
174 |
+
continue
|
175 |
+
count += 1
|
176 |
+
else:
|
177 |
+
break
|
178 |
+
else:
|
179 |
+
frames_required = int(duration * max_fps)
|
180 |
+
frame_indices = np.linspace(0, frame_count - 1, frames_required, dtype=int)
|
181 |
+
if frames_required == 0:
|
182 |
+
print(f"frames_required is fewer than 2. Duration {duration}, return empty image.")
|
183 |
+
empty_video_frames = int(random.uniform(2, 8 * max_fps))
|
184 |
+
return [
|
185 |
+
Image.new("RGB", (720, 720)),
|
186 |
+
] * empty_video_frames, 0, [0.]
|
187 |
+
elif frames_required == 1:
|
188 |
+
frame_indices = np.linspace(0, frame_count - 1, 2, dtype=int)
|
189 |
+
images = []
|
190 |
+
count = 0
|
191 |
+
looked = 0
|
192 |
+
success = True
|
193 |
+
|
194 |
+
while success:
|
195 |
+
success, frame = vidcap.read()
|
196 |
+
if success and (looked in frame_indices):
|
197 |
+
try:
|
198 |
+
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
199 |
+
im_pil = Image.fromarray(img)
|
200 |
+
images.append(im_pil)
|
201 |
+
except:
|
202 |
+
continue
|
203 |
+
count += 1
|
204 |
+
looked += 1
|
205 |
+
frame_times = [frame / fps for frame in frame_indices]
|
206 |
+
|
207 |
+
if len(images) == 0:
|
208 |
+
empty_video_frames = int(random.uniform(2, 8 * max_fps))
|
209 |
+
return [
|
210 |
+
Image.new("RGB", (720, 720)),
|
211 |
+
] * empty_video_frames, 0, [0.]
|
212 |
+
else:
|
213 |
+
return images, len(images), frame_times
|
214 |
+
|
215 |
+
|
216 |
+
def opencv_extract_frames(vpath_or_bytesio, frames=6, max_fps=0.0, fps=None, frame_count=None):
|
217 |
+
"""
|
218 |
+
Extract frames from a video using OpenCV.
|
219 |
+
|
220 |
+
Args:
|
221 |
+
vpath_or_bytesio (str or BytesIO): Path to the video file or BytesIO object containing the video.
|
222 |
+
frames (int): Number of frames to extract from the video.
|
223 |
+
fps (float): Frames per second of the video. If 0.0, the function will extract frames at equal intervals.
|
224 |
+
|
225 |
+
Returns:
|
226 |
+
list: List of PIL Images extracted from the video.
|
227 |
+
|
228 |
+
Raises:
|
229 |
+
NotImplementedError: If the type of `vpath_or_bytesio` is not supported.
|
230 |
+
"""
|
231 |
+
import cv2
|
232 |
+
if isinstance(vpath_or_bytesio, str):
|
233 |
+
vidcap = cv2.VideoCapture(vpath_or_bytesio)
|
234 |
+
if max_fps > 0.0:
|
235 |
+
return get_frame_from_vcap_with_fps(
|
236 |
+
vidcap, frames, max_fps, fps=fps, frame_count=frame_count, video_file_name=vpath_or_bytesio
|
237 |
+
)
|
238 |
+
return get_frame_from_vcap(
|
239 |
+
vidcap, frames, max_fps, fps=fps, frame_count=frame_count, video_file_name=vpath_or_bytesio
|
240 |
+
)
|
241 |
+
elif isinstance(vpath_or_bytesio, (BytesIO,)):
|
242 |
+
# assuming mp4
|
243 |
+
with tempfile.NamedTemporaryFile(delete=True, suffix=".mp4") as temp_video:
|
244 |
+
temp_video.write(vpath_or_bytesio.read())
|
245 |
+
temp_video_name = temp_video.name
|
246 |
+
vidcap = cv2.VideoCapture(temp_video_name)
|
247 |
+
if max_fps > 0.0:
|
248 |
+
return get_frame_from_vcap_with_fps(
|
249 |
+
vidcap, frames, max_fps, fps=fps, frame_count=frame_count, video_file_name=temp_video_name
|
250 |
+
)
|
251 |
+
return get_frame_from_vcap(
|
252 |
+
vidcap, frames, max_fps, fps=fps, frame_count=frame_count, video_file_name=temp_video_name
|
253 |
+
)
|
254 |
+
else:
|
255 |
+
raise NotImplementedError(type(vpath_or_bytesio))
|
256 |
+
|
257 |
+
|
258 |
+
def load_image_from_base64(image):
|
259 |
+
return Image.open(BytesIO(base64.b64decode(image)))
|
260 |
+
|
261 |
+
|
262 |
+
def expand2square(pil_img, background_color):
|
263 |
+
"""
|
264 |
+
Expand the given PIL image to a square shape by adding padding.
|
265 |
+
|
266 |
+
Parameters:
|
267 |
+
- pil_img: The PIL image to be expanded.
|
268 |
+
- background_color: The color of the padding to be added.
|
269 |
+
|
270 |
+
Returns:
|
271 |
+
- The expanded PIL image.
|
272 |
+
|
273 |
+
If the image is already square, it is returned as is.
|
274 |
+
If the image is wider than it is tall, padding is added to the top and bottom.
|
275 |
+
If the image is taller than it is wide, padding is added to the left and right.
|
276 |
+
"""
|
277 |
+
width, height = pil_img.size
|
278 |
+
if pil_img.mode == "L":
|
279 |
+
background_color = background_color[0]
|
280 |
+
if width == height:
|
281 |
+
return pil_img
|
282 |
+
elif width > height:
|
283 |
+
result = Image.new(pil_img.mode, (width, width), background_color)
|
284 |
+
result.paste(pil_img, (0, (width - height) // 2))
|
285 |
+
return result
|
286 |
+
else:
|
287 |
+
result = Image.new(pil_img.mode, (height, height), background_color)
|
288 |
+
result.paste(pil_img, ((height - width) // 2, 0))
|
289 |
+
return result
|
290 |
+
|
291 |
+
|
292 |
+
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
|
293 |
+
best_ratio_diff = float("inf")
|
294 |
+
best_ratio = (1, 1)
|
295 |
+
area = width * height
|
296 |
+
for ratio in target_ratios:
|
297 |
+
target_aspect_ratio = ratio[0] / ratio[1]
|
298 |
+
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
|
299 |
+
if ratio_diff < best_ratio_diff:
|
300 |
+
best_ratio_diff = ratio_diff
|
301 |
+
best_ratio = ratio
|
302 |
+
elif ratio_diff == best_ratio_diff:
|
303 |
+
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
|
304 |
+
best_ratio = ratio
|
305 |
+
return best_ratio
|
306 |
+
|
307 |
+
|
308 |
+
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=384, use_thumbnail=True):
|
309 |
+
orig_width, orig_height = image.size
|
310 |
+
aspect_ratio = orig_width / orig_height
|
311 |
+
|
312 |
+
# calculate the existing image aspect ratio
|
313 |
+
target_ratios = {
|
314 |
+
(i, j)
|
315 |
+
for n in range(min_num, max_num + 1)
|
316 |
+
for i in range(1, n + 1)
|
317 |
+
for j in range(1, n + 1)
|
318 |
+
if i * j <= max_num and i * j >= min_num
|
319 |
+
}
|
320 |
+
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
321 |
+
|
322 |
+
# find the closest aspect ratio to the target
|
323 |
+
target_aspect_ratio = find_closest_aspect_ratio(aspect_ratio, target_ratios, orig_width, orig_height, image_size)
|
324 |
+
|
325 |
+
# calculate the target width and height
|
326 |
+
target_width = image_size * target_aspect_ratio[0]
|
327 |
+
target_height = image_size * target_aspect_ratio[1]
|
328 |
+
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
|
329 |
+
|
330 |
+
# resize the image
|
331 |
+
resized_img = image.resize((target_width, target_height))
|
332 |
+
processed_images = []
|
333 |
+
for i in range(blocks):
|
334 |
+
box = (
|
335 |
+
(i % (target_width // image_size)) * image_size,
|
336 |
+
(i // (target_width // image_size)) * image_size,
|
337 |
+
((i % (target_width // image_size)) + 1) * image_size,
|
338 |
+
((i // (target_width // image_size)) + 1) * image_size,
|
339 |
+
)
|
340 |
+
# split the image
|
341 |
+
split_img = resized_img.crop(box)
|
342 |
+
processed_images.append(split_img)
|
343 |
+
assert len(processed_images) == blocks
|
344 |
+
if use_thumbnail and len(processed_images) != 1:
|
345 |
+
thumbnail_img = image.resize((image_size, image_size))
|
346 |
+
processed_images.append(thumbnail_img)
|
347 |
+
return processed_images
|
348 |
+
|
349 |
+
|
350 |
+
def dynamic_s2_preprocess(image, s2_scales=[384, 768, 1152], max_num=12, image_size=384):
|
351 |
+
orig_width, orig_height = image.size
|
352 |
+
aspect_ratio = orig_width / orig_height
|
353 |
+
min_num = (s2_scales[-1] // s2_scales[0]) ** 2 # at least use number of tiles as the largest scale
|
354 |
+
|
355 |
+
processed_images = []
|
356 |
+
|
357 |
+
##########################################################################################
|
358 |
+
############# Add tiles for all but the last scale using fixed squre ratio ###############
|
359 |
+
##########################################################################################
|
360 |
+
|
361 |
+
for scale in s2_scales[:-1]:
|
362 |
+
target_width = image_size * (scale // s2_scales[0])
|
363 |
+
target_height = image_size * (scale // s2_scales[0])
|
364 |
+
blocks = (scale // s2_scales[0]) ** 2
|
365 |
+
|
366 |
+
# resize the image
|
367 |
+
resized_img = image.resize((target_width, target_height))
|
368 |
+
for i in range(blocks):
|
369 |
+
box = (
|
370 |
+
(i % (target_width // image_size)) * image_size,
|
371 |
+
(i // (target_width // image_size)) * image_size,
|
372 |
+
((i % (target_width // image_size)) + 1) * image_size,
|
373 |
+
((i // (target_width // image_size)) + 1) * image_size,
|
374 |
+
)
|
375 |
+
# split the image
|
376 |
+
split_img = resized_img.crop(box)
|
377 |
+
processed_images.append(split_img)
|
378 |
+
|
379 |
+
##########################################################################################
|
380 |
+
################ Add tiles for the last scale using dynamic aspect ratio #################
|
381 |
+
##########################################################################################
|
382 |
+
|
383 |
+
# calculate the existing image aspect ratio
|
384 |
+
target_ratios = {
|
385 |
+
(i, j)
|
386 |
+
for n in range(min_num, max_num + 1)
|
387 |
+
for i in range(1, n + 1)
|
388 |
+
for j in range(1, n + 1)
|
389 |
+
if i * j <= max_num and i * j >= min_num
|
390 |
+
}
|
391 |
+
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
392 |
+
|
393 |
+
# find the closest aspect ratio to the target
|
394 |
+
target_aspect_ratio = find_closest_aspect_ratio(aspect_ratio, target_ratios, orig_width, orig_height, image_size)
|
395 |
+
|
396 |
+
# calculate the target width and height
|
397 |
+
target_width = image_size * target_aspect_ratio[0]
|
398 |
+
target_height = image_size * target_aspect_ratio[1]
|
399 |
+
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
|
400 |
+
|
401 |
+
# resize the image
|
402 |
+
resized_img = image.resize((target_width, target_height))
|
403 |
+
for i in range(blocks):
|
404 |
+
box = (
|
405 |
+
(i % (target_width // image_size)) * image_size,
|
406 |
+
(i // (target_width // image_size)) * image_size,
|
407 |
+
((i % (target_width // image_size)) + 1) * image_size,
|
408 |
+
((i // (target_width // image_size)) + 1) * image_size,
|
409 |
+
)
|
410 |
+
# split the image
|
411 |
+
split_img = resized_img.crop(box)
|
412 |
+
processed_images.append(split_img)
|
413 |
+
|
414 |
+
return processed_images, (target_aspect_ratio[1], target_aspect_ratio[0])
|
415 |
+
|
416 |
+
|
417 |
+
|
418 |
+
def dynamic_s2_process_images_and_prompt(images, data_args, image_folder=None):
|
419 |
+
idx = 0
|
420 |
+
all_images = []
|
421 |
+
all_block_size = []
|
422 |
+
for img in images:
|
423 |
+
processed_images, block_size = process_image(img, data_args, image_folder, enable_dynamic_s2=True)
|
424 |
+
all_images.append(processed_images)
|
425 |
+
all_block_size.append(block_size)
|
426 |
+
idx += 2
|
427 |
+
if all_images:
|
428 |
+
all_images = torch.cat(all_images)
|
429 |
+
else:
|
430 |
+
all_images = None
|
431 |
+
return all_images, all_block_size
|
432 |
+
|
433 |
+
|
434 |
+
def process_image(
|
435 |
+
image_file, data_args, image_folder, enable_dynamic_res=False, enable_dynamic_s2=False, max_tiles=None
|
436 |
+
):
|
437 |
+
processor = data_args.image_processor
|
438 |
+
if isinstance(image_file, str):
|
439 |
+
if image_folder is not None:
|
440 |
+
image = Image.open(os.path.join(image_folder, image_file)).convert("RGB")
|
441 |
+
else:
|
442 |
+
image = Image.open(image_file).convert("RGB")
|
443 |
+
else:
|
444 |
+
# image is stored in bytearray
|
445 |
+
image = image_file
|
446 |
+
image = image.convert("RGB")
|
447 |
+
if hasattr(data_args.image_processor, "crop_size"):
|
448 |
+
# CLIP vision tower
|
449 |
+
crop_size = data_args.image_processor.crop_size
|
450 |
+
else:
|
451 |
+
# SIGLIP vision tower
|
452 |
+
assert hasattr(data_args.image_processor, "size")
|
453 |
+
crop_size = data_args.image_processor.size
|
454 |
+
if "dynamic_s2" in data_args.image_aspect_ratio and enable_dynamic_s2:
|
455 |
+
assert crop_size["height"] == crop_size["width"]
|
456 |
+
images, block_size = dynamic_s2_preprocess(
|
457 |
+
image, s2_scales=data_args.s2_scales, max_num=data_args.max_tiles, image_size=crop_size["height"]
|
458 |
+
)
|
459 |
+
images = [processor.preprocess(image, return_tensors="pt")["pixel_values"][0] for image in images]
|
460 |
+
return torch.stack(images), block_size
|
461 |
+
if "dynamic" in data_args.image_aspect_ratio and enable_dynamic_res:
|
462 |
+
assert crop_size["height"] == crop_size["width"]
|
463 |
+
if max_tiles is not None:
|
464 |
+
max_num = max_tiles
|
465 |
+
else:
|
466 |
+
max_num = data_args.max_tiles
|
467 |
+
images = dynamic_preprocess(image, min_num=data_args.min_tiles, max_num=max_num, image_size=crop_size["height"])
|
468 |
+
images = [processor.preprocess(image, return_tensors="pt")["pixel_values"][0] for image in images]
|
469 |
+
return torch.stack(images)
|
470 |
+
|
471 |
+
if data_args.image_aspect_ratio == "resize":
|
472 |
+
image = image.resize((crop_size["width"], crop_size["height"]))
|
473 |
+
if data_args.image_aspect_ratio == "pad":
|
474 |
+
|
475 |
+
def expand2square(pil_img, background_color):
|
476 |
+
width, height = pil_img.size
|
477 |
+
if width == height:
|
478 |
+
return pil_img
|
479 |
+
elif width > height:
|
480 |
+
result = Image.new(pil_img.mode, (width, width), background_color)
|
481 |
+
result.paste(pil_img, (0, (width - height) // 2))
|
482 |
+
return result
|
483 |
+
else:
|
484 |
+
result = Image.new(pil_img.mode, (height, height), background_color)
|
485 |
+
result.paste(pil_img, ((height - width) // 2, 0))
|
486 |
+
return result
|
487 |
+
|
488 |
+
image = expand2square(image, tuple(int(x * 255) for x in processor.image_mean))
|
489 |
+
image = processor.preprocess(image, return_tensors="pt")["pixel_values"][0]
|
490 |
+
else:
|
491 |
+
# Using default behavior of the vision encoder
|
492 |
+
# For CLIP, default is central crop
|
493 |
+
# For Radio, default is central crop
|
494 |
+
# For Siglip, default is resize
|
495 |
+
# For InternVIT, default is resize
|
496 |
+
image = processor.preprocess(image, return_tensors="pt")["pixel_values"][0]
|
497 |
+
return image
|
498 |
+
|
499 |
+
def get_num_windows(T, sr, max_num_window=5):
|
500 |
+
|
501 |
+
window_length = int(30.0 * sr)
|
502 |
+
window_overlap = int(0.0 * sr)
|
503 |
+
max_num_window = max_num_window
|
504 |
+
|
505 |
+
num_windows = 1
|
506 |
+
if T <= window_length:
|
507 |
+
num_windows = 1
|
508 |
+
full_length = window_length
|
509 |
+
elif T >= (max_num_window * window_length - (max_num_window - 1) * window_overlap):
|
510 |
+
num_windows = max_num_window
|
511 |
+
full_length = (max_num_window * window_length - (max_num_window - 1) * window_overlap)
|
512 |
+
else:
|
513 |
+
num_windows = 1 + int(np.ceil((T - window_length) / float(window_length - window_overlap)))
|
514 |
+
full_length = num_windows * window_length - (num_windows - 1) * window_overlap
|
515 |
+
|
516 |
+
return num_windows, full_length
|
517 |
+
|
518 |
+
def load_audio(file_path, target_sr=16000, duration=30.0, start=0.0):
|
519 |
+
if file_path.endswith('.mp3'):
|
520 |
+
audio = AudioSegment.from_file(file_path)
|
521 |
+
if len(audio) > (start + duration) * 1000:
|
522 |
+
audio = audio[start * 1000:(start + duration) * 1000]
|
523 |
+
|
524 |
+
if audio.frame_rate != target_sr:
|
525 |
+
audio = audio.set_frame_rate(target_sr)
|
526 |
+
|
527 |
+
if audio.channels > 1:
|
528 |
+
audio = audio.set_channels(1)
|
529 |
+
|
530 |
+
data = np.array(audio.get_array_of_samples())
|
531 |
+
if audio.sample_width == 2:
|
532 |
+
data = data.astype(np.float32) / np.iinfo(np.int16).max
|
533 |
+
elif audio.sample_width == 4:
|
534 |
+
data = data.astype(np.float32) / np.iinfo(np.int32).max
|
535 |
+
else:
|
536 |
+
raise ValueError("Unsupported bit depth: {}".format(audio.sample_width))
|
537 |
+
|
538 |
+
else:
|
539 |
+
with sf.SoundFile(file_path) as audio:
|
540 |
+
original_sr = audio.samplerate
|
541 |
+
channels = audio.channels
|
542 |
+
|
543 |
+
max_frames = int((start + duration) * original_sr)
|
544 |
+
|
545 |
+
audio.seek(int(start * original_sr))
|
546 |
+
frames_to_read = min(max_frames, len(audio))
|
547 |
+
data = audio.read(frames_to_read)
|
548 |
+
|
549 |
+
if data.max() > 1 or data.min() < -1:
|
550 |
+
data = data / max(abs(data.max()), abs(data.min()))
|
551 |
+
|
552 |
+
if original_sr != target_sr:
|
553 |
+
if channels == 1:
|
554 |
+
data = librosa_resample(data.flatten(), orig_sr=original_sr, target_sr=target_sr)
|
555 |
+
else:
|
556 |
+
data = librosa_resample(data.T, orig_sr=original_sr, target_sr=target_sr)[0]
|
557 |
+
else:
|
558 |
+
if channels != 1:
|
559 |
+
data = data.T[0]
|
560 |
+
|
561 |
+
if data.min() >= 0:
|
562 |
+
data = 2 * data / abs(data.max()) - 1.0
|
563 |
+
else:
|
564 |
+
data = data / max(abs(data.max()), abs(data.min()))
|
565 |
+
|
566 |
+
assert len(data.shape) == 1, data.shape
|
567 |
+
return data
|
568 |
+
|
569 |
+
def process_images(images, image_processor, model_cfg, enable_dynamic_res=False, max_tiles=None):
|
570 |
+
model_cfg.image_processor = image_processor
|
571 |
+
new_images = [
|
572 |
+
process_image(image, model_cfg, None, enable_dynamic_res=enable_dynamic_res, max_tiles=max_tiles)
|
573 |
+
for image in images
|
574 |
+
]
|
575 |
+
|
576 |
+
if all(x.shape == new_images[0].shape for x in new_images):
|
577 |
+
if len(new_images[0].shape) == 4:
|
578 |
+
new_images = torch.cat(new_images, dim=0)
|
579 |
+
elif len(new_images[0].shape) == 3:
|
580 |
+
new_images = torch.stack(new_images, dim=0)
|
581 |
+
else:
|
582 |
+
raise ValueError(f"new_images rank does not equal to 4, rank: {len(new_images[0].shape)}")
|
583 |
+
else:
|
584 |
+
raise ValueError("The shape of images in new_images is different!")
|
585 |
+
return new_images
|
586 |
+
|
587 |
+
def process_sounds(sounds):
|
588 |
+
sounds = torch.tensor(sounds)
|
589 |
+
return sounds
|
590 |
+
|
591 |
+
def process_sound_masks(masks):
|
592 |
+
masks = torch.tensor(masks[0])
|
593 |
+
return masks
|
594 |
+
|
595 |
+
def tokenizer_image_token(prompt, tokenizer, return_tensors=None):
|
596 |
+
return tokenizer(prompt, return_tensors=return_tensors).input_ids[0]
|
597 |
+
|
598 |
+
def is_gemma_tokenizer(tokenizer):
|
599 |
+
return "gemma" in tokenizer.__class__.__name__.lower()
|
600 |
+
|
601 |
+
|
602 |
+
def get_model_name_from_path(model_path):
|
603 |
+
model_path = model_path.strip("/")
|
604 |
+
model_paths = model_path.split("/")
|
605 |
+
if model_paths[-1].startswith("checkpoint-"):
|
606 |
+
return model_paths[-2] + "_" + model_paths[-1]
|
607 |
+
else:
|
608 |
+
return model_paths[-1]
|
609 |
+
|
610 |
+
class KeywordsStoppingCriteria(StoppingCriteria):
|
611 |
+
def __init__(self, keywords, tokenizer, input_ids):
|
612 |
+
self.keywords = keywords
|
613 |
+
self.keyword_ids = []
|
614 |
+
self.max_keyword_len = 0
|
615 |
+
for keyword in keywords:
|
616 |
+
cur_keyword_ids = tokenizer(keyword).input_ids
|
617 |
+
if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id:
|
618 |
+
cur_keyword_ids = cur_keyword_ids[1:]
|
619 |
+
if len(cur_keyword_ids) > self.max_keyword_len:
|
620 |
+
self.max_keyword_len = len(cur_keyword_ids)
|
621 |
+
self.keyword_ids.append(torch.tensor(cur_keyword_ids))
|
622 |
+
self.tokenizer = tokenizer
|
623 |
+
self.start_len = input_ids.shape[1]
|
624 |
+
|
625 |
+
def call_for_batch(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
626 |
+
offset = min(output_ids.shape[1] - self.start_len, self.max_keyword_len)
|
627 |
+
self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids]
|
628 |
+
for keyword_id in self.keyword_ids:
|
629 |
+
if (output_ids[0, -keyword_id.shape[0] :] == keyword_id).all():
|
630 |
+
return True
|
631 |
+
outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0]
|
632 |
+
for keyword in self.keywords:
|
633 |
+
if keyword in outputs:
|
634 |
+
return True
|
635 |
+
return False
|
636 |
+
|
637 |
+
def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
638 |
+
outputs = []
|
639 |
+
for i in range(output_ids.shape[0]):
|
640 |
+
outputs.append(self.call_for_batch(output_ids[i].unsqueeze(0), scores))
|
641 |
+
return all(outputs)
|
llava/model/FloatPointQuantizeTorch.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 NVIDIA CORPORATION.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
|
5 |
+
# LICENSE is in incl_licenses directory.
|
6 |
+
|
7 |
+
import math
|
8 |
+
|
9 |
+
import torch
|
10 |
+
|
11 |
+
|
12 |
+
def floatExMy_quantize_torch(x, e_bit, m_bit, stochastic):
|
13 |
+
sign, x_abs = x.sign(), x.abs()
|
14 |
+
Elow, Ehigh, Mhigh = -(2 ** (e_bit - 1)) + 2, 2 ** (e_bit - 1), 2**m_bit
|
15 |
+
expo = torch.floor(torch.log2(x_abs))
|
16 |
+
expo = torch.clamp(expo, min=Elow, max=Ehigh)
|
17 |
+
mant = x_abs / torch.exp2(expo)
|
18 |
+
|
19 |
+
mant_int = torch.floor(mant)
|
20 |
+
mant_frac = mant - mant_int
|
21 |
+
mant_frac = mant_frac * Mhigh
|
22 |
+
if stochastic:
|
23 |
+
noise = mant_frac.new(mant_frac.shape).uniform_(-0.5, 0.5)
|
24 |
+
mant_frac.add_(noise)
|
25 |
+
mant_frac = torch.round(mant_frac)
|
26 |
+
|
27 |
+
mant_q = mant_int + mant_frac / Mhigh
|
28 |
+
y = sign * (2**expo) * mant_q
|
29 |
+
y = y.to(x)
|
30 |
+
|
31 |
+
return y
|
32 |
+
|
33 |
+
|
34 |
+
def floatExM0_quantize_torch(x, e_bit, stochastic):
|
35 |
+
sign, x_abs = x.sign(), x.abs()
|
36 |
+
Elow, Ehigh = -(2 ** (e_bit - 1)) + 1, 2 ** (e_bit - 1)
|
37 |
+
expo = torch.log2(x_abs)
|
38 |
+
if stochastic:
|
39 |
+
noise = expo.new(expo.shape).uniform_(-0.5, 0.5)
|
40 |
+
expo.add(noise)
|
41 |
+
log_bias = math.log2(4 / 3) - 1 / 2
|
42 |
+
expo.add(torch.ones_like(expo) * log_bias)
|
43 |
+
expo = torch.clamp(expo, min=Elow - 1, max=Ehigh)
|
44 |
+
expo = torch.round(expo)
|
45 |
+
|
46 |
+
y = sign * (2**expo) * (expo > Elow) # When underflow, set the value to 0
|
47 |
+
y = y.to(x)
|
48 |
+
|
49 |
+
return y
|
50 |
+
|
51 |
+
|
52 |
+
def Dynamic_quantize_torch(x, bit, stochastic):
|
53 |
+
if stochastic:
|
54 |
+
raise NotImplementedError("Dynamic Tree quantization does not support stochastic")
|
55 |
+
sign, x_abs = x.sign(), x.abs()
|
56 |
+
expo = torch.ceil(torch.log10(x_abs))
|
57 |
+
expo = torch.clamp(expo, min=2 - bit)
|
58 |
+
mant = (10 * x_abs / torch.pow(10, expo) - 1) / 9 # Range from 0 - 1
|
59 |
+
|
60 |
+
mant_frac = mant * 2 ** (bit - 2 - expo.abs())
|
61 |
+
mant_frac = torch.round(mant_frac)
|
62 |
+
mant_frac = mant_frac / (2 ** (bit - 2 - expo.abs())) * 9 + 1
|
63 |
+
y = sign * (10**expo) * mant_frac / 10
|
64 |
+
|
65 |
+
zero_mask = y.abs() > 1.01 * 10 ** (1 - bit)
|
66 |
+
y = y * zero_mask
|
67 |
+
y = y.to(x)
|
68 |
+
return y
|
69 |
+
|
70 |
+
|
71 |
+
def ZeroDynamic_quantize_torch(x, bit, stochastic):
|
72 |
+
if stochastic:
|
73 |
+
raise NotImplementedError("Dynamic Tree quantization does not support stochastic")
|
74 |
+
sign, x_abs = x.sign(), x.abs()
|
75 |
+
expo = torch.ceil(torch.log10(x_abs))
|
76 |
+
expo = torch.clamp(expo, min=2 - bit)
|
77 |
+
mant = (10 * x_abs / torch.pow(10, expo) - 1) / 9 # Range from 0 - 1
|
78 |
+
|
79 |
+
mant_frac = mant * 2 ** (bit - 2 - expo.abs())
|
80 |
+
mant_frac = torch.round(mant_frac)
|
81 |
+
mant_frac = mant_frac / (2 ** (bit - 2 - expo.abs())) * 9 + 1
|
82 |
+
y = sign * (10**expo) * mant_frac / 10
|
83 |
+
|
84 |
+
y = y.to(x)
|
85 |
+
return y
|
llava/model/FloatPointQuantizeTriton.py
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 NVIDIA CORPORATION.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
|
5 |
+
# LICENSE is in incl_licenses directory.
|
6 |
+
|
7 |
+
import math
|
8 |
+
import struct
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
import torch
|
12 |
+
import triton
|
13 |
+
import triton.language as tl
|
14 |
+
from triton.language.extra.cuda import libdevice
|
15 |
+
|
16 |
+
segment_size = 1024**3
|
17 |
+
|
18 |
+
|
19 |
+
def floatExMy_quantize_triton(x, e_bit, m_bit, stochastic):
|
20 |
+
x_ori_shape = x.shape
|
21 |
+
x = x.view(-1)
|
22 |
+
|
23 |
+
n_elements = x.numel()
|
24 |
+
|
25 |
+
if n_elements <= segment_size:
|
26 |
+
grid = lambda meta: (triton.cdiv(n_elements, meta["BLOCK_SIZE"]),)
|
27 |
+
y = torch.empty_like(x)
|
28 |
+
|
29 |
+
if x.dtype in [torch.bfloat16, torch.float32]:
|
30 |
+
if stochastic:
|
31 |
+
noise = x.new(x.shape).uniform_(-0.5, 0.5)
|
32 |
+
_floatExMy_stochastic_quantize_kernel[grid](x, noise, y, n_elements, e_bit, m_bit)
|
33 |
+
else:
|
34 |
+
_floatExMy_quantize_kernel[grid](x, y, n_elements, e_bit, m_bit)
|
35 |
+
torch.cuda.synchronize()
|
36 |
+
else:
|
37 |
+
raise NotImplementedError(f"Other data format {x.dtype} for float quantization triton")
|
38 |
+
else: # Triton will break when x.numel > 2 * 1024 ** 3
|
39 |
+
num_segments = n_elements // segment_size + 1
|
40 |
+
split_size = [segment_size] * (num_segments - 1) + [n_elements - segment_size * (num_segments - 1)]
|
41 |
+
x_list = x.split(split_size)
|
42 |
+
y_list = []
|
43 |
+
del x
|
44 |
+
|
45 |
+
for x in x_list:
|
46 |
+
n_elements = x.numel()
|
47 |
+
grid = lambda meta: (triton.cdiv(n_elements, meta["BLOCK_SIZE"]),)
|
48 |
+
y = torch.empty_like(x)
|
49 |
+
|
50 |
+
if x.dtype in [torch.bfloat16, torch.float32]:
|
51 |
+
if stochastic:
|
52 |
+
noise = x.new(x.shape).uniform_(-0.5, 0.5)
|
53 |
+
_floatExMy_stochastic_quantize_kernel[grid](x, noise, y, n_elements, e_bit, m_bit)
|
54 |
+
else:
|
55 |
+
_floatExMy_quantize_kernel[grid](x, y, n_elements, e_bit, m_bit)
|
56 |
+
torch.cuda.synchronize()
|
57 |
+
else:
|
58 |
+
raise NotImplementedError(f"Other data format {x.dtype} for float quantization triton")
|
59 |
+
|
60 |
+
y_list.append(y)
|
61 |
+
y = torch.concat(y_list)
|
62 |
+
del y_list
|
63 |
+
|
64 |
+
y = y.reshape(x_ori_shape)
|
65 |
+
return y
|
66 |
+
|
67 |
+
|
68 |
+
@triton.autotune(
|
69 |
+
configs=[
|
70 |
+
# triton.Config({'BLOCK_SIZE': 4,}, num_warps=4),
|
71 |
+
triton.Config(
|
72 |
+
{
|
73 |
+
"BLOCK_SIZE": 1024,
|
74 |
+
},
|
75 |
+
num_warps=4,
|
76 |
+
),
|
77 |
+
triton.Config(
|
78 |
+
{
|
79 |
+
"BLOCK_SIZE": 2048,
|
80 |
+
},
|
81 |
+
num_warps=4,
|
82 |
+
),
|
83 |
+
],
|
84 |
+
key=["n_elements"],
|
85 |
+
)
|
86 |
+
@triton.jit
|
87 |
+
def _floatExMy_quantize_kernel(
|
88 |
+
x_ptr,
|
89 |
+
output_ptr,
|
90 |
+
n_elements,
|
91 |
+
e_bit,
|
92 |
+
m_bit,
|
93 |
+
BLOCK_SIZE: tl.constexpr,
|
94 |
+
):
|
95 |
+
if isinstance(e_bit, tl.constexpr):
|
96 |
+
ebit = e_bit.value
|
97 |
+
else:
|
98 |
+
ebit = e_bit
|
99 |
+
|
100 |
+
if isinstance(m_bit, tl.constexpr):
|
101 |
+
mbit = m_bit.value
|
102 |
+
else:
|
103 |
+
mbit = m_bit
|
104 |
+
|
105 |
+
pid = tl.program_id(axis=0)
|
106 |
+
block_start = pid * BLOCK_SIZE
|
107 |
+
offsets = block_start + tl.arange(0, BLOCK_SIZE)
|
108 |
+
mask = offsets < n_elements
|
109 |
+
x = tl.load(x_ptr + offsets, mask=mask)
|
110 |
+
|
111 |
+
x = x.to(tl.float32)
|
112 |
+
sign = 1 - 2 * libdevice.signbit(x)
|
113 |
+
x_abs = tl.abs(x)
|
114 |
+
Elow = -tl.exp2((ebit - 1).to(tl.float32)) + 2
|
115 |
+
Ehigh = tl.exp2((ebit - 1).to(tl.float32))
|
116 |
+
Mhigh = tl.exp2(mbit.to(tl.float32))
|
117 |
+
expo = tl.floor(tl.log2(x_abs))
|
118 |
+
expo = tl.clamp(expo, min=Elow, max=Ehigh)
|
119 |
+
mant = x_abs / tl.exp2(expo)
|
120 |
+
|
121 |
+
mant_int = tl.floor(mant)
|
122 |
+
mant_frac = mant - mant_int
|
123 |
+
mant_frac = mant_frac * Mhigh
|
124 |
+
# mant_frac = mant_frac + noise
|
125 |
+
mant_frac = libdevice.round(mant_frac)
|
126 |
+
|
127 |
+
mant_q = mant_int + mant_frac / Mhigh
|
128 |
+
y = sign * tl.exp2(expo) * mant_q
|
129 |
+
y = y.to(x_ptr.dtype.element_ty)
|
130 |
+
|
131 |
+
tl.store(output_ptr + offsets, y, mask=mask)
|
132 |
+
|
133 |
+
|
134 |
+
@triton.autotune(
|
135 |
+
configs=[
|
136 |
+
# triton.Config({'BLOCK_SIZE': 4,}, num_warps=4),
|
137 |
+
triton.Config(
|
138 |
+
{
|
139 |
+
"BLOCK_SIZE": 1024,
|
140 |
+
},
|
141 |
+
num_warps=4,
|
142 |
+
),
|
143 |
+
triton.Config(
|
144 |
+
{
|
145 |
+
"BLOCK_SIZE": 2048,
|
146 |
+
},
|
147 |
+
num_warps=4,
|
148 |
+
),
|
149 |
+
],
|
150 |
+
key=["n_elements"],
|
151 |
+
)
|
152 |
+
@triton.jit
|
153 |
+
def _floatExMy_stochastic_quantize_kernel(
|
154 |
+
x_ptr,
|
155 |
+
noise_ptr,
|
156 |
+
output_ptr,
|
157 |
+
n_elements,
|
158 |
+
e_bit,
|
159 |
+
m_bit,
|
160 |
+
BLOCK_SIZE: tl.constexpr,
|
161 |
+
):
|
162 |
+
if isinstance(e_bit, tl.constexpr):
|
163 |
+
ebit = e_bit.value
|
164 |
+
else:
|
165 |
+
ebit = e_bit
|
166 |
+
|
167 |
+
if isinstance(m_bit, tl.constexpr):
|
168 |
+
mbit = m_bit.value
|
169 |
+
else:
|
170 |
+
mbit = m_bit
|
171 |
+
|
172 |
+
pid = tl.program_id(axis=0)
|
173 |
+
block_start = pid * BLOCK_SIZE
|
174 |
+
offsets = block_start + tl.arange(0, BLOCK_SIZE)
|
175 |
+
mask = offsets < n_elements
|
176 |
+
x = tl.load(x_ptr + offsets, mask=mask)
|
177 |
+
noise = tl.load(noise_ptr + offsets, mask=mask)
|
178 |
+
|
179 |
+
x = x.to(tl.float32)
|
180 |
+
sign = 1 - 2 * libdevice.signbit(x)
|
181 |
+
x_abs = tl.abs(x)
|
182 |
+
Elow = -tl.exp2((ebit - 1).to(tl.float32)) + 2
|
183 |
+
Ehigh = tl.exp2((ebit - 1).to(tl.float32))
|
184 |
+
Mhigh = tl.exp2(mbit.to(tl.float32))
|
185 |
+
expo = tl.floor(tl.log2(x_abs))
|
186 |
+
expo = tl.clamp(expo, min=Elow, max=Ehigh)
|
187 |
+
mant = x_abs / tl.exp2(expo)
|
188 |
+
|
189 |
+
mant_int = tl.floor(mant)
|
190 |
+
mant_frac = mant - mant_int
|
191 |
+
mant_frac = mant_frac * Mhigh
|
192 |
+
mant_frac = mant_frac + noise
|
193 |
+
mant_frac = libdevice.round(mant_frac)
|
194 |
+
|
195 |
+
mant_q = mant_int + mant_frac / Mhigh
|
196 |
+
y = sign * tl.exp2(expo) * mant_q
|
197 |
+
y = y.to(x_ptr.dtype.element_ty)
|
198 |
+
|
199 |
+
tl.store(output_ptr + offsets, y, mask=mask)
|
llava/model/__init__.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 NVIDIA CORPORATION.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
|
5 |
+
# LICENSE is in incl_licenses directory.
|
6 |
+
|
7 |
+
from .language_model.llava_llama import LlavaLlamaConfig, LlavaLlamaModel
|
8 |
+
|
9 |
+
# FP8 related comments, development in progress (PI: ligeng zhu, haochen xi)
|
10 |
+
# NOTE: VLM + LLM
|
11 |
+
# from .language_model.qllava_qllama import QLlavaLlamaConfig, QLlavaLlamaModel
|
12 |
+
# NOTE: Linear -> fp8, similar to transformer engine
|
13 |
+
# from .language_model.qllama import QLlamaConfig, QLlamaForCausalLM, QLlamaModel
|
14 |
+
# NOTE: Linear + Activation -> fp8, haochen's iclr version
|
15 |
+
# from .language_model.qmemllama import QMemLlamaConfig, QMemLlamaForCausalLM, QMemLlamaModel
|
16 |
+
"""
|
17 |
+
TODO:
|
18 |
+
linear(weights):
|
19 |
+
simulated fp8: done
|
20 |
+
real fp8: in-progress (code already implmented)
|
21 |
+
activation:
|
22 |
+
simulated fp8: done
|
23 |
+
real fp8: in-progress (still coding)
|
24 |
+
optimizers:
|
25 |
+
current VILA: bf16
|
26 |
+
simulated fp8: done
|
27 |
+
real fp8 + fsdp (single node): done
|
28 |
+
real fp8 + fsdp (multiple node): in-progress
|
29 |
+
1. linear fp8
|
30 |
+
2. activation fp8
|
31 |
+
3. fp8 infernce example (load directly from a fp8 and fwd)
|
32 |
+
4. bind fp8 related configs to QLlamaConfig {"coat_fp8_args": {}}
|
33 |
+
"""
|
34 |
+
from .language_model.fp8linearqwen2 import FP8LinearQwen2Config, FP8LinearQwen2Model
|
35 |
+
from .language_model.qllava_qllama import QLlavaLlamaConfig, QLlavaLlamaModel
|
llava/model/apply_delta.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 NVIDIA CORPORATION.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
|
5 |
+
# LICENSE is in incl_licenses directory.
|
6 |
+
|
7 |
+
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
#
|
21 |
+
# SPDX-License-Identifier: Apache-2.0
|
22 |
+
|
23 |
+
# This file is modified from https://github.com/haotian-liu/LLaVA/
|
24 |
+
|
25 |
+
"""
|
26 |
+
Usage:
|
27 |
+
python3 -m fastchat.model.apply_delta --base ~/model_weights/llama-7b --target ~/model_weights/vicuna-7b --delta lmsys/vicuna-7b-delta
|
28 |
+
"""
|
29 |
+
import argparse
|
30 |
+
|
31 |
+
import torch
|
32 |
+
from tqdm import tqdm
|
33 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
34 |
+
|
35 |
+
from llava import LlavaLlamaForCausalLM
|
36 |
+
|
37 |
+
|
38 |
+
def apply_delta(base_model_path, target_model_path, delta_path):
|
39 |
+
print("Loading base model")
|
40 |
+
base = AutoModelForCausalLM.from_pretrained(base_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True)
|
41 |
+
|
42 |
+
print("Loading delta")
|
43 |
+
delta = LlavaLlamaForCausalLM.from_pretrained(delta_path, torch_dtype=torch.float16, low_cpu_mem_usage=True)
|
44 |
+
delta_tokenizer = AutoTokenizer.from_pretrained(delta_path)
|
45 |
+
|
46 |
+
print("Applying delta")
|
47 |
+
for name, param in tqdm(delta.state_dict().items(), desc="Applying delta"):
|
48 |
+
if name not in base.state_dict():
|
49 |
+
assert name in [
|
50 |
+
"model.mm_projector.weight",
|
51 |
+
"model.mm_projector.bias",
|
52 |
+
], f"{name} not in base model"
|
53 |
+
continue
|
54 |
+
if param.data.shape == base.state_dict()[name].shape:
|
55 |
+
param.data += base.state_dict()[name]
|
56 |
+
else:
|
57 |
+
assert name in [
|
58 |
+
"model.embed_tokens.weight",
|
59 |
+
"lm_head.weight",
|
60 |
+
], f"{name} dimension mismatch: {param.data.shape} vs {base.state_dict()[name].shape}"
|
61 |
+
bparam = base.state_dict()[name]
|
62 |
+
param.data[: bparam.shape[0], : bparam.shape[1]] += bparam
|
63 |
+
|
64 |
+
print("Saving target model")
|
65 |
+
delta.save_pretrained(target_model_path)
|
66 |
+
delta_tokenizer.save_pretrained(target_model_path)
|
67 |
+
|
68 |
+
|
69 |
+
if __name__ == "__main__":
|
70 |
+
parser = argparse.ArgumentParser()
|
71 |
+
parser.add_argument("--base-model-path", type=str, required=True)
|
72 |
+
parser.add_argument("--target-model-path", type=str, required=True)
|
73 |
+
parser.add_argument("--delta-path", type=str, required=True)
|
74 |
+
|
75 |
+
args = parser.parse_args()
|
76 |
+
|
77 |
+
apply_delta(args.base_model_path, args.target_model_path, args.delta_path)
|
llava/model/builder.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 NVIDIA CORPORATION.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
|
5 |
+
# LICENSE is in incl_licenses directory.
|
6 |
+
|
7 |
+
# This file is modified from https://github.com/haotian-liu/LLaVA/
|
8 |
+
# Copyright 2023 Haotian Liu
|
9 |
+
#
|
10 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
11 |
+
# you may not use this file except in compliance with the License.
|
12 |
+
# You may obtain a copy of the License at
|
13 |
+
#
|
14 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
15 |
+
#
|
16 |
+
# Unless required by applicable law or agreed to in writing, software
|
17 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
18 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
19 |
+
# See the License for the specific language governing permissions and
|
20 |
+
# limitations under the License.
|
21 |
+
|
22 |
+
|
23 |
+
import os
|
24 |
+
import warnings
|
25 |
+
|
26 |
+
import torch
|
27 |
+
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, PretrainedConfig
|
28 |
+
|
29 |
+
from llava.model import LlavaLlamaModel
|
30 |
+
from llava.model.utils import is_mm_model
|
31 |
+
|
32 |
+
|
33 |
+
def load_pretrained_model(
|
34 |
+
model_path,
|
35 |
+
model_name,
|
36 |
+
model_base=None,
|
37 |
+
load_8bit=False,
|
38 |
+
load_4bit=False,
|
39 |
+
device_map="auto",
|
40 |
+
device="cuda",
|
41 |
+
**kwargs,
|
42 |
+
):
|
43 |
+
kwargs = {"device_map": device_map, **kwargs}
|
44 |
+
|
45 |
+
if device != "cuda":
|
46 |
+
kwargs["device_map"] = {"": device}
|
47 |
+
|
48 |
+
if load_8bit:
|
49 |
+
kwargs["load_in_8bit"] = True
|
50 |
+
elif load_4bit:
|
51 |
+
kwargs["load_in_4bit"] = True
|
52 |
+
kwargs["quantization_config"] = BitsAndBytesConfig(
|
53 |
+
load_in_4bit=True,
|
54 |
+
bnb_4bit_compute_dtype=torch.float16,
|
55 |
+
bnb_4bit_use_double_quant=True,
|
56 |
+
bnb_4bit_quant_type="nf4",
|
57 |
+
)
|
58 |
+
else:
|
59 |
+
kwargs["torch_dtype"] = torch.float16
|
60 |
+
# kwargs["torch_dtype"] = torch.bfloat16
|
61 |
+
|
62 |
+
if is_mm_model(model_path):
|
63 |
+
# Load LLaVA model
|
64 |
+
## TODO @yunhao: mind fixing lora
|
65 |
+
if "lora" in model_name.lower() and model_base is None:
|
66 |
+
warnings.warn(
|
67 |
+
"There is `lora` in model name but no `model_base` is provided. If you are loading a LoRA model, please provide the `model_base` argument. Detailed instruction: https://github.com/haotian-liu/LLaVA#launch-a-model-worker-lora-weights-unmerged."
|
68 |
+
)
|
69 |
+
if ("lora" in model_name.lower() or "dora" in model_name.lower()) and model_base is not None:
|
70 |
+
lora_cfg_pretrained = AutoConfig.from_pretrained(model_path)
|
71 |
+
print(lora_cfg_pretrained)
|
72 |
+
print("Loading LLaVA from base model...")
|
73 |
+
config = AutoConfig.from_pretrained(model_base)
|
74 |
+
prepare_config_for_eval(config, kwargs)
|
75 |
+
model = LlavaLlamaModel.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs)
|
76 |
+
tokenizer = model.tokenizer
|
77 |
+
token_num, tokem_dim = model.llm.lm_head.out_features, model.llm.lm_head.in_features
|
78 |
+
if model.llm.lm_head.weight.shape[0] != token_num:
|
79 |
+
model.llm.lm_head.weight = torch.nn.Parameter(
|
80 |
+
torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype)
|
81 |
+
)
|
82 |
+
model.llm.embed_tokens.weight = torch.nn.Parameter(
|
83 |
+
torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype)
|
84 |
+
)
|
85 |
+
|
86 |
+
print("Loading additional LLaVA weights...")
|
87 |
+
if os.path.exists(os.path.join(model_path, "non_lora_trainables.bin")):
|
88 |
+
non_lora_trainables = torch.load(
|
89 |
+
os.path.join(model_path, "non_lora_trainables.bin"),
|
90 |
+
map_location="cpu",
|
91 |
+
)
|
92 |
+
else:
|
93 |
+
# this is probably from HF Hub
|
94 |
+
from huggingface_hub import hf_hub_download
|
95 |
+
|
96 |
+
def load_from_hf(repo_id, filename, subfolder=None):
|
97 |
+
cache_file = hf_hub_download(repo_id=repo_id, filename=filename, subfolder=subfolder)
|
98 |
+
return torch.load(cache_file, map_location="cpu")
|
99 |
+
|
100 |
+
non_lora_trainables = load_from_hf(model_path, "non_lora_trainables.bin")
|
101 |
+
non_lora_trainables = {
|
102 |
+
(k[11:] if k.startswith("base_model.") else k): v for k, v in non_lora_trainables.items()
|
103 |
+
}
|
104 |
+
if any(k.startswith("model.model.") for k in non_lora_trainables):
|
105 |
+
non_lora_trainables = {
|
106 |
+
(k[6:] if k.startswith("model.") else k): v for k, v in non_lora_trainables.items()
|
107 |
+
}
|
108 |
+
model.load_state_dict(non_lora_trainables, strict=False)
|
109 |
+
|
110 |
+
from peft import PeftModel
|
111 |
+
|
112 |
+
print("Loading LoRA weights...")
|
113 |
+
model = PeftModel.from_pretrained(model, model_path)
|
114 |
+
print("Merging LoRA weights...")
|
115 |
+
model = model.merge_and_unload()
|
116 |
+
print("Model is loaded...")
|
117 |
+
else:
|
118 |
+
config = AutoConfig.from_pretrained(model_path)
|
119 |
+
config.resume_path = model_path
|
120 |
+
prepare_config_for_eval(config, kwargs)
|
121 |
+
model = LlavaLlamaModel(config=config, low_cpu_mem_usage=True, **kwargs)
|
122 |
+
tokenizer = model.tokenizer
|
123 |
+
else:
|
124 |
+
# Load language model
|
125 |
+
if model_base is not None:
|
126 |
+
# PEFT model
|
127 |
+
from peft import PeftModel
|
128 |
+
|
129 |
+
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
|
130 |
+
model = AutoModelForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, **kwargs)
|
131 |
+
print(f"Loading LoRA weights from {model_path}")
|
132 |
+
model = PeftModel.from_pretrained(model, model_path)
|
133 |
+
print(f"Merging weights")
|
134 |
+
model = model.merge_and_unload()
|
135 |
+
print("Convert to FP16...")
|
136 |
+
model.to(torch.float16)
|
137 |
+
else:
|
138 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False, legacy=False)
|
139 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)
|
140 |
+
model.eval()
|
141 |
+
image_processor = None
|
142 |
+
if is_mm_model(model_path):
|
143 |
+
model.resize_token_embeddings(len(tokenizer))
|
144 |
+
|
145 |
+
if hasattr(model.llm.config, "max_sequence_length"):
|
146 |
+
context_len = model.config.max_sequence_length
|
147 |
+
else:
|
148 |
+
context_len = 2048
|
149 |
+
|
150 |
+
return tokenizer, model, image_processor, context_len
|
151 |
+
|
152 |
+
|
153 |
+
def prepare_config_for_eval(config: PretrainedConfig, kwargs: dict):
|
154 |
+
try:
|
155 |
+
# compatible with deprecated config convention
|
156 |
+
if getattr(config, "vision_tower_cfg", None) is None:
|
157 |
+
config.vision_tower_cfg = config.mm_vision_tower
|
158 |
+
except AttributeError:
|
159 |
+
raise ValueError(f"Invalid configuration! Cannot find vision_tower in config:\n{config}")
|
160 |
+
|
161 |
+
config.model_dtype = kwargs.pop("torch_dtype").__str__()
|
llava/model/coat/activation/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 NVIDIA CORPORATION.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
|
5 |
+
# LICENSE is in incl_licenses directory.
|
6 |
+
|
llava/model/coat/activation/fake_quantization/FloatPointQuantizeTorch.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 NVIDIA CORPORATION.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
|
5 |
+
# LICENSE is in incl_licenses directory.
|
6 |
+
|
7 |
+
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
#
|
21 |
+
# SPDX-License-Identifier: Apache-2.0
|
22 |
+
|
23 |
+
import math
|
24 |
+
|
25 |
+
import torch
|
26 |
+
|
27 |
+
|
28 |
+
def floatExMy_quantize_torch(x, e_bit, m_bit, stochastic):
|
29 |
+
sign, x_abs = x.sign(), x.abs()
|
30 |
+
Elow, Ehigh, Mhigh = -(2 ** (e_bit - 1)) + 2, 2 ** (e_bit - 1), 2**m_bit
|
31 |
+
expo = torch.floor(torch.log2(x_abs))
|
32 |
+
expo = torch.clamp(expo, min=Elow, max=Ehigh)
|
33 |
+
mant = x_abs / torch.exp2(expo)
|
34 |
+
|
35 |
+
mant_int = torch.floor(mant)
|
36 |
+
mant_frac = mant - mant_int
|
37 |
+
mant_frac = mant_frac * Mhigh
|
38 |
+
if stochastic:
|
39 |
+
noise = mant_frac.new(mant_frac.shape).uniform_(-0.5, 0.5)
|
40 |
+
mant_frac.add_(noise)
|
41 |
+
mant_frac = torch.round(mant_frac)
|
42 |
+
|
43 |
+
mant_q = mant_int + mant_frac / Mhigh
|
44 |
+
y = sign * (2**expo) * mant_q
|
45 |
+
y = y.to(x)
|
46 |
+
|
47 |
+
return y
|
48 |
+
|
49 |
+
|
50 |
+
def floatExM0_quantize_torch(x, e_bit, stochastic):
|
51 |
+
sign, x_abs = x.sign(), x.abs()
|
52 |
+
Elow, Ehigh = -(2 ** (e_bit - 1)) + 1, 2 ** (e_bit - 1)
|
53 |
+
expo = torch.log2(x_abs)
|
54 |
+
if stochastic:
|
55 |
+
noise = expo.new(expo.shape).uniform_(-0.5, 0.5)
|
56 |
+
expo.add(noise)
|
57 |
+
log_bias = math.log2(4 / 3) - 1 / 2
|
58 |
+
expo.add(torch.ones_like(expo) * log_bias)
|
59 |
+
expo = torch.clamp(expo, min=Elow - 1, max=Ehigh)
|
60 |
+
expo = torch.round(expo)
|
61 |
+
|
62 |
+
y = sign * (2**expo) * (expo > Elow) # When underflow, set the value to 0
|
63 |
+
y = y.to(x)
|
64 |
+
|
65 |
+
return y
|
66 |
+
|
67 |
+
|
68 |
+
def Dynamic_quantize_torch(x, bit, stochastic):
|
69 |
+
if stochastic:
|
70 |
+
raise NotImplementedError("Dynamic Tree quantization does not support stochastic")
|
71 |
+
sign, x_abs = x.sign(), x.abs()
|
72 |
+
expo = torch.ceil(torch.log10(x_abs))
|
73 |
+
expo = torch.clamp(expo, min=2 - bit)
|
74 |
+
mant = (10 * x_abs / torch.pow(10, expo) - 1) / 9 # Range from 0 - 1
|
75 |
+
|
76 |
+
mant_frac = mant * 2 ** (bit - 2 - expo.abs())
|
77 |
+
mant_frac = torch.round(mant_frac)
|
78 |
+
mant_frac = mant_frac / (2 ** (bit - 2 - expo.abs())) * 9 + 1
|
79 |
+
y = sign * (10**expo) * mant_frac / 10
|
80 |
+
|
81 |
+
zero_mask = y.abs() > 1.01 * 10 ** (1 - bit)
|
82 |
+
y = y * zero_mask
|
83 |
+
y = y.to(x)
|
84 |
+
return y
|
85 |
+
|
86 |
+
|
87 |
+
def ZeroDynamic_quantize_torch(x, bit, stochastic):
|
88 |
+
if stochastic:
|
89 |
+
raise NotImplementedError("Dynamic Tree quantization does not support stochastic")
|
90 |
+
sign, x_abs = x.sign(), x.abs()
|
91 |
+
expo = torch.ceil(torch.log10(x_abs))
|
92 |
+
expo = torch.clamp(expo, min=2 - bit)
|
93 |
+
mant = (10 * x_abs / torch.pow(10, expo) - 1) / 9 # Range from 0 - 1
|
94 |
+
|
95 |
+
mant_frac = mant * 2 ** (bit - 2 - expo.abs())
|
96 |
+
mant_frac = torch.round(mant_frac)
|
97 |
+
mant_frac = mant_frac / (2 ** (bit - 2 - expo.abs())) * 9 + 1
|
98 |
+
y = sign * (10**expo) * mant_frac / 10
|
99 |
+
|
100 |
+
y = y.to(x)
|
101 |
+
return y
|
llava/model/coat/activation/fake_quantization/FloatPointQuantizeTriton.py
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 NVIDIA CORPORATION.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
|
5 |
+
# LICENSE is in incl_licenses directory.
|
6 |
+
|
7 |
+
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
#
|
21 |
+
# SPDX-License-Identifier: Apache-2.0
|
22 |
+
|
23 |
+
import math
|
24 |
+
import struct
|
25 |
+
|
26 |
+
import numpy as np
|
27 |
+
import torch
|
28 |
+
import triton
|
29 |
+
import triton.language as tl
|
30 |
+
from triton.language.extra.cuda import libdevice
|
31 |
+
|
32 |
+
|
33 |
+
def floatExMy_quantize_triton(x, e_bit, m_bit, stochastic):
|
34 |
+
n_elements = x.numel()
|
35 |
+
grid = lambda meta: (triton.cdiv(n_elements, meta["BLOCK_SIZE"]),)
|
36 |
+
y = torch.zeros_like(x)
|
37 |
+
|
38 |
+
if x.dtype in [torch.bfloat16, torch.float32]:
|
39 |
+
if stochastic:
|
40 |
+
noise = x.new(x.shape).uniform_(-0.5, 0.5)
|
41 |
+
_floatExMy_stochastic_quantize_kernel[grid](x, noise, y, n_elements, e_bit, m_bit)
|
42 |
+
else:
|
43 |
+
_floatExMy_quantize_kernel[grid](x, y, n_elements, e_bit, m_bit)
|
44 |
+
else:
|
45 |
+
raise NotImplementedError(f"Other data format {x.dtype} for float quantization triton")
|
46 |
+
|
47 |
+
return y
|
48 |
+
|
49 |
+
|
50 |
+
@triton.autotune(
|
51 |
+
configs=[
|
52 |
+
# triton.Config({'BLOCK_SIZE': 4,}, num_warps=4),
|
53 |
+
triton.Config(
|
54 |
+
{
|
55 |
+
"BLOCK_SIZE": 1024,
|
56 |
+
},
|
57 |
+
num_warps=4,
|
58 |
+
),
|
59 |
+
triton.Config(
|
60 |
+
{
|
61 |
+
"BLOCK_SIZE": 2048,
|
62 |
+
},
|
63 |
+
num_stages=1,
|
64 |
+
),
|
65 |
+
],
|
66 |
+
key=["n_elements"],
|
67 |
+
)
|
68 |
+
@triton.jit
|
69 |
+
def _floatExMy_quantize_kernel(
|
70 |
+
x_ptr,
|
71 |
+
output_ptr,
|
72 |
+
n_elements,
|
73 |
+
e_bit,
|
74 |
+
m_bit,
|
75 |
+
BLOCK_SIZE: tl.constexpr,
|
76 |
+
):
|
77 |
+
if isinstance(e_bit, tl.constexpr):
|
78 |
+
ebit = e_bit.value
|
79 |
+
else:
|
80 |
+
ebit = e_bit
|
81 |
+
|
82 |
+
if isinstance(m_bit, tl.constexpr):
|
83 |
+
mbit = m_bit.value
|
84 |
+
else:
|
85 |
+
mbit = m_bit
|
86 |
+
|
87 |
+
pid = tl.program_id(axis=0)
|
88 |
+
block_start = pid * BLOCK_SIZE
|
89 |
+
offsets = block_start + tl.arange(0, BLOCK_SIZE)
|
90 |
+
mask = offsets < n_elements
|
91 |
+
x = tl.load(x_ptr + offsets, mask=mask)
|
92 |
+
|
93 |
+
x = x.to(tl.float32)
|
94 |
+
sign = 1 - 2 * libdevice.signbit(x)
|
95 |
+
x_abs = tl.abs(x)
|
96 |
+
Elow = -tl.exp2((ebit - 1).to(tl.float32)) + 2
|
97 |
+
Ehigh = tl.exp2((ebit - 1).to(tl.float32))
|
98 |
+
Mhigh = tl.exp2(mbit.to(tl.float32))
|
99 |
+
expo = tl.floor(tl.log2(x_abs))
|
100 |
+
expo = tl.clamp(expo, min=Elow, max=Ehigh)
|
101 |
+
mant = x_abs / tl.exp2(expo)
|
102 |
+
|
103 |
+
mant_int = tl.floor(mant)
|
104 |
+
mant_frac = mant - mant_int
|
105 |
+
mant_frac = mant_frac * Mhigh
|
106 |
+
# mant_frac = mant_frac + noise
|
107 |
+
mant_frac = libdevice.round(mant_frac)
|
108 |
+
|
109 |
+
mant_q = mant_int + mant_frac / Mhigh
|
110 |
+
y = sign * tl.exp2(expo) * mant_q
|
111 |
+
y = y.to(x_ptr.dtype.element_ty)
|
112 |
+
|
113 |
+
tl.store(output_ptr + offsets, y, mask=mask)
|
114 |
+
|
115 |
+
|
116 |
+
@triton.autotune(
|
117 |
+
configs=[
|
118 |
+
# triton.Config({'BLOCK_SIZE': 4,}, num_warps=4),
|
119 |
+
triton.Config(
|
120 |
+
{
|
121 |
+
"BLOCK_SIZE": 1024,
|
122 |
+
},
|
123 |
+
num_warps=4,
|
124 |
+
),
|
125 |
+
triton.Config(
|
126 |
+
{
|
127 |
+
"BLOCK_SIZE": 2048,
|
128 |
+
},
|
129 |
+
num_stages=1,
|
130 |
+
),
|
131 |
+
],
|
132 |
+
key=["n_elements"],
|
133 |
+
)
|
134 |
+
@triton.jit
|
135 |
+
def _floatExMy_stochastic_quantize_kernel(
|
136 |
+
x_ptr,
|
137 |
+
noise_ptr,
|
138 |
+
output_ptr,
|
139 |
+
n_elements,
|
140 |
+
e_bit,
|
141 |
+
m_bit,
|
142 |
+
BLOCK_SIZE: tl.constexpr,
|
143 |
+
):
|
144 |
+
if isinstance(e_bit, tl.constexpr):
|
145 |
+
ebit = e_bit.value
|
146 |
+
else:
|
147 |
+
ebit = e_bit
|
148 |
+
|
149 |
+
if isinstance(m_bit, tl.constexpr):
|
150 |
+
mbit = m_bit.value
|
151 |
+
else:
|
152 |
+
mbit = m_bit
|
153 |
+
|
154 |
+
pid = tl.program_id(axis=0)
|
155 |
+
block_start = pid * BLOCK_SIZE
|
156 |
+
offsets = block_start + tl.arange(0, BLOCK_SIZE)
|
157 |
+
mask = offsets < n_elements
|
158 |
+
x = tl.load(x_ptr + offsets, mask=mask)
|
159 |
+
noise = tl.load(noise_ptr + offsets, mask=mask)
|
160 |
+
|
161 |
+
x = x.to(tl.float32)
|
162 |
+
sign = 1 - 2 * libdevice.signbit(x)
|
163 |
+
x_abs = tl.abs(x)
|
164 |
+
Elow = -tl.exp2((ebit - 1).to(tl.float32)) + 2
|
165 |
+
Ehigh = tl.exp2((ebit - 1).to(tl.float32))
|
166 |
+
Mhigh = tl.exp2(mbit.to(tl.float32))
|
167 |
+
expo = tl.floor(tl.log2(x_abs))
|
168 |
+
expo = tl.clamp(expo, min=Elow, max=Ehigh)
|
169 |
+
mant = x_abs / tl.exp2(expo)
|
170 |
+
|
171 |
+
mant_int = tl.floor(mant)
|
172 |
+
mant_frac = mant - mant_int
|
173 |
+
mant_frac = mant_frac * Mhigh
|
174 |
+
mant_frac = mant_frac + noise
|
175 |
+
mant_frac = libdevice.round(mant_frac)
|
176 |
+
|
177 |
+
mant_q = mant_int + mant_frac / Mhigh
|
178 |
+
y = sign * tl.exp2(expo) * mant_q
|
179 |
+
y = y.to(x_ptr.dtype.element_ty)
|
180 |
+
|
181 |
+
tl.store(output_ptr + offsets, y, mask=mask)
|
llava/model/coat/activation/fake_quantization/quantize_function.py
ADDED
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 NVIDIA CORPORATION.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
|
5 |
+
# LICENSE is in incl_licenses directory.
|
6 |
+
|
7 |
+
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
#
|
21 |
+
# SPDX-License-Identifier: Apache-2.0
|
22 |
+
|
23 |
+
import re
|
24 |
+
|
25 |
+
import torch
|
26 |
+
|
27 |
+
from .FloatPointQuantizeTorch import *
|
28 |
+
from .FloatPointQuantizeTriton import *
|
29 |
+
|
30 |
+
|
31 |
+
def block_cut(input, row_block, column_block, pad_block=False):
|
32 |
+
# print(input.shape)
|
33 |
+
original_shape = input.shape
|
34 |
+
# input tensor shape is M * N
|
35 |
+
if len(input.shape) > 2:
|
36 |
+
input = input.reshape(-1, input.shape[2])
|
37 |
+
elif len(input.shape) == 2:
|
38 |
+
pass
|
39 |
+
else:
|
40 |
+
raise ValueError(f"input shape {input.shape} does not match for block cut, {input}")
|
41 |
+
M, N = input.shape[0], input.shape[1]
|
42 |
+
|
43 |
+
if row_block == -1:
|
44 |
+
row_block = M
|
45 |
+
if column_block == -1:
|
46 |
+
column_block = N
|
47 |
+
|
48 |
+
if pad_block:
|
49 |
+
row_remainder, col_remainder = M % row_block, N % column_block
|
50 |
+
if row_remainder:
|
51 |
+
row_pad = row_block - row_remainder
|
52 |
+
else:
|
53 |
+
row_pad = 0
|
54 |
+
if col_remainder:
|
55 |
+
col_pad = column_block - col_remainder
|
56 |
+
else:
|
57 |
+
col_pad = 0
|
58 |
+
|
59 |
+
input = torch.nn.functional.pad(
|
60 |
+
input, (0, col_pad, 0, row_pad), "constant", 0
|
61 |
+
) # refer to torch's doc to see why
|
62 |
+
M, N = input.shape[0], input.shape[1]
|
63 |
+
row_num, column_num = M // row_block, N // column_block
|
64 |
+
else:
|
65 |
+
row_num, column_num = M // row_block, N // column_block
|
66 |
+
|
67 |
+
assert row_num * row_block == M, f"{row_num}, {row_block}, {M}, {original_shape}"
|
68 |
+
assert column_num * column_block == N, f"{column_num}, {column_block}, {N}, {original_shape}"
|
69 |
+
# print(input.shape)
|
70 |
+
input = (
|
71 |
+
input.reshape(row_num, row_block, column_num, column_block)
|
72 |
+
.permute(0, 2, 1, 3)
|
73 |
+
.reshape(row_num * column_num, row_block, column_block)
|
74 |
+
)
|
75 |
+
# print(input.shape)
|
76 |
+
return input
|
77 |
+
|
78 |
+
|
79 |
+
def block_reshape(input, origin_input, row_block, column_block, pad_block=False):
|
80 |
+
if len(origin_input.shape) > 2:
|
81 |
+
flatten_input = origin_input.reshape(-1, origin_input.shape[2])
|
82 |
+
elif len(origin_input.shape) == 2:
|
83 |
+
flatten_input = origin_input
|
84 |
+
else:
|
85 |
+
raise ValueError(f"input shape {input.shape} does not match for block cut")
|
86 |
+
|
87 |
+
M, N = flatten_input.shape[0], flatten_input.shape[1]
|
88 |
+
|
89 |
+
if row_block == -1:
|
90 |
+
row_block = M
|
91 |
+
if column_block == -1:
|
92 |
+
column_block = N
|
93 |
+
|
94 |
+
if pad_block:
|
95 |
+
row_remainder, col_remainder = M % row_block, N % column_block
|
96 |
+
if row_remainder:
|
97 |
+
row_pad = row_block - row_remainder
|
98 |
+
else:
|
99 |
+
row_pad = 0
|
100 |
+
if col_remainder:
|
101 |
+
col_pad = column_block - col_remainder
|
102 |
+
else:
|
103 |
+
col_pad = 0
|
104 |
+
|
105 |
+
pad_origin_input = torch.nn.functional.pad(origin_input, (0, col_pad, 0, row_pad), "constant", 0)
|
106 |
+
M, N = pad_origin_input.shape[0], pad_origin_input.shape[1]
|
107 |
+
row_num, column_num = M // row_block, N // column_block
|
108 |
+
else:
|
109 |
+
row_num, column_num = M // row_block, N // column_block
|
110 |
+
|
111 |
+
input = (
|
112 |
+
input.reshape(row_num, column_num, row_block, column_block)
|
113 |
+
.permute(0, 2, 1, 3)
|
114 |
+
.reshape(row_num * row_block, column_num * column_block)
|
115 |
+
)
|
116 |
+
|
117 |
+
M, N = flatten_input.shape[0], flatten_input.shape[1]
|
118 |
+
input = input[:M, :N]
|
119 |
+
|
120 |
+
if len(origin_input.shape) > 2:
|
121 |
+
input = input.reshape(origin_input.shape)
|
122 |
+
elif len(origin_input.shape) == 2:
|
123 |
+
pass
|
124 |
+
else:
|
125 |
+
raise ValueError(f"input shape {input.shape} does not match for block reshape")
|
126 |
+
|
127 |
+
return input
|
128 |
+
|
129 |
+
|
130 |
+
def block_verify_int8(input, row_block, column_block, layer_type, necessary=True):
|
131 |
+
Binput = block_cut(input, row_block, column_block)
|
132 |
+
Binput = Binput.to(torch.float32)
|
133 |
+
|
134 |
+
for n in range(Binput.shape[0]):
|
135 |
+
unique_values = len(torch.unique(Binput[n, :, :]))
|
136 |
+
if unique_values > 256:
|
137 |
+
if necessary:
|
138 |
+
raise ValueError(f"{layer_type} contains more than 256 unique values.")
|
139 |
+
else:
|
140 |
+
return False
|
141 |
+
return True
|
142 |
+
|
143 |
+
|
144 |
+
def block_quant(input, symm, bits, stochastic, epsilon, apply_quantize, layer_name):
|
145 |
+
Quant_fn = SymmQuantizer
|
146 |
+
return Quant_fn.apply(input, symm, bits, stochastic, epsilon, apply_quantize, layer_name)
|
147 |
+
|
148 |
+
|
149 |
+
def extract_bit(string):
|
150 |
+
match = re.match(r"INT(\d+)", string) # INT8
|
151 |
+
if match:
|
152 |
+
return "integer", int(match.group(1)), None
|
153 |
+
match = re.match(r"E(\d+)M(\d+)", string) # E4M3 / E5M2
|
154 |
+
if match:
|
155 |
+
Ebit, Mbit = int(match.group(1)), int(match.group(2))
|
156 |
+
if Ebit == 1:
|
157 |
+
return "integer", Mbit + 1, None
|
158 |
+
if Mbit == 0:
|
159 |
+
return "floatExM0", int(match.group(1)), 0
|
160 |
+
return "floatExMy", int(match.group(1)), int(match.group(2))
|
161 |
+
match = re.match(r"DE(\d+)", string)
|
162 |
+
if match:
|
163 |
+
return "Dynamic", int(match.group(1)), None
|
164 |
+
match = re.match(r"ZeroD(\d+)", string)
|
165 |
+
if match:
|
166 |
+
return "ZeroDynamic", int(match.group(1)), None
|
167 |
+
raise ValueError(f"{string} data format is not supported")
|
168 |
+
|
169 |
+
|
170 |
+
class SymmQuantizer(torch.autograd.function.InplaceFunction):
|
171 |
+
@staticmethod
|
172 |
+
def forward(ctx, input, symm, bits, stochastic, epsilon, apply_quantize=True, layer_name=None):
|
173 |
+
with torch.no_grad():
|
174 |
+
absmax_per_block = input.abs().amax(dim=(1, 2)).unsqueeze(1).unsqueeze(2) + epsilon
|
175 |
+
|
176 |
+
if bits == "100" or not apply_quantize:
|
177 |
+
return input, input, torch.ones_like(absmax_per_block)
|
178 |
+
elif bits == "FP32":
|
179 |
+
return input.to(torch.float32), input.to(torch.float32), torch.ones_like(absmax_per_block)
|
180 |
+
elif bits == "FP16":
|
181 |
+
return input.to(torch.float16), input.to(torch.float16), torch.ones_like(absmax_per_block)
|
182 |
+
elif bits == "BF16":
|
183 |
+
return input.to(torch.bfloat16), input.to(torch.bfloat16), torch.ones_like(absmax_per_block)
|
184 |
+
else:
|
185 |
+
QuantType, bit1, bit2 = extract_bit(bits)
|
186 |
+
if not symm:
|
187 |
+
bit1 = bit1 + 1 # pretend to be asymmtric
|
188 |
+
|
189 |
+
if QuantType == "integer":
|
190 |
+
Qn, Qp = -(2 ** (bit1 - 1) - 1), 2 ** (bit1 - 1) - 1
|
191 |
+
elif QuantType == "floatExMy":
|
192 |
+
Qn, Qp = -(2 - 2 ** (-bit2)) * (2 ** (2 ** (bit1 - 1))), (2 - 2 ** (-bit2)) * (
|
193 |
+
2 ** (2 ** (bit1 - 1))
|
194 |
+
)
|
195 |
+
if bit1 == 4 and bit2 == 3: # E4M3
|
196 |
+
Qn, Qp = -448, 448
|
197 |
+
if bit1 == 5 and bit2 == 2: # E5M2
|
198 |
+
Qn, Qp = -57344, 57344
|
199 |
+
elif QuantType == "floatExM0":
|
200 |
+
Qn, Qp = -(2 ** (2 ** (bit1 - 1))) + 1, 2 ** (2 ** (bit1 - 1))
|
201 |
+
elif QuantType == "Dynamic":
|
202 |
+
Qn, Qp = -1, 1
|
203 |
+
elif QuantType == "ZeroDynamic":
|
204 |
+
Qn, Qp = -1, 1
|
205 |
+
else:
|
206 |
+
raise NotImplementedError(f"{bits} is not supported by quantization")
|
207 |
+
scale_per_block = (2 * absmax_per_block) / (Qp - Qn)
|
208 |
+
scale_per_block = scale_per_block.to(input)
|
209 |
+
|
210 |
+
Qinput = input / scale_per_block
|
211 |
+
|
212 |
+
if QuantType == "integer":
|
213 |
+
if stochastic:
|
214 |
+
noise = Qinput.new(Qinput.shape).uniform_(-0.5, 0.5)
|
215 |
+
Qinput.add_(noise)
|
216 |
+
Qinput.clamp_(Qn, Qp).round_()
|
217 |
+
elif QuantType == "floatExMy":
|
218 |
+
# Qinput = floatExMy_quantize_torch(Qinput, bit1, bit2, stochastic)
|
219 |
+
Qinput = floatExMy_quantize_triton(Qinput, bit1, bit2, stochastic)
|
220 |
+
elif QuantType == "floatExM0":
|
221 |
+
Qinput = floatExM0_quantize_torch(Qinput, bit1, stochastic)
|
222 |
+
else:
|
223 |
+
raise NotImplementedError(f"{bits} is not supported by quantization")
|
224 |
+
|
225 |
+
RQinput = Qinput * scale_per_block
|
226 |
+
|
227 |
+
if input.dtype != Qinput.dtype:
|
228 |
+
print(
|
229 |
+
f"Input type is {input.dtype}, Qinput type is {Qinput.dtype}, scale_per_block type is {scale_per_block.dtype}",
|
230 |
+
file=open("debug.txt", "a"),
|
231 |
+
)
|
232 |
+
import IPython
|
233 |
+
|
234 |
+
IPython.embed()
|
235 |
+
return RQinput, Qinput, scale_per_block
|
236 |
+
|
237 |
+
@staticmethod
|
238 |
+
def backward(ctx, grad_output):
|
239 |
+
return grad_output, None, None, None, None, None
|
llava/model/coat/activation/fake_quantization/utils.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 NVIDIA CORPORATION.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
|
5 |
+
# LICENSE is in incl_licenses directory.
|
6 |
+
|
7 |
+
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
#
|
21 |
+
# SPDX-License-Identifier: Apache-2.0
|
22 |
+
|
23 |
+
import os
|
24 |
+
|
25 |
+
import matplotlib.pyplot as plt
|
26 |
+
import numpy as np
|
27 |
+
import torch
|
28 |
+
|
29 |
+
|
30 |
+
def list_has_common_element(list1, list2):
|
31 |
+
set1 = set(list1)
|
32 |
+
set2 = set(list2)
|
33 |
+
return len(set1.intersection(set2)) > 0
|
34 |
+
|
35 |
+
|
36 |
+
def calculate_scale_num(input, row_block, col_block):
|
37 |
+
if len(input.shape) > 2:
|
38 |
+
input = input.reshape(-1, input.shape[2])
|
39 |
+
elif len(input.shape) == 2:
|
40 |
+
pass
|
41 |
+
else:
|
42 |
+
raise ValueError(f"input shape {input.shape} does not match for block cut, {input}")
|
43 |
+
M, N = input.shape[0], input.shape[1]
|
44 |
+
|
45 |
+
if row_block == -1:
|
46 |
+
row_block = M
|
47 |
+
if col_block == -1:
|
48 |
+
col_block = N
|
49 |
+
|
50 |
+
return input.numel() / (row_block * col_block)
|
51 |
+
|
52 |
+
|
53 |
+
def quant_get_local_rank() -> int:
|
54 |
+
return int(os.environ.get("LOCAL_RANK") or 0)
|
55 |
+
|
56 |
+
|
57 |
+
def format_string_with_condition(
|
58 |
+
input_string,
|
59 |
+
condition_config,
|
60 |
+
symm,
|
61 |
+
bits,
|
62 |
+
blocksize_config,
|
63 |
+
input_pad=20,
|
64 |
+
):
|
65 |
+
padded_string = input_string.ljust(input_pad)
|
66 |
+
output_string = padded_string
|
67 |
+
|
68 |
+
for k, v in condition_config.items():
|
69 |
+
if v:
|
70 |
+
output_string = output_string + k.ljust(10) + "True".ljust(6) + "".ljust(6)
|
71 |
+
else:
|
72 |
+
output_string = output_string + k.ljust(10) + "".ljust(6) + "False".ljust(6)
|
73 |
+
|
74 |
+
output_string = output_string + f"Symm {symm}".ljust(10)
|
75 |
+
|
76 |
+
for k, v in bits.items():
|
77 |
+
output_string = output_string + f"{k} bit".ljust(10) + v.ljust(10)
|
78 |
+
for k, v in blocksize_config.items():
|
79 |
+
output_string += f"{k}: {v}".ljust(15)
|
80 |
+
|
81 |
+
return output_string
|
82 |
+
|
83 |
+
|
84 |
+
def print_warning(sentence):
|
85 |
+
print("*" * (len(sentence) + 4))
|
86 |
+
print(f"* {sentence} *")
|
87 |
+
print("*" * (len(sentence) + 4))
|
88 |
+
|
89 |
+
|
90 |
+
def check_nan_inf(tensor, check_nan, check_inf):
|
91 |
+
if check_nan:
|
92 |
+
contain_nan = torch.isnan(tensor).any()
|
93 |
+
else:
|
94 |
+
contain_nan = False
|
95 |
+
if check_inf:
|
96 |
+
contain_inf = torch.isinf(tensor).any()
|
97 |
+
else:
|
98 |
+
contain_inf = False
|
99 |
+
return contain_nan, contain_inf
|
100 |
+
|
101 |
+
|
102 |
+
def move_torch_to_numpy(tensor):
|
103 |
+
if tensor is None:
|
104 |
+
return None
|
105 |
+
|
106 |
+
if tensor.is_cuda:
|
107 |
+
tensor = tensor.cpu()
|
108 |
+
return tensor.detach().float().numpy()
|
109 |
+
|
110 |
+
|
111 |
+
def flatten_to_1d(tensor):
|
112 |
+
if tensor is None:
|
113 |
+
return None
|
114 |
+
|
115 |
+
return tensor.reshape(-1)
|
llava/model/coat/activation/models/_fp8_quantization_config.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 NVIDIA CORPORATION.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
|
5 |
+
# LICENSE is in incl_licenses directory.
|
6 |
+
|
7 |
+
from dataclasses import dataclass
|
8 |
+
|
9 |
+
from transformers import PretrainedConfig
|
10 |
+
|
11 |
+
|
12 |
+
@dataclass
|
13 |
+
class QuantizationConfig:
|
14 |
+
quantize_model: str = "false"
|
15 |
+
symm: bool = True
|
16 |
+
epsilon: float = 1e-10
|
17 |
+
fabit: str = "E4M3"
|
18 |
+
fwbit: str = "E4M3"
|
19 |
+
fobit: str = "E4M3"
|
20 |
+
babit: str = "E5M2"
|
21 |
+
bwbit: str = "E5M2"
|
22 |
+
bobit: str = "E5M2"
|
23 |
+
qchoice: str = "none"
|
24 |
+
group_size: int = -1
|
25 |
+
pad_to_multiple_of: int = 0
|
26 |
+
weight_memory_efficient: bool = True
|
27 |
+
|
28 |
+
# Legacy
|
29 |
+
row_blocksize: int = -1
|
30 |
+
col_blocksize: int = -1
|
31 |
+
|
32 |
+
def __init__(
|
33 |
+
self,
|
34 |
+
quantize_model: str = "false",
|
35 |
+
symm: bool = True,
|
36 |
+
epsilon: float = 1e-10,
|
37 |
+
fabit: str = "E4M3",
|
38 |
+
fwbit: str = "E4M3",
|
39 |
+
fobit: str = "E4M3",
|
40 |
+
babit: str = "E5M2",
|
41 |
+
bwbit: str = "E5M2",
|
42 |
+
bobit: str = "E5M2",
|
43 |
+
qchoice: str = "none",
|
44 |
+
group_size: int = -1,
|
45 |
+
pad_to_multiple_of: int = 0,
|
46 |
+
weight_memory_efficient: bool = True,
|
47 |
+
row_blocksize: int = -1,
|
48 |
+
col_blocksize: int = -1,
|
49 |
+
**kwargs,
|
50 |
+
):
|
51 |
+
super().__init__()
|
52 |
+
self.quantize_model = quantize_model
|
53 |
+
self.symm = symm
|
54 |
+
self.epsilon = epsilon
|
55 |
+
self.fabit = fabit
|
56 |
+
self.fwbit = fwbit
|
57 |
+
self.fobit = fobit
|
58 |
+
self.babit = babit
|
59 |
+
self.bwbit = bwbit
|
60 |
+
self.bobit = bobit
|
61 |
+
self.qchoice = qchoice
|
62 |
+
self.group_size = group_size
|
63 |
+
self.pad_to_multiple_of = pad_to_multiple_of
|
64 |
+
self.weight_memory_efficient = weight_memory_efficient
|
65 |
+
|
66 |
+
self.row_blocksize = row_blocksize
|
67 |
+
self.col_blocksize = col_blocksize
|
llava/model/coat/activation/models/_fp8_weightcache.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 NVIDIA CORPORATION.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
|
5 |
+
# LICENSE is in incl_licenses directory.
|
6 |
+
|
7 |
+
import torch.nn as nn
|
8 |
+
|
9 |
+
from ..real_quantization import fp8_division_transpose
|
10 |
+
|
11 |
+
|
12 |
+
class FP8CacheWeightModule(nn.Module):
|
13 |
+
def __init__(self, config, qargs, layer_id):
|
14 |
+
super().__init__()
|
15 |
+
self.config = config
|
16 |
+
self.qargs = qargs
|
17 |
+
self.layer_id = layer_id
|
18 |
+
|
19 |
+
def prepare_weight(self, weight, weight_name, is_first_microbatch):
|
20 |
+
if is_first_microbatch:
|
21 |
+
if self.qargs.weight_memory_efficient:
|
22 |
+
# print(f"{weight_name} uses first microbatch")
|
23 |
+
weight_fp8, weight_s, weight_fp8_t = fp8_division_transpose(
|
24 |
+
weight, self.qargs.group_size, self.fwobits["fwbit"]
|
25 |
+
)
|
26 |
+
setattr(self, f"{weight_name}_fp8_scale", weight_s)
|
27 |
+
return weight_fp8, weight_fp8_t, weight_s
|
28 |
+
else:
|
29 |
+
# print(f"{weight_name} uses first microbatch")
|
30 |
+
weight_fp8, weight_s, weight_fp8_t = fp8_division_transpose(
|
31 |
+
weight, self.qargs.group_size, self.fwobits["fwbit"]
|
32 |
+
)
|
33 |
+
setattr(self, f"{weight_name}_fp8", weight_fp8)
|
34 |
+
setattr(self, f"{weight_name}_fp8_t", weight_fp8_t)
|
35 |
+
setattr(self, f"{weight_name}_fp8_scale", weight_s)
|
36 |
+
return weight_fp8, weight_fp8_t, weight_s
|
37 |
+
else:
|
38 |
+
if self.qargs.weight_memory_efficient:
|
39 |
+
return getattr(self, f"{weight_name}_fp8_scale")
|
40 |
+
else:
|
41 |
+
return (
|
42 |
+
getattr(self, f"{weight_name}_fp8"),
|
43 |
+
getattr(self, f"{weight_name}_fp8_t"),
|
44 |
+
getattr(self, f"{weight_name}_fp8_scale"),
|
45 |
+
)
|
46 |
+
|
47 |
+
def forward(self, x):
|
48 |
+
pass
|
llava/model/coat/activation/models/_fp8manager.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 NVIDIA CORPORATION.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
|
5 |
+
# LICENSE is in incl_licenses directory.
|
6 |
+
|
7 |
+
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
#
|
21 |
+
# SPDX-License-Identifier: Apache-2.0
|
22 |
+
|
23 |
+
import torch
|
24 |
+
|
25 |
+
|
26 |
+
class FP8Manager:
|
27 |
+
"""Class to keep track of and manipulate the global
|
28 |
+
FP8 state at different stages of execution.
|
29 |
+
"""
|
30 |
+
|
31 |
+
is_first_microbatch = False
|
llava/model/coat/activation/models/coat_llama.py
ADDED
@@ -0,0 +1,1479 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 NVIDIA CORPORATION.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
|
5 |
+
# LICENSE is in incl_licenses directory.
|
6 |
+
|
7 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
8 |
+
#
|
9 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
10 |
+
# and OPT implementations in this library. It has been modified from its
|
11 |
+
# original forms to accommodate minor architectural differences compared
|
12 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
13 |
+
#
|
14 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
15 |
+
# you may not use this file except in compliance with the License.
|
16 |
+
# You may obtain a copy of the License at
|
17 |
+
#
|
18 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
19 |
+
#
|
20 |
+
# Unless required by applicable law or agreed to in writing, software
|
21 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
22 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
23 |
+
# See the License for the specific language governing permissions and
|
24 |
+
# limitations under the License.
|
25 |
+
import math
|
26 |
+
import os
|
27 |
+
from fnmatch import fnmatch
|
28 |
+
from typing import List, Optional, Tuple, Union
|
29 |
+
|
30 |
+
import torch
|
31 |
+
import torch.nn.functional as F
|
32 |
+
import torch.utils.checkpoint
|
33 |
+
from torch import nn
|
34 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
35 |
+
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
|
36 |
+
from transformers.activations import ACT2FN
|
37 |
+
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
38 |
+
from transformers.generation import GenerationMixin
|
39 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
40 |
+
from transformers.modeling_flash_attention_utils import _flash_attention_forward
|
41 |
+
from transformers.modeling_outputs import (
|
42 |
+
BaseModelOutputWithPast,
|
43 |
+
CausalLMOutputWithPast,
|
44 |
+
QuestionAnsweringModelOutput,
|
45 |
+
SequenceClassifierOutputWithPast,
|
46 |
+
TokenClassifierOutput,
|
47 |
+
)
|
48 |
+
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
|
49 |
+
from transformers.modeling_utils import PreTrainedModel
|
50 |
+
from transformers.models.llama.configuration_llama import LlamaConfig
|
51 |
+
from transformers.models.llama.modeling_llama import (
|
52 |
+
LlamaAttention,
|
53 |
+
LlamaDynamicNTKScalingRotaryEmbedding,
|
54 |
+
LlamaForCausalLM,
|
55 |
+
LlamaLinearScalingRotaryEmbedding,
|
56 |
+
LlamaModel,
|
57 |
+
LlamaPreTrainedModel,
|
58 |
+
LlamaRMSNorm,
|
59 |
+
LlamaRotaryEmbedding,
|
60 |
+
_prepare_4d_causal_attention_mask_with_cache_position,
|
61 |
+
apply_rotary_pos_emb,
|
62 |
+
repeat_kv,
|
63 |
+
rotate_half,
|
64 |
+
)
|
65 |
+
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
|
66 |
+
from transformers.utils import (
|
67 |
+
add_start_docstrings,
|
68 |
+
add_start_docstrings_to_model_forward,
|
69 |
+
is_flash_attn_greater_or_equal_2_10,
|
70 |
+
is_torchdynamo_compiling,
|
71 |
+
logging,
|
72 |
+
replace_return_docstrings,
|
73 |
+
)
|
74 |
+
|
75 |
+
from ..real_quantization import (
|
76 |
+
Coat_quantize_bgn,
|
77 |
+
Coat_quantize_end,
|
78 |
+
fp8_add_Ifp_Ifp_Ofp_Og16,
|
79 |
+
fp8_add_Ifp_Ifp_Ofp_Opt,
|
80 |
+
fp8_division,
|
81 |
+
fp8_division_transpose,
|
82 |
+
fp8_gelu_backward,
|
83 |
+
fp8_gelu_forward,
|
84 |
+
fp8_layernorm_noparam_backward,
|
85 |
+
fp8_layernorm_noparam_forward,
|
86 |
+
fp8_linear_backward,
|
87 |
+
fp8_linear_forward,
|
88 |
+
fp8_mul_backward,
|
89 |
+
fp8_mul_forward,
|
90 |
+
fp8_quantize,
|
91 |
+
fp8_quantize_pertensor,
|
92 |
+
fp8_quantize_pertensor_transpose,
|
93 |
+
fp8_rmsnorm_backward,
|
94 |
+
fp8_rmsnorm_forward,
|
95 |
+
fp8_silu_backward,
|
96 |
+
fp8_silu_forward,
|
97 |
+
fp8_transpose,
|
98 |
+
)
|
99 |
+
|
100 |
+
# FP8 related
|
101 |
+
from ._fp8_quantization_config import QuantizationConfig
|
102 |
+
from ._fp8_weightcache import FP8CacheWeightModule
|
103 |
+
from ._fp8manager import FP8Manager
|
104 |
+
|
105 |
+
logger = logging.get_logger(__name__)
|
106 |
+
|
107 |
+
|
108 |
+
class CoatLlamaConfig(LlamaConfig):
|
109 |
+
model_type = "fp8_llama"
|
110 |
+
|
111 |
+
|
112 |
+
class CoatLlamaBeforeAttentionResidual(FP8CacheWeightModule):
|
113 |
+
"""
|
114 |
+
This is a typical transformer attention module that contains (1) Residual (2) LayerNorm / RMSNorm (3) 1 * Linear layers
|
115 |
+
"""
|
116 |
+
|
117 |
+
def __init__(self, config: CoatLlamaConfig, qargs: QuantizationConfig, layer_idx: Optional[int] = None):
|
118 |
+
super().__init__(config, qargs, layer_idx)
|
119 |
+
|
120 |
+
self.qargs = qargs
|
121 |
+
self.fwobits = {
|
122 |
+
"fabit": self.qargs.fabit,
|
123 |
+
"fwbit": self.qargs.fwbit,
|
124 |
+
"fobit": self.qargs.fobit,
|
125 |
+
"babit": self.qargs.babit,
|
126 |
+
"bwbit": self.qargs.bwbit,
|
127 |
+
"bobit": self.qargs.bobit,
|
128 |
+
}
|
129 |
+
|
130 |
+
self.config = config
|
131 |
+
self.layer_idx = layer_idx
|
132 |
+
if layer_idx is None:
|
133 |
+
logger.warning_once(
|
134 |
+
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
|
135 |
+
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
|
136 |
+
"when creating this class."
|
137 |
+
)
|
138 |
+
|
139 |
+
self.attention_dropout = config.attention_dropout
|
140 |
+
self.hidden_size = config.hidden_size
|
141 |
+
self.num_heads = config.num_attention_heads
|
142 |
+
self.head_dim = getattr(config, "head_dim", self.hidden_size // self.num_heads)
|
143 |
+
self.num_key_value_heads = config.num_key_value_heads
|
144 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
145 |
+
self.max_position_embeddings = config.max_position_embeddings
|
146 |
+
self.rope_theta = config.rope_theta
|
147 |
+
|
148 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
|
149 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
150 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
151 |
+
|
152 |
+
def forward(self, re_x, x, s, rmsnorm_weight):
|
153 |
+
if self.training:
|
154 |
+
if self.qargs.weight_memory_efficient:
|
155 |
+
# Prepare
|
156 |
+
with torch.no_grad():
|
157 |
+
weight1_s = self.prepare_weight(self.q_proj.weight, "q_proj", FP8Manager.is_first_microbatch)
|
158 |
+
weight2_s = self.prepare_weight(self.k_proj.weight, "k_proj", FP8Manager.is_first_microbatch)
|
159 |
+
weight3_s = self.prepare_weight(self.v_proj.weight, "v_proj", FP8Manager.is_first_microbatch)
|
160 |
+
return _CoatLlamaBeforeAttentionResidual.apply(
|
161 |
+
re_x,
|
162 |
+
x,
|
163 |
+
s,
|
164 |
+
self.q_proj.weight,
|
165 |
+
None,
|
166 |
+
None,
|
167 |
+
weight1_s,
|
168 |
+
self.k_proj.weight,
|
169 |
+
None,
|
170 |
+
None,
|
171 |
+
weight2_s,
|
172 |
+
self.v_proj.weight,
|
173 |
+
None,
|
174 |
+
None,
|
175 |
+
weight3_s,
|
176 |
+
rmsnorm_weight,
|
177 |
+
self.qargs.group_size,
|
178 |
+
self.fwobits,
|
179 |
+
self.layer_id,
|
180 |
+
self.config,
|
181 |
+
self.qargs,
|
182 |
+
)
|
183 |
+
else:
|
184 |
+
# Prepare
|
185 |
+
with torch.no_grad():
|
186 |
+
weight1, weight1_t, weight1_s = self.prepare_weight(
|
187 |
+
self.q_proj.weight, "q_proj", FP8Manager.is_first_microbatch
|
188 |
+
)
|
189 |
+
weight2, weight2_t, weight2_s = self.prepare_weight(
|
190 |
+
self.k_proj.weight, "k_proj", FP8Manager.is_first_microbatch
|
191 |
+
)
|
192 |
+
weight3, weight3_t, weight3_s = self.prepare_weight(
|
193 |
+
self.v_proj.weight, "v_proj", FP8Manager.is_first_microbatch
|
194 |
+
)
|
195 |
+
return _CoatLlamaBeforeAttentionResidual.apply(
|
196 |
+
re_x,
|
197 |
+
x,
|
198 |
+
s,
|
199 |
+
self.q_proj.weight,
|
200 |
+
weight1,
|
201 |
+
weight1_t,
|
202 |
+
weight1_s,
|
203 |
+
self.k_proj.weight,
|
204 |
+
weight2,
|
205 |
+
weight2_t,
|
206 |
+
weight2_s,
|
207 |
+
self.v_proj.weight,
|
208 |
+
weight3,
|
209 |
+
weight3_t,
|
210 |
+
weight3_s,
|
211 |
+
rmsnorm_weight,
|
212 |
+
self.qargs.group_size,
|
213 |
+
self.fwobits,
|
214 |
+
self.layer_id,
|
215 |
+
self.config,
|
216 |
+
self.qargs,
|
217 |
+
)
|
218 |
+
else:
|
219 |
+
return re_x, self.att_proj(self.attn_norm(re_x))
|
220 |
+
|
221 |
+
|
222 |
+
class _CoatLlamaBeforeAttentionResidual(torch.autograd.Function):
|
223 |
+
@staticmethod
|
224 |
+
def forward(
|
225 |
+
ctx,
|
226 |
+
re_x,
|
227 |
+
in_x,
|
228 |
+
in_s,
|
229 |
+
weight1_origin,
|
230 |
+
weight1,
|
231 |
+
weight1_t,
|
232 |
+
weight1_s,
|
233 |
+
weight2_origin,
|
234 |
+
weight2,
|
235 |
+
weight2_t,
|
236 |
+
weight2_s,
|
237 |
+
weight3_origin,
|
238 |
+
weight3,
|
239 |
+
weight3_t,
|
240 |
+
weight3_s,
|
241 |
+
rmsnorm_weight,
|
242 |
+
group_size,
|
243 |
+
fwobits,
|
244 |
+
layer_id,
|
245 |
+
config,
|
246 |
+
qargs,
|
247 |
+
eps=1e-5,
|
248 |
+
):
|
249 |
+
# for autograd
|
250 |
+
if fwobits["fabit"] == "E4M3":
|
251 |
+
# in_x = in_x.to(torch.float8_e4m3fn)
|
252 |
+
in_x = in_x.view(torch.float8_e4m3fn)
|
253 |
+
else:
|
254 |
+
raise ValueError("fabit should be E4M3")
|
255 |
+
|
256 |
+
# LayerNorm
|
257 |
+
ln_x, ln_s, ln_x_t, ln_utils = fp8_rmsnorm_forward(
|
258 |
+
in_x, in_s, rmsnorm_weight, group_size, eps, transpose_output_2d=True
|
259 |
+
)
|
260 |
+
|
261 |
+
# Linear Layer QKV Projection
|
262 |
+
if qargs.weight_memory_efficient:
|
263 |
+
assert weight1 is None # memory efficient
|
264 |
+
weight1, weight1_s = fp8_division(weight1_origin, qargs.group_size, fwobits["fwbit"], weight1_s)
|
265 |
+
weight2, weight2_s = fp8_division(weight2_origin, qargs.group_size, fwobits["fwbit"], weight2_s)
|
266 |
+
weight3, weight3_s = fp8_division(weight3_origin, qargs.group_size, fwobits["fwbit"], weight3_s)
|
267 |
+
|
268 |
+
fc1_x = fp8_linear_forward(ln_x, ln_s, weight1, weight1_s, False, group_size) # query states
|
269 |
+
fc2_x = fp8_linear_forward(ln_x, ln_s, weight2, weight2_s, False, group_size) # key states
|
270 |
+
fc3_x = fp8_linear_forward(ln_x, ln_s, weight3, weight3_s, False, group_size) # value states
|
271 |
+
|
272 |
+
# ==================== save for backward ====================
|
273 |
+
ctx.save_for_backward(in_x, in_s, ln_x_t, ln_s)
|
274 |
+
if qargs.weight_memory_efficient:
|
275 |
+
assert weight1_t is None and weight2_t is None and weight3_t is None
|
276 |
+
ctx.weight = weight1_origin, weight1_s, weight2_origin, weight2_s, weight3_origin, weight3_s
|
277 |
+
else:
|
278 |
+
ctx.weight = weight1_t, weight1_s, weight2_t, weight2_s, weight3_t, weight3_s
|
279 |
+
|
280 |
+
ctx.group_size = group_size
|
281 |
+
ctx.ln_utils = ln_utils
|
282 |
+
ctx.utils = fwobits, layer_id, config, qargs
|
283 |
+
|
284 |
+
return re_x, fc1_x, fc2_x, fc3_x
|
285 |
+
|
286 |
+
@staticmethod
|
287 |
+
def backward(ctx, fp_grad, query_g, key_g, value_g):
|
288 |
+
in_x, in_s, ln_x_t, ln_s = ctx.saved_tensors
|
289 |
+
weight1_t, weight1_s, weight2_t, weight2_s, weight3_t, weight3_s = ctx.weight
|
290 |
+
|
291 |
+
group_size = ctx.group_size
|
292 |
+
rms_weight, rstd, num_warps = ctx.ln_utils
|
293 |
+
fwobits, layer_id, config, qargs = ctx.utils
|
294 |
+
|
295 |
+
# ==================== Begin backward ====================
|
296 |
+
# Quantize the RoPE and FlashAttention Output. grad_input and grad_weight requires different data layout.
|
297 |
+
query_g, query_gs, query_g_t = fp8_quantize_pertensor_transpose(
|
298 |
+
query_g, group_size, fwobits["babit"], transpose_output_2d=True, stochastic=False
|
299 |
+
)
|
300 |
+
key_g, key_gs, key_g_t = fp8_quantize_pertensor_transpose(
|
301 |
+
key_g, group_size, fwobits["babit"], transpose_output_2d=True, stochastic=False
|
302 |
+
)
|
303 |
+
value_g, value_gs, value_g_t = fp8_quantize_pertensor_transpose(
|
304 |
+
value_g, group_size, fwobits["babit"], transpose_output_2d=True, stochastic=False
|
305 |
+
)
|
306 |
+
|
307 |
+
# Linear Layer QKV Projection
|
308 |
+
if qargs.weight_memory_efficient:
|
309 |
+
weight1_t, weight1_s = fp8_division_transpose(
|
310 |
+
weight1_t, qargs.group_size, fwobits["fwbit"], weight1_s, only_transposed=True
|
311 |
+
)
|
312 |
+
weight2_t, weight2_s = fp8_division_transpose(
|
313 |
+
weight2_t, qargs.group_size, fwobits["fwbit"], weight2_s, only_transposed=True
|
314 |
+
)
|
315 |
+
weight3_t, weight3_s = fp8_division_transpose(
|
316 |
+
weight3_t, qargs.group_size, fwobits["fwbit"], weight3_s, only_transposed=True
|
317 |
+
)
|
318 |
+
|
319 |
+
fc1_g1, att_q_wg = fp8_linear_backward(
|
320 |
+
ln_x_t, ln_s, query_g, query_gs, query_g_t, weight1_t, weight1_s, group_size
|
321 |
+
)
|
322 |
+
fc1_g2, att_k_wg = fp8_linear_backward(ln_x_t, ln_s, key_g, key_gs, key_g_t, weight2_t, weight2_s, group_size)
|
323 |
+
fc1_g3, att_v_wg = fp8_linear_backward(
|
324 |
+
ln_x_t, ln_s, value_g, value_gs, value_g_t, weight3_t, weight3_s, group_size
|
325 |
+
)
|
326 |
+
|
327 |
+
fc1_g = fc1_g1 + fc1_g2 + fc1_g3
|
328 |
+
|
329 |
+
# LayerNorm
|
330 |
+
in_g, rms_weight_grad = fp8_rmsnorm_backward(in_x, in_s, fc1_g, rms_weight, rstd, group_size, num_warps)
|
331 |
+
|
332 |
+
# Add the gradient together, and prepare the input of the next layer.
|
333 |
+
re_g, (in_g, in_sg, in_sg_g16) = fp8_add_Ifp_Ifp_Ofp_Opt(
|
334 |
+
fp_grad, in_g, group_size, fwobits["babit"], stochastic=False
|
335 |
+
)
|
336 |
+
|
337 |
+
# for autograd. forward's data type should be the same of backward tensor. this will not change the actual binary representation.
|
338 |
+
in_g = in_g.view(torch.float8_e4m3fn)
|
339 |
+
|
340 |
+
# Although the next operator is a linear layer in MLPResidual module, we return in_sg_g16 to make the size compatible with the forward. Otherwise it will not pass autograd.
|
341 |
+
return (
|
342 |
+
re_g,
|
343 |
+
in_g,
|
344 |
+
in_sg_g16,
|
345 |
+
att_q_wg,
|
346 |
+
None,
|
347 |
+
None,
|
348 |
+
None,
|
349 |
+
att_k_wg,
|
350 |
+
None,
|
351 |
+
None,
|
352 |
+
None,
|
353 |
+
att_v_wg,
|
354 |
+
None,
|
355 |
+
None,
|
356 |
+
None,
|
357 |
+
rms_weight_grad,
|
358 |
+
None,
|
359 |
+
None,
|
360 |
+
None,
|
361 |
+
None,
|
362 |
+
None,
|
363 |
+
None,
|
364 |
+
)
|
365 |
+
|
366 |
+
|
367 |
+
class CoatLlamaAfterAttentionResidual(FP8CacheWeightModule):
|
368 |
+
"""
|
369 |
+
This is a typical transformer attention module that contains (1) Residual (2) 1 * Linear layers
|
370 |
+
"""
|
371 |
+
|
372 |
+
def __init__(self, config: CoatLlamaConfig, qargs: QuantizationConfig, layer_id):
|
373 |
+
super().__init__(config, qargs, layer_id)
|
374 |
+
|
375 |
+
self.qargs = qargs
|
376 |
+
self.fwobits = {
|
377 |
+
"fabit": self.qargs.fabit,
|
378 |
+
"fwbit": self.qargs.fwbit,
|
379 |
+
"fobit": self.qargs.fobit,
|
380 |
+
"babit": self.qargs.babit,
|
381 |
+
"bwbit": self.qargs.bwbit,
|
382 |
+
"bobit": self.qargs.bobit,
|
383 |
+
}
|
384 |
+
|
385 |
+
self.hidden_size = config.hidden_size
|
386 |
+
self.num_heads = config.num_attention_heads
|
387 |
+
self.head_dim = getattr(config, "head_dim", self.hidden_size // self.num_heads)
|
388 |
+
|
389 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
|
390 |
+
|
391 |
+
def forward(self, re_x, in_x):
|
392 |
+
if self.training:
|
393 |
+
if self.qargs.weight_memory_efficient:
|
394 |
+
# prepare for the weight
|
395 |
+
with torch.no_grad():
|
396 |
+
weight4_s = self.prepare_weight(self.o_proj.weight, "o_proj", FP8Manager.is_first_microbatch)
|
397 |
+
|
398 |
+
return _CoatLlamaAfterAttentionResidual.apply(
|
399 |
+
re_x,
|
400 |
+
in_x,
|
401 |
+
self.o_proj.weight,
|
402 |
+
None,
|
403 |
+
None,
|
404 |
+
weight4_s,
|
405 |
+
self.qargs.group_size,
|
406 |
+
self.fwobits,
|
407 |
+
self.layer_id,
|
408 |
+
self.config,
|
409 |
+
self.qargs,
|
410 |
+
)
|
411 |
+
else:
|
412 |
+
# prepare for the weight
|
413 |
+
with torch.no_grad():
|
414 |
+
weight4, weight4_t, weight4_s = self.prepare_weight(
|
415 |
+
self.o_proj.weight, "o_proj", FP8Manager.is_first_microbatch
|
416 |
+
)
|
417 |
+
|
418 |
+
return _CoatLlamaAfterAttentionResidual.apply(
|
419 |
+
re_x,
|
420 |
+
in_x,
|
421 |
+
self.o_proj.weight,
|
422 |
+
weight4,
|
423 |
+
weight4_t,
|
424 |
+
weight4_s,
|
425 |
+
self.qargs.group_size,
|
426 |
+
self.fwobits,
|
427 |
+
self.layer_id,
|
428 |
+
self.config,
|
429 |
+
self.qargs,
|
430 |
+
)
|
431 |
+
else:
|
432 |
+
return re_x + self.attn_out(in_x), None, None
|
433 |
+
|
434 |
+
|
435 |
+
class _CoatLlamaAfterAttentionResidual(torch.autograd.Function):
|
436 |
+
@staticmethod
|
437 |
+
def forward(
|
438 |
+
ctx, re_x, flash_x, weight4_origin, weight4, weight4_t, weight4_s, group_size, fwobits, layer_id, config, qargs
|
439 |
+
):
|
440 |
+
# Quantize the FlashAttention Output
|
441 |
+
flash_qx, flash_s, _ = fp8_quantize_pertensor(
|
442 |
+
flash_x, group_size, fwobits["fabit"]
|
443 |
+
) # Modified to make it memory efficient
|
444 |
+
|
445 |
+
# # Attention Projection Linear Layer
|
446 |
+
if qargs.weight_memory_efficient:
|
447 |
+
assert weight4 is None # memory efficient
|
448 |
+
weight4, weight4_s = fp8_division(weight4_origin, qargs.group_size, fwobits["fwbit"], weight4_s)
|
449 |
+
fc4_x = fp8_linear_forward(flash_qx, flash_s, weight4, weight4_s, False, group_size) #
|
450 |
+
|
451 |
+
# import IPython
|
452 |
+
# IPython.embed()
|
453 |
+
# Add the activations together
|
454 |
+
fp_x, (out_x, out_s) = fp8_add_Ifp_Ifp_Ofp_Og16(re_x, fc4_x, flash_qx.dtype, group_size)
|
455 |
+
|
456 |
+
# ==================== save for backward ====================
|
457 |
+
ctx.save_for_backward(flash_x, flash_s)
|
458 |
+
if qargs.weight_memory_efficient:
|
459 |
+
assert weight4_t is None
|
460 |
+
ctx.weight = weight4_origin, weight4_s
|
461 |
+
else:
|
462 |
+
ctx.weight = weight4_t, weight4_s
|
463 |
+
ctx.group_size = group_size
|
464 |
+
ctx.fwobits = fwobits
|
465 |
+
ctx.utils = fwobits, layer_id, config, qargs
|
466 |
+
|
467 |
+
# For autograd
|
468 |
+
out_x = out_x.view(torch.float8_e4m3fn)
|
469 |
+
|
470 |
+
return fp_x, out_x, out_s
|
471 |
+
|
472 |
+
@staticmethod
|
473 |
+
def backward(ctx, fp_grad, out_g, out_gs):
|
474 |
+
flash_x, flash_s = ctx.saved_tensors
|
475 |
+
weight4_t, weight4_s = ctx.weight
|
476 |
+
group_size = ctx.group_size
|
477 |
+
fwobits = ctx.fwobits
|
478 |
+
fwobits, layer_id, config, qargs = ctx.utils
|
479 |
+
|
480 |
+
# for autograd
|
481 |
+
if fwobits["babit"] == "E5M2":
|
482 |
+
# out_g = out_g.to(torch.float8_e5m2)
|
483 |
+
out_g = out_g.view(torch.float8_e5m2)
|
484 |
+
else:
|
485 |
+
raise ValueError("babit should be E5M2")
|
486 |
+
out_gs_max = out_gs.max()
|
487 |
+
|
488 |
+
# ==================== Begin backward ====================
|
489 |
+
# Output Projection
|
490 |
+
out_g_t = fp8_transpose(out_g, transpose_output_2d=True)
|
491 |
+
|
492 |
+
# We do not save an extra flash_x to save the memory usage
|
493 |
+
flash_x_t, flash_s = fp8_division_transpose(
|
494 |
+
flash_x, group_size, fwobits["fabit"], flash_s, stochastic=False, only_transposed=True
|
495 |
+
)
|
496 |
+
|
497 |
+
if qargs.weight_memory_efficient:
|
498 |
+
weight4_t, weight4_s = fp8_division_transpose(
|
499 |
+
weight4_t, qargs.group_size, fwobits["fwbit"], weight4_s, only_transposed=True
|
500 |
+
)
|
501 |
+
fc4_g, attn_out_wg = fp8_linear_backward(
|
502 |
+
flash_x_t, flash_s, out_g, out_gs_max, out_g_t, weight4_t, weight4_s, group_size
|
503 |
+
)
|
504 |
+
|
505 |
+
return fp_grad, fc4_g, attn_out_wg, None, None, None, None, None, None, None, None
|
506 |
+
|
507 |
+
|
508 |
+
class CoatLlamaMLPResidual(FP8CacheWeightModule):
|
509 |
+
"""
|
510 |
+
This is a typical transformer attention module that contains (1) Residual (2) LayerNorm / RMSNorm (3) 2 / 3 * Linear layers
|
511 |
+
(4) GELU / Silu Activation
|
512 |
+
"""
|
513 |
+
|
514 |
+
def __init__(self, config: CoatLlamaConfig, qargs: QuantizationConfig, layer_id, hidden_size: int):
|
515 |
+
super().__init__(config, qargs, layer_id)
|
516 |
+
|
517 |
+
self.qargs = qargs
|
518 |
+
self.fwobits = {
|
519 |
+
"fabit": self.qargs.fabit,
|
520 |
+
"fwbit": self.qargs.fwbit,
|
521 |
+
"fobit": self.qargs.fobit,
|
522 |
+
"babit": self.qargs.babit,
|
523 |
+
"bwbit": self.qargs.bwbit,
|
524 |
+
"bobit": self.qargs.bobit,
|
525 |
+
}
|
526 |
+
|
527 |
+
self.config = config
|
528 |
+
self.hidden_size = config.hidden_size
|
529 |
+
self.intermediate_size = config.intermediate_size
|
530 |
+
|
531 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
|
532 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
|
533 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias)
|
534 |
+
self.training = True
|
535 |
+
|
536 |
+
# below is only used when training = False
|
537 |
+
assert config.hidden_act == "silu", "We only support silu activation currently"
|
538 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
539 |
+
|
540 |
+
def forward(self, re_x, x, s, rmsnorm_weight):
|
541 |
+
if self.training:
|
542 |
+
if self.qargs.weight_memory_efficient: # prepare for the weight
|
543 |
+
with torch.no_grad():
|
544 |
+
weight1_s = self.prepare_weight(self.gate_proj.weight, "gate_proj", FP8Manager.is_first_microbatch)
|
545 |
+
weight2_s = self.prepare_weight(self.up_proj.weight, "up_proj", FP8Manager.is_first_microbatch)
|
546 |
+
weight3_s = self.prepare_weight(self.down_proj.weight, "down_proj", FP8Manager.is_first_microbatch)
|
547 |
+
|
548 |
+
return _CoatLlamaMLPResidual.apply(
|
549 |
+
re_x,
|
550 |
+
x,
|
551 |
+
s,
|
552 |
+
self.gate_proj.weight,
|
553 |
+
None,
|
554 |
+
None,
|
555 |
+
weight1_s,
|
556 |
+
self.up_proj.weight,
|
557 |
+
None,
|
558 |
+
None,
|
559 |
+
weight2_s,
|
560 |
+
self.down_proj.weight,
|
561 |
+
None,
|
562 |
+
None,
|
563 |
+
weight3_s,
|
564 |
+
rmsnorm_weight,
|
565 |
+
self.qargs.group_size,
|
566 |
+
self.fwobits,
|
567 |
+
self.layer_id,
|
568 |
+
self.config,
|
569 |
+
self.qargs,
|
570 |
+
)
|
571 |
+
else:
|
572 |
+
# prepare for the weight
|
573 |
+
with torch.no_grad():
|
574 |
+
weight1, weight1_t, weight1_s = self.prepare_weight(
|
575 |
+
self.gate_proj.weight, "gate_proj", FP8Manager.is_first_microbatch
|
576 |
+
)
|
577 |
+
weight2, weight2_t, weight2_s = self.prepare_weight(
|
578 |
+
self.up_proj.weight, "up_proj", FP8Manager.is_first_microbatch
|
579 |
+
)
|
580 |
+
weight3, weight3_t, weight3_s = self.prepare_weight(
|
581 |
+
self.down_proj.weight, "down_proj", FP8Manager.is_first_microbatch
|
582 |
+
)
|
583 |
+
|
584 |
+
return _CoatLlamaMLPResidual.apply(
|
585 |
+
re_x,
|
586 |
+
x,
|
587 |
+
s,
|
588 |
+
self.gate_proj.weight,
|
589 |
+
weight1,
|
590 |
+
weight1_t,
|
591 |
+
weight1_s,
|
592 |
+
self.up_proj.weight,
|
593 |
+
weight2,
|
594 |
+
weight2_t,
|
595 |
+
weight2_s,
|
596 |
+
self.down_proj.weight,
|
597 |
+
weight3,
|
598 |
+
weight3_t,
|
599 |
+
weight3_s,
|
600 |
+
rmsnorm_weight,
|
601 |
+
self.qargs.group_size,
|
602 |
+
self.fwobits,
|
603 |
+
self.layer_id,
|
604 |
+
self.config,
|
605 |
+
self.qargs,
|
606 |
+
)
|
607 |
+
else:
|
608 |
+
raise NotImplementedError("Need TODO")
|
609 |
+
og_x = re_x
|
610 |
+
re_x = self.ff_norm(re_x)
|
611 |
+
re_x = self.ff_proj(re_x)
|
612 |
+
re_x = self.act(re_x)
|
613 |
+
re_x = self.ff_out(re_x)
|
614 |
+
re_x = og_x + re_x
|
615 |
+
return re_x, None, None
|
616 |
+
|
617 |
+
|
618 |
+
class _CoatLlamaMLPResidual(torch.autograd.Function):
|
619 |
+
@staticmethod
|
620 |
+
def forward(
|
621 |
+
ctx,
|
622 |
+
re_x,
|
623 |
+
in_x,
|
624 |
+
in_s,
|
625 |
+
weight1_origin,
|
626 |
+
weight1,
|
627 |
+
weight1_t,
|
628 |
+
weight1_s,
|
629 |
+
weight2_origin,
|
630 |
+
weight2,
|
631 |
+
weight2_t,
|
632 |
+
weight2_s,
|
633 |
+
weight3_origin,
|
634 |
+
weight3,
|
635 |
+
weight3_t,
|
636 |
+
weight3_s,
|
637 |
+
rmsnorm_weight,
|
638 |
+
group_size,
|
639 |
+
fwobits,
|
640 |
+
layer_id,
|
641 |
+
config,
|
642 |
+
qargs,
|
643 |
+
eps=1e-5,
|
644 |
+
):
|
645 |
+
# For autograd
|
646 |
+
if fwobits["fabit"] == "E4M3":
|
647 |
+
# in_x = in_x.to(torch.float8_e4m3fn)
|
648 |
+
in_x = in_x.view(torch.float8_e4m3fn)
|
649 |
+
else:
|
650 |
+
raise ValueError("fabit should be E4M3")
|
651 |
+
|
652 |
+
# LayerNorm
|
653 |
+
ln_x, ln_s, ln_x_t, ln_utils = fp8_rmsnorm_forward(
|
654 |
+
in_x, in_s, rmsnorm_weight, group_size, eps, transpose_output_2d=True
|
655 |
+
)
|
656 |
+
|
657 |
+
# Linear Layer of Up Projection and Gate Projection. They are fused as one linear layer.
|
658 |
+
if qargs.weight_memory_efficient:
|
659 |
+
assert weight1 is None and weight2 is None and weight3 is None # memory efficient
|
660 |
+
weight1, weight1_s = fp8_division(weight1_origin, qargs.group_size, fwobits["fwbit"], weight1_s)
|
661 |
+
weight2, weight2_s = fp8_division(weight2_origin, qargs.group_size, fwobits["fwbit"], weight2_s)
|
662 |
+
weight3, weight3_s = fp8_division(weight3_origin, qargs.group_size, fwobits["fwbit"], weight3_s)
|
663 |
+
|
664 |
+
gate_x, gate_s = fp8_linear_forward(ln_x, ln_s, weight1, weight1_s, True, group_size) # Gate Proj
|
665 |
+
up_x, up_s = fp8_linear_forward(ln_x, ln_s, weight2, weight2_s, True, group_size) # Up Proj
|
666 |
+
|
667 |
+
# silu Activation
|
668 |
+
silu_x, silu_s = fp8_silu_forward(gate_x, gate_s, group_size)
|
669 |
+
|
670 |
+
# Element-wise Multiplication
|
671 |
+
mul_x, mul_s, mul_x_t = fp8_mul_forward(silu_x, silu_s, up_x, up_s, group_size, transpose_output_2d=True)
|
672 |
+
|
673 |
+
# Output Projection
|
674 |
+
if weight3 is None: # memory efficient
|
675 |
+
weight3, weight3_s = fp8_division(weight3_origin, qargs.group_size, fwobits["fwbit"], weight3_s)
|
676 |
+
fc3_x = fp8_linear_forward(mul_x, mul_s, weight3, weight3_s, False, group_size)
|
677 |
+
|
678 |
+
# Add the activation together
|
679 |
+
fp_x, (out_x, out_s) = fp8_add_Ifp_Ifp_Ofp_Og16(re_x, fc3_x, mul_x.dtype, group_size)
|
680 |
+
|
681 |
+
# ==================== save for backward ====================
|
682 |
+
ctx.save_for_backward(in_x, in_s, ln_x_t, ln_s, gate_x, gate_s, up_x, up_s, silu_x, silu_s, mul_x_t, mul_s)
|
683 |
+
|
684 |
+
ctx.weight = (weight1_t, weight1_s, weight2_t, weight2_s)
|
685 |
+
if (
|
686 |
+
qargs.weight_memory_efficient
|
687 |
+
): # Weight_1/2_origin will not be saved twice, so it will be more memory efficient.
|
688 |
+
assert weight1_t is None and weight2_t is None and weight3_t is None
|
689 |
+
ctx.weight = (weight1_origin, weight1_s, weight2_origin, weight2_s, weight3_origin, weight3_s)
|
690 |
+
else: # Weight1/2_t is different from the origin weight, so saving it will consumes additional memory footprint.
|
691 |
+
ctx.weight = (weight1_t, weight1_s, weight2_t, weight2_s, weight3_t, weight3_s)
|
692 |
+
|
693 |
+
ctx.group_size = group_size
|
694 |
+
ctx.ln_utils = ln_utils
|
695 |
+
ctx.utils = fwobits, layer_id, config, qargs
|
696 |
+
|
697 |
+
out_x = out_x.view(torch.float8_e4m3fn)
|
698 |
+
|
699 |
+
return fp_x, out_x, out_s
|
700 |
+
|
701 |
+
@staticmethod
|
702 |
+
def backward(ctx, fp_grad, out_g, out_gs):
|
703 |
+
fwobits, layer_id, config, qargs = ctx.utils
|
704 |
+
|
705 |
+
in_x, in_s, ln_x_t, ln_s, gate_x, gate_s, up_x, up_s, silu_x, silu_s, mul_x_t, mul_s = ctx.saved_tensors
|
706 |
+
|
707 |
+
(weight1_t, weight1_s, weight2_t, weight2_s, weight3_t, weight3_s) = ctx.weight
|
708 |
+
group_size = ctx.group_size
|
709 |
+
rms_weight, rstd, num_warps = ctx.ln_utils
|
710 |
+
fwobits, layer_id, config, qargs = ctx.utils
|
711 |
+
|
712 |
+
# For autograd
|
713 |
+
if fwobits["babit"] == "E5M2":
|
714 |
+
# out_g = out_g.to(torch.float8_e5m2)
|
715 |
+
out_g = out_g.view(torch.float8_e5m2)
|
716 |
+
else:
|
717 |
+
raise ValueError("babit should be E5M2")
|
718 |
+
out_gs_max = out_gs.max()
|
719 |
+
|
720 |
+
# ==================== Begin backward ====================
|
721 |
+
# Output Projection
|
722 |
+
out_gs = out_gs.max()
|
723 |
+
out_g_t = fp8_transpose(out_g, transpose_output_2d=True)
|
724 |
+
|
725 |
+
if qargs.weight_memory_efficient:
|
726 |
+
weight3_t, weight3_s = fp8_division_transpose(
|
727 |
+
weight3_t, qargs.group_size, fwobits["fwbit"], weight3_s, only_transposed=True
|
728 |
+
)
|
729 |
+
fc3_g, weight3_grad = fp8_linear_backward(
|
730 |
+
mul_x_t, mul_s, out_g, out_gs_max, out_g_t, weight3_t, weight3_s, group_size
|
731 |
+
)
|
732 |
+
|
733 |
+
# [MEM TEST]
|
734 |
+
del out_g, out_g_t, weight3_t
|
735 |
+
|
736 |
+
# Element-wise Multiplication, 1 means gate, 2 means up
|
737 |
+
mul_g1, (mul_g2, mul_gs2, mul_g2_t) = fp8_mul_backward(
|
738 |
+
silu_x, silu_s, up_x, up_s, fc3_g, group_size, fwobits["babit"], output_quantized_transpose=True
|
739 |
+
)
|
740 |
+
|
741 |
+
# Silu activation
|
742 |
+
silu_g, silu_gs, silu_g_t = fp8_silu_backward(
|
743 |
+
gate_x, gate_s, mul_g1, group_size, fwobits["babit"], output_quantized_transpose=True
|
744 |
+
)
|
745 |
+
|
746 |
+
# Linear Layer of Up and Gate Projection
|
747 |
+
if qargs.weight_memory_efficient:
|
748 |
+
weight1_t, weight1_s = fp8_division_transpose(
|
749 |
+
weight1_t, group_size, fwobits["fwbit"], weight1_s, only_transposed=True
|
750 |
+
)
|
751 |
+
weight2_t, weight2_s = fp8_division_transpose(
|
752 |
+
weight2_t, group_size, fwobits["fwbit"], weight2_s, only_transposed=True
|
753 |
+
)
|
754 |
+
|
755 |
+
# Gate Proj
|
756 |
+
fc1_g, weight1_grad = fp8_linear_backward(
|
757 |
+
ln_x_t, ln_s, silu_g, silu_gs, silu_g_t, weight1_t, weight1_s, group_size
|
758 |
+
)
|
759 |
+
fc2_g, weight2_grad = fp8_linear_backward(
|
760 |
+
ln_x_t, ln_s, mul_g2, mul_gs2, mul_g2_t, weight2_t, weight2_s, group_size
|
761 |
+
)
|
762 |
+
|
763 |
+
fc_g = fc1_g + fc2_g
|
764 |
+
|
765 |
+
# layerNorm
|
766 |
+
in_g, rms_weight_grad = fp8_rmsnorm_backward(in_x, in_s, fc_g, rms_weight, rstd, group_size, num_warps)
|
767 |
+
|
768 |
+
# Add the gradient together
|
769 |
+
re_g, (in_g, in_sg, in_sg_g16) = fp8_add_Ifp_Ifp_Ofp_Opt(
|
770 |
+
fp_grad, in_g, group_size, fwobits["babit"], stochastic=False
|
771 |
+
)
|
772 |
+
|
773 |
+
in_g = in_g.view(torch.float8_e4m3fn)
|
774 |
+
|
775 |
+
return (
|
776 |
+
re_g,
|
777 |
+
in_g,
|
778 |
+
in_sg_g16,
|
779 |
+
weight1_grad,
|
780 |
+
None,
|
781 |
+
None,
|
782 |
+
None,
|
783 |
+
weight2_grad,
|
784 |
+
None,
|
785 |
+
None,
|
786 |
+
None,
|
787 |
+
weight3_grad,
|
788 |
+
None,
|
789 |
+
None,
|
790 |
+
None,
|
791 |
+
rms_weight_grad,
|
792 |
+
None,
|
793 |
+
None,
|
794 |
+
None,
|
795 |
+
None,
|
796 |
+
None,
|
797 |
+
None,
|
798 |
+
)
|
799 |
+
|
800 |
+
|
801 |
+
class LlamaAttentionWithoutLinear(nn.Module):
|
802 |
+
"""
|
803 |
+
Remove the Q/K/V/O projection layer in LlamaAttention module and only calculate the attention logic.
|
804 |
+
The Q/K/V Projection is moved to BeforeAttention Module, and the O Projection is moved to AfterAttention Module.
|
805 |
+
"""
|
806 |
+
|
807 |
+
def __init__(self, config: LlamaConfig, layer_idx: Optional[int] = None):
|
808 |
+
super().__init__()
|
809 |
+
self.config = config
|
810 |
+
self.layer_idx = layer_idx
|
811 |
+
if layer_idx is None:
|
812 |
+
logger.warning_once(
|
813 |
+
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
|
814 |
+
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
|
815 |
+
"when creating this class."
|
816 |
+
)
|
817 |
+
|
818 |
+
self.attention_dropout = config.attention_dropout
|
819 |
+
self.hidden_size = config.hidden_size
|
820 |
+
self.num_heads = config.num_attention_heads
|
821 |
+
self.head_dim = getattr(config, "head_dim", self.hidden_size // self.num_heads)
|
822 |
+
self.num_key_value_heads = config.num_key_value_heads
|
823 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
824 |
+
self.max_position_embeddings = config.max_position_embeddings
|
825 |
+
self.rope_theta = config.rope_theta
|
826 |
+
self.is_causal = True
|
827 |
+
|
828 |
+
# TODO (joao): remove in v4.46 (RoPE is computed in the model, not in the decoder layers)
|
829 |
+
self.rotary_emb = LlamaRotaryEmbedding(config=self.config)
|
830 |
+
|
831 |
+
def forward(
|
832 |
+
self,
|
833 |
+
query_states: torch.Tensor,
|
834 |
+
key_states: torch.Tensor,
|
835 |
+
value_states: torch.Tensor,
|
836 |
+
attention_mask: Optional[torch.Tensor] = None,
|
837 |
+
position_ids: Optional[torch.LongTensor] = None,
|
838 |
+
past_key_value: Optional[Cache] = None,
|
839 |
+
output_attentions: bool = False,
|
840 |
+
use_cache: bool = False,
|
841 |
+
cache_position: Optional[torch.LongTensor] = None,
|
842 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
|
843 |
+
**kwargs,
|
844 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
845 |
+
bsz, q_len, _ = query_states.size()
|
846 |
+
|
847 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
848 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
849 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
850 |
+
|
851 |
+
if position_embeddings is None:
|
852 |
+
logger.warning_once(
|
853 |
+
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
|
854 |
+
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
|
855 |
+
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
|
856 |
+
"removed and `position_embeddings` will be mandatory."
|
857 |
+
)
|
858 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
859 |
+
else:
|
860 |
+
cos, sin = position_embeddings
|
861 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
862 |
+
|
863 |
+
if past_key_value is not None:
|
864 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
865 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
866 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
867 |
+
|
868 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
869 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
870 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
871 |
+
|
872 |
+
if attention_mask is not None: # no matter the length, we just slice it
|
873 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
874 |
+
attn_weights = attn_weights + causal_mask
|
875 |
+
|
876 |
+
# upcast attention to fp32
|
877 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
878 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
879 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
880 |
+
|
881 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
882 |
+
raise ValueError(
|
883 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
884 |
+
f" {attn_output.size()}"
|
885 |
+
)
|
886 |
+
|
887 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
888 |
+
|
889 |
+
attn_output = attn_output.reshape(bsz, q_len, -1)
|
890 |
+
|
891 |
+
if not output_attentions:
|
892 |
+
attn_weights = None
|
893 |
+
|
894 |
+
return attn_output, attn_weights, past_key_value
|
895 |
+
|
896 |
+
|
897 |
+
class LlamaFlashAttention2WithoutLinear(LlamaAttentionWithoutLinear):
|
898 |
+
"""
|
899 |
+
Remove the Q/K/V/O projection layer in LlamaFlashAttention2 module and only calculate the attention logic.
|
900 |
+
The Q/K/V Projection is moved to BeforeAttention Module, and the O Projection is moved to AfterAttention Module.
|
901 |
+
"""
|
902 |
+
|
903 |
+
def __init__(self, *args, **kwargs):
|
904 |
+
super().__init__(*args, **kwargs)
|
905 |
+
|
906 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
907 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
908 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
909 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
910 |
+
|
911 |
+
def forward(
|
912 |
+
self,
|
913 |
+
query_states: torch.Tensor,
|
914 |
+
key_states: torch.Tensor,
|
915 |
+
value_states: torch.Tensor,
|
916 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
917 |
+
position_ids: Optional[torch.LongTensor] = None,
|
918 |
+
past_key_value: Optional[Cache] = None,
|
919 |
+
output_attentions: bool = False,
|
920 |
+
use_cache: bool = False,
|
921 |
+
cache_position: Optional[torch.LongTensor] = None,
|
922 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
|
923 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
924 |
+
if isinstance(past_key_value, StaticCache):
|
925 |
+
raise ValueError(
|
926 |
+
"`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
|
927 |
+
"make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
|
928 |
+
)
|
929 |
+
|
930 |
+
output_attentions = False
|
931 |
+
|
932 |
+
bsz, q_len, _ = query_states.size()
|
933 |
+
|
934 |
+
# Flash attention requires the input to have the shape
|
935 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
936 |
+
# therefore we just need to keep the original shape
|
937 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
938 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
939 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
940 |
+
|
941 |
+
if position_embeddings is None:
|
942 |
+
logger.warning_once(
|
943 |
+
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
|
944 |
+
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
|
945 |
+
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
|
946 |
+
"removed and `position_embeddings` will be mandatory."
|
947 |
+
)
|
948 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
949 |
+
else:
|
950 |
+
cos, sin = position_embeddings
|
951 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
952 |
+
|
953 |
+
if past_key_value is not None:
|
954 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
955 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
956 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
957 |
+
|
958 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
959 |
+
# to be able to avoid many of these transpose/reshape/view.
|
960 |
+
query_states = query_states.transpose(1, 2)
|
961 |
+
key_states = key_states.transpose(1, 2)
|
962 |
+
value_states = value_states.transpose(1, 2)
|
963 |
+
|
964 |
+
dropout_rate = self.attention_dropout if self.training else 0.0
|
965 |
+
|
966 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
967 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
968 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
969 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
970 |
+
# in fp32. (LlamaRMSNorm handles it correctly)
|
971 |
+
|
972 |
+
input_dtype = query_states.dtype
|
973 |
+
if input_dtype == torch.float32:
|
974 |
+
if torch.is_autocast_enabled():
|
975 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
976 |
+
# Handle the case where the model is quantized
|
977 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
978 |
+
target_dtype = self.config._pre_quantization_dtype
|
979 |
+
else:
|
980 |
+
target_dtype = self.q_proj.weight.dtype
|
981 |
+
|
982 |
+
logger.warning_once(
|
983 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
984 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
985 |
+
f" {target_dtype}."
|
986 |
+
)
|
987 |
+
|
988 |
+
query_states = query_states.to(target_dtype)
|
989 |
+
key_states = key_states.to(target_dtype)
|
990 |
+
value_states = value_states.to(target_dtype)
|
991 |
+
|
992 |
+
attn_output = _flash_attention_forward(
|
993 |
+
query_states,
|
994 |
+
key_states,
|
995 |
+
value_states,
|
996 |
+
attention_mask,
|
997 |
+
q_len,
|
998 |
+
position_ids=position_ids,
|
999 |
+
dropout=dropout_rate,
|
1000 |
+
sliding_window=getattr(self, "sliding_window", None),
|
1001 |
+
use_top_left_mask=self._flash_attn_uses_top_left_mask,
|
1002 |
+
is_causal=self.is_causal,
|
1003 |
+
)
|
1004 |
+
|
1005 |
+
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
|
1006 |
+
|
1007 |
+
if not output_attentions:
|
1008 |
+
attn_weights = None
|
1009 |
+
|
1010 |
+
return attn_output, attn_weights, past_key_value
|
1011 |
+
|
1012 |
+
|
1013 |
+
class LlamaSdpaAttentionWithoutLinear(LlamaAttentionWithoutLinear):
|
1014 |
+
"""
|
1015 |
+
Remove the Q/K/V/O projection layer in LlamaSdpaAttention module and only calculate the attention logic.
|
1016 |
+
The Q/K/V Projection is moved to BeforeAttention Module, and the O Projection is moved to AfterAttention Module.
|
1017 |
+
"""
|
1018 |
+
|
1019 |
+
# Adapted from LlamaAttention.forward
|
1020 |
+
def forward(
|
1021 |
+
self,
|
1022 |
+
query_states: torch.Tensor,
|
1023 |
+
key_states: torch.Tensor,
|
1024 |
+
value_states: torch.Tensor,
|
1025 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1026 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1027 |
+
past_key_value: Optional[Cache] = None,
|
1028 |
+
output_attentions: bool = False,
|
1029 |
+
use_cache: bool = False,
|
1030 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1031 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
|
1032 |
+
**kwargs,
|
1033 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
1034 |
+
if output_attentions:
|
1035 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
1036 |
+
logger.warning_once(
|
1037 |
+
"LlamaModel is using LlamaSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
1038 |
+
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
1039 |
+
)
|
1040 |
+
return super().forward(
|
1041 |
+
query_states=query_states,
|
1042 |
+
key_states=key_states,
|
1043 |
+
value_states=value_states,
|
1044 |
+
attention_mask=attention_mask,
|
1045 |
+
position_ids=position_ids,
|
1046 |
+
past_key_value=past_key_value,
|
1047 |
+
output_attentions=output_attentions,
|
1048 |
+
use_cache=use_cache,
|
1049 |
+
cache_position=cache_position,
|
1050 |
+
position_embeddings=position_embeddings,
|
1051 |
+
)
|
1052 |
+
|
1053 |
+
bsz, q_len, _ = query_states.size()
|
1054 |
+
|
1055 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
1056 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
1057 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
1058 |
+
|
1059 |
+
if position_embeddings is None:
|
1060 |
+
logger.warning_once(
|
1061 |
+
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
|
1062 |
+
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
|
1063 |
+
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
|
1064 |
+
"removed and `position_embeddings` will be mandatory."
|
1065 |
+
)
|
1066 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
1067 |
+
else:
|
1068 |
+
cos, sin = position_embeddings
|
1069 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
1070 |
+
|
1071 |
+
if past_key_value is not None:
|
1072 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
1073 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
1074 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
1075 |
+
|
1076 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
1077 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
1078 |
+
|
1079 |
+
causal_mask = attention_mask
|
1080 |
+
if attention_mask is not None:
|
1081 |
+
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
|
1082 |
+
|
1083 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
1084 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
1085 |
+
if query_states.device.type == "cuda" and causal_mask is not None:
|
1086 |
+
query_states = query_states.contiguous()
|
1087 |
+
key_states = key_states.contiguous()
|
1088 |
+
value_states = value_states.contiguous()
|
1089 |
+
|
1090 |
+
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
|
1091 |
+
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
|
1092 |
+
is_causal = True if causal_mask is None and q_len > 1 else False
|
1093 |
+
|
1094 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
1095 |
+
query_states,
|
1096 |
+
key_states,
|
1097 |
+
value_states,
|
1098 |
+
attn_mask=causal_mask,
|
1099 |
+
dropout_p=self.attention_dropout if self.training else 0.0,
|
1100 |
+
is_causal=is_causal,
|
1101 |
+
)
|
1102 |
+
|
1103 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
1104 |
+
attn_output = attn_output.view(bsz, q_len, -1)
|
1105 |
+
|
1106 |
+
return attn_output, None, past_key_value
|
1107 |
+
|
1108 |
+
|
1109 |
+
COAT_LLAMA_ATTENTION_CLASSES = {
|
1110 |
+
"eager": LlamaAttentionWithoutLinear,
|
1111 |
+
"flash_attention_2": LlamaFlashAttention2WithoutLinear,
|
1112 |
+
"sdpa": LlamaSdpaAttentionWithoutLinear,
|
1113 |
+
}
|
1114 |
+
|
1115 |
+
|
1116 |
+
class CoatLlamaDecoderLayer(nn.Module):
|
1117 |
+
def __init__(self, config: CoatLlamaConfig, layer_idx: int):
|
1118 |
+
super().__init__()
|
1119 |
+
self.layer_idx = layer_idx
|
1120 |
+
self.hidden_size = config.hidden_size
|
1121 |
+
|
1122 |
+
self.self_attn = COAT_LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
|
1123 |
+
|
1124 |
+
self.qargs = QuantizationConfig(**config.coat_fp8_args)
|
1125 |
+
self.BeforeAttention = CoatLlamaBeforeAttentionResidual(config, self.qargs, layer_idx)
|
1126 |
+
self.AfterAttention = CoatLlamaAfterAttentionResidual(config, self.qargs, layer_idx)
|
1127 |
+
self.MLPResidual = CoatLlamaMLPResidual(config, self.qargs, layer_idx, self.hidden_size)
|
1128 |
+
|
1129 |
+
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
1130 |
+
self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
1131 |
+
|
1132 |
+
def forward(
|
1133 |
+
self,
|
1134 |
+
hidden_states: torch.Tensor,
|
1135 |
+
quant_hidden_states: torch.Tensor,
|
1136 |
+
scale_hidden_states: torch.Tensor,
|
1137 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1138 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1139 |
+
past_key_value: Optional[Cache] = None,
|
1140 |
+
output_attentions: Optional[bool] = False,
|
1141 |
+
use_cache: Optional[bool] = False,
|
1142 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1143 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
|
1144 |
+
**kwargs,
|
1145 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
1146 |
+
"""
|
1147 |
+
Args:
|
1148 |
+
hidden_states (`torch.FloatTensor`): BF16 input to the layer of shape `(batch, seq_len, embed_dim)`
|
1149 |
+
quant_hidden_states (`torch.float8_e4m3fn`): FP8 input to the layer of shape `(batch, seq_len, embed_dim)`
|
1150 |
+
scale_hidden_states (`torch.bfloat16`): BF16 scaling factor to the layer of shape `(batch, seq_len, embed_dim // group_size)`
|
1151 |
+
attention_mask (`torch.FloatTensor`, *optional*):
|
1152 |
+
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
|
1153 |
+
query_sequence_length, key_sequence_length)` if default attention is used.
|
1154 |
+
output_attentions (`bool`, *optional*):
|
1155 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
1156 |
+
returned tensors for more detail.
|
1157 |
+
use_cache (`bool`, *optional*):
|
1158 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
1159 |
+
(see `past_key_values`).
|
1160 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
1161 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
1162 |
+
Indices depicting the position of the input sequence tokens in the sequence
|
1163 |
+
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
|
1164 |
+
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
|
1165 |
+
with `head_dim` being the embedding dimension of each attention head.
|
1166 |
+
kwargs (`dict`, *optional*):
|
1167 |
+
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
|
1168 |
+
into the model
|
1169 |
+
"""
|
1170 |
+
|
1171 |
+
# Coat: The residual, LayerNorm, and the Q/K/V Projection Linear Layer
|
1172 |
+
residual, query_states, key_states, value_states = self.BeforeAttention(
|
1173 |
+
hidden_states, quant_hidden_states, scale_hidden_states, self.input_layernorm.weight
|
1174 |
+
)
|
1175 |
+
|
1176 |
+
# Self Attention without any linear layer
|
1177 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
1178 |
+
query_states=query_states,
|
1179 |
+
key_states=key_states,
|
1180 |
+
value_states=value_states,
|
1181 |
+
attention_mask=attention_mask,
|
1182 |
+
position_ids=position_ids,
|
1183 |
+
past_key_value=past_key_value,
|
1184 |
+
output_attentions=output_attentions,
|
1185 |
+
use_cache=use_cache,
|
1186 |
+
cache_position=cache_position,
|
1187 |
+
position_embeddings=position_embeddings,
|
1188 |
+
**kwargs,
|
1189 |
+
)
|
1190 |
+
|
1191 |
+
# Coat: The Output Projection Linear Layer and Residual
|
1192 |
+
hidden_states, quant_hidden_states, scale_hidden_states = self.AfterAttention(residual, hidden_states)
|
1193 |
+
|
1194 |
+
# Residual Connection, LayerNorm, and the whole MLP module
|
1195 |
+
hidden_states, quant_hidden_states, scale_hidden_states = self.MLPResidual(
|
1196 |
+
hidden_states, quant_hidden_states, scale_hidden_states, self.post_attention_layernorm.weight
|
1197 |
+
)
|
1198 |
+
|
1199 |
+
outputs = ((hidden_states, quant_hidden_states, scale_hidden_states),)
|
1200 |
+
|
1201 |
+
if output_attentions:
|
1202 |
+
outputs += (self_attn_weights,)
|
1203 |
+
|
1204 |
+
if use_cache:
|
1205 |
+
outputs += (present_key_value,)
|
1206 |
+
|
1207 |
+
return outputs
|
1208 |
+
|
1209 |
+
|
1210 |
+
class CoatLlamaPreTrainedModel(PreTrainedModel):
|
1211 |
+
config_class = CoatLlamaConfig
|
1212 |
+
base_model_prefix = "model"
|
1213 |
+
supports_gradient_checkpointing = True
|
1214 |
+
_no_split_modules = ["LlamaDecoderLayer"]
|
1215 |
+
_skip_keys_device_placement = ["past_key_values"]
|
1216 |
+
_supports_flash_attn_2 = True
|
1217 |
+
_supports_sdpa = True
|
1218 |
+
_supports_cache_class = True
|
1219 |
+
_supports_quantized_cache = True
|
1220 |
+
_supports_static_cache = True
|
1221 |
+
|
1222 |
+
def _init_weights(self, module):
|
1223 |
+
std = self.config.initializer_range
|
1224 |
+
if isinstance(module, nn.Linear):
|
1225 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
1226 |
+
if module.bias is not None:
|
1227 |
+
module.bias.data.zero_()
|
1228 |
+
elif isinstance(module, nn.Embedding):
|
1229 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
1230 |
+
if module.padding_idx is not None:
|
1231 |
+
module.weight.data[module.padding_idx].zero_()
|
1232 |
+
|
1233 |
+
|
1234 |
+
class CoatLlamaModel(CoatLlamaPreTrainedModel):
|
1235 |
+
"""
|
1236 |
+
Coat Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`CoatLlamaDecoderLayer`]
|
1237 |
+
|
1238 |
+
Args:
|
1239 |
+
config: CoatLlamaConfig
|
1240 |
+
"""
|
1241 |
+
|
1242 |
+
def __init__(self, config: CoatLlamaConfig):
|
1243 |
+
super().__init__(config)
|
1244 |
+
self.padding_idx = config.pad_token_id
|
1245 |
+
self.vocab_size = config.vocab_size
|
1246 |
+
|
1247 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
1248 |
+
self.layers = nn.ModuleList(
|
1249 |
+
[CoatLlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
1250 |
+
)
|
1251 |
+
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
1252 |
+
self.rotary_emb = LlamaRotaryEmbedding(config=config)
|
1253 |
+
self.gradient_checkpointing = False
|
1254 |
+
|
1255 |
+
# Quantize
|
1256 |
+
self.qargs = QuantizationConfig(**config.coat_fp8_args)
|
1257 |
+
self.quantize_input_before_block = Coat_quantize_bgn(self.qargs)
|
1258 |
+
self.quantize_output_after_block = Coat_quantize_end(self.qargs)
|
1259 |
+
|
1260 |
+
# Initialize weights and apply final processing
|
1261 |
+
self.post_init()
|
1262 |
+
|
1263 |
+
def get_input_embeddings(self):
|
1264 |
+
return self.embed_tokens
|
1265 |
+
|
1266 |
+
def set_input_embeddings(self, value):
|
1267 |
+
self.embed_tokens = value
|
1268 |
+
|
1269 |
+
def forward(
|
1270 |
+
self,
|
1271 |
+
input_ids: torch.LongTensor = None,
|
1272 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1273 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1274 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
1275 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1276 |
+
use_cache: Optional[bool] = None,
|
1277 |
+
output_attentions: Optional[bool] = None,
|
1278 |
+
output_hidden_states: Optional[bool] = None,
|
1279 |
+
return_dict: Optional[bool] = None,
|
1280 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1281 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
1282 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1283 |
+
output_hidden_states = (
|
1284 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1285 |
+
)
|
1286 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1287 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1288 |
+
|
1289 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
1290 |
+
raise ValueError(
|
1291 |
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
1292 |
+
)
|
1293 |
+
|
1294 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
1295 |
+
logger.warning_once(
|
1296 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
1297 |
+
)
|
1298 |
+
use_cache = False
|
1299 |
+
|
1300 |
+
if inputs_embeds is None:
|
1301 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
1302 |
+
|
1303 |
+
# kept for BC (non `Cache` `past_key_values` inputs)
|
1304 |
+
return_legacy_cache = False
|
1305 |
+
if use_cache and not isinstance(past_key_values, Cache):
|
1306 |
+
return_legacy_cache = True
|
1307 |
+
if past_key_values is None:
|
1308 |
+
past_key_values = DynamicCache()
|
1309 |
+
else:
|
1310 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
1311 |
+
logger.warning_once(
|
1312 |
+
"We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
|
1313 |
+
"will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
|
1314 |
+
"(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
|
1315 |
+
)
|
1316 |
+
|
1317 |
+
if cache_position is None:
|
1318 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
1319 |
+
cache_position = torch.arange(
|
1320 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
1321 |
+
)
|
1322 |
+
if position_ids is None:
|
1323 |
+
position_ids = cache_position.unsqueeze(0)
|
1324 |
+
|
1325 |
+
causal_mask = self._update_causal_mask(
|
1326 |
+
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
1327 |
+
)
|
1328 |
+
hidden_states = inputs_embeds
|
1329 |
+
|
1330 |
+
# create position embeddings to be shared across the decoder layers
|
1331 |
+
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
1332 |
+
|
1333 |
+
# decoder layers
|
1334 |
+
all_hidden_states = () if output_hidden_states else None
|
1335 |
+
all_self_attns = () if output_attentions else None
|
1336 |
+
next_decoder_cache = None
|
1337 |
+
|
1338 |
+
# Prepare the input for Coat decoderlayer
|
1339 |
+
hidden_states, quant_hidden_states, scale_hidden_states = self.quantize_input_before_block(hidden_states)
|
1340 |
+
|
1341 |
+
for decoder_layer in self.layers:
|
1342 |
+
if output_hidden_states:
|
1343 |
+
all_hidden_states += (hidden_states,)
|
1344 |
+
|
1345 |
+
if self.gradient_checkpointing and self.training:
|
1346 |
+
layer_outputs = self._gradient_checkpointing_func(
|
1347 |
+
decoder_layer.__call__,
|
1348 |
+
hidden_states,
|
1349 |
+
quant_hidden_states,
|
1350 |
+
scale_hidden_states,
|
1351 |
+
causal_mask,
|
1352 |
+
position_ids,
|
1353 |
+
past_key_values,
|
1354 |
+
output_attentions,
|
1355 |
+
use_cache,
|
1356 |
+
cache_position,
|
1357 |
+
position_embeddings,
|
1358 |
+
)
|
1359 |
+
else:
|
1360 |
+
layer_outputs = decoder_layer(
|
1361 |
+
hidden_states,
|
1362 |
+
quant_hidden_states,
|
1363 |
+
scale_hidden_states,
|
1364 |
+
attention_mask=causal_mask,
|
1365 |
+
position_ids=position_ids,
|
1366 |
+
past_key_value=past_key_values,
|
1367 |
+
output_attentions=output_attentions,
|
1368 |
+
use_cache=use_cache,
|
1369 |
+
cache_position=cache_position,
|
1370 |
+
position_embeddings=position_embeddings,
|
1371 |
+
)
|
1372 |
+
|
1373 |
+
hidden_states, quant_hidden_states, scale_hidden_states = layer_outputs[0]
|
1374 |
+
|
1375 |
+
if use_cache:
|
1376 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
1377 |
+
|
1378 |
+
if output_attentions:
|
1379 |
+
all_self_attns += (layer_outputs[1],)
|
1380 |
+
|
1381 |
+
# Summarize the output of the Decoder Layer
|
1382 |
+
hidden_states = self.quantize_output_after_block(hidden_states, quant_hidden_states, scale_hidden_states)
|
1383 |
+
|
1384 |
+
hidden_states = self.norm(hidden_states)
|
1385 |
+
|
1386 |
+
# add hidden states from the last decoder layer
|
1387 |
+
if output_hidden_states:
|
1388 |
+
all_hidden_states += (hidden_states,)
|
1389 |
+
|
1390 |
+
next_cache = next_decoder_cache if use_cache else None
|
1391 |
+
if return_legacy_cache:
|
1392 |
+
next_cache = next_cache.to_legacy_cache()
|
1393 |
+
|
1394 |
+
if not return_dict:
|
1395 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
1396 |
+
return BaseModelOutputWithPast(
|
1397 |
+
last_hidden_state=hidden_states,
|
1398 |
+
past_key_values=next_cache,
|
1399 |
+
hidden_states=all_hidden_states,
|
1400 |
+
attentions=all_self_attns,
|
1401 |
+
)
|
1402 |
+
|
1403 |
+
_update_causal_mask = LlamaModel._update_causal_mask
|
1404 |
+
|
1405 |
+
|
1406 |
+
class CoatLlamaForCausalLM(CoatLlamaPreTrainedModel, GenerationMixin):
|
1407 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1408 |
+
|
1409 |
+
def __init__(self, config):
|
1410 |
+
super().__init__(config)
|
1411 |
+
self.model = CoatLlamaModel(config)
|
1412 |
+
self.vocab_size = config.vocab_size
|
1413 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1414 |
+
|
1415 |
+
# Initialize weights and apply final processing
|
1416 |
+
self.post_init()
|
1417 |
+
|
1418 |
+
def get_input_embeddings(self):
|
1419 |
+
return self.model.embed_tokens
|
1420 |
+
|
1421 |
+
def set_input_embeddings(self, value):
|
1422 |
+
self.model.embed_tokens = value
|
1423 |
+
|
1424 |
+
def get_output_embeddings(self):
|
1425 |
+
return self.lm_head
|
1426 |
+
|
1427 |
+
def set_output_embeddings(self, new_embeddings):
|
1428 |
+
self.lm_head = new_embeddings
|
1429 |
+
|
1430 |
+
def set_decoder(self, decoder):
|
1431 |
+
self.model = decoder
|
1432 |
+
|
1433 |
+
def get_decoder(self):
|
1434 |
+
return self.model
|
1435 |
+
|
1436 |
+
forward = LlamaForCausalLM.forward
|
1437 |
+
|
1438 |
+
prepare_inputs_for_generation = LlamaForCausalLM.prepare_inputs_for_generation
|
1439 |
+
|
1440 |
+
|
1441 |
+
# TODO
|
1442 |
+
# class LlamaForSequenceClassification(LlamaPreTrainedModel):
|
1443 |
+
|
1444 |
+
# class LlamaForQuestionAnswering(LlamaPreTrainedModel):
|
1445 |
+
|
1446 |
+
# class LlamaForTokenClassification(LlamaPreTrainedModel):
|
1447 |
+
|
1448 |
+
|
1449 |
+
def make_state_dict_compatible(state_dict: dict[str, torch.Tensor]):
|
1450 |
+
compatible_state_dict = {}
|
1451 |
+
|
1452 |
+
for key, value in state_dict.items():
|
1453 |
+
if fnmatch(key, "*self_attn.q_proj*"):
|
1454 |
+
new_key = key.replace("self_attn.q_proj", "BeforeAttention.q_proj")
|
1455 |
+
elif fnmatch(key, "*self_attn.k_proj*"):
|
1456 |
+
new_key = key.replace("self_attn.k_proj", "BeforeAttention.k_proj")
|
1457 |
+
elif fnmatch(key, "*self_attn.v_proj*"):
|
1458 |
+
new_key = key.replace("self_attn.v_proj", "BeforeAttention.v_proj")
|
1459 |
+
elif fnmatch(key, "*self_attn.o_proj*"):
|
1460 |
+
new_key = key.replace("self_attn.o_proj", "AfterAttention.o_proj")
|
1461 |
+
|
1462 |
+
elif fnmatch(key, "*mlp.gate_proj*"):
|
1463 |
+
new_key = key.replace("mlp.gate_proj", "MLPResidual.gate_proj")
|
1464 |
+
elif fnmatch(key, "*mlp.up_proj*"):
|
1465 |
+
new_key = key.replace("mlp.up_proj", "MLPResidual.up_proj")
|
1466 |
+
elif fnmatch(key, "*mlp.down_proj*"):
|
1467 |
+
new_key = key.replace("mlp.down_proj", "MLPResidual.down_proj")
|
1468 |
+
|
1469 |
+
else:
|
1470 |
+
new_key = key
|
1471 |
+
|
1472 |
+
compatible_state_dict[new_key] = value
|
1473 |
+
|
1474 |
+
return compatible_state_dict
|
1475 |
+
|
1476 |
+
|
1477 |
+
AutoConfig.register("fp8_llama", CoatLlamaConfig)
|
1478 |
+
AutoModel.register(CoatLlamaConfig, CoatLlamaModel)
|
1479 |
+
AutoModelForCausalLM.register(CoatLlamaConfig, CoatLlamaForCausalLM)
|
llava/model/coat/activation/models/coat_llama_convert_from_hf.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 NVIDIA CORPORATION.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
|
5 |
+
# LICENSE is in incl_licenses directory.
|
6 |
+
|
7 |
+
import argparse
|
8 |
+
import os
|
9 |
+
from dataclasses import asdict, dataclass, field
|
10 |
+
from typing import Optional
|
11 |
+
|
12 |
+
import torch
|
13 |
+
import transformers
|
14 |
+
from coat.activation.models._fp8_quantization_config import QuantizationConfig
|
15 |
+
from coat.activation.models.coat_llama import CoatLlamaConfig, CoatLlamaForCausalLM, make_state_dict_compatible
|
16 |
+
from transformers import AutoConfig, AutoModelForCausalLM
|
17 |
+
|
18 |
+
|
19 |
+
@dataclass
|
20 |
+
class ConvertArguments:
|
21 |
+
model_name: str = field(metadata={"help": "The model name or path to download the LLaMA model"})
|
22 |
+
save_path: str = field(metadata={"help": "The path where the converted model weights will be saved"})
|
23 |
+
cache_dir: str = field(default=None, metadata={"help": "Directory to cache the model"})
|
24 |
+
|
25 |
+
|
26 |
+
def download_and_convert_llama(convert_args: ConvertArguments, quantization_args: QuantizationConfig):
|
27 |
+
"""
|
28 |
+
Downloads a LLaMA model, converts its weights using `make_state_dict_compatible`,
|
29 |
+
and saves the converted model.
|
30 |
+
|
31 |
+
Args:
|
32 |
+
model_name (str): The model name or path to download the LLaMA model.
|
33 |
+
save_path (str): The path where the converted model weights will be saved.
|
34 |
+
cache_dir (Optional[str]): Directory to cache the model. Defaults to None.
|
35 |
+
|
36 |
+
Returns:
|
37 |
+
None
|
38 |
+
"""
|
39 |
+
model_name = convert_args.model_name
|
40 |
+
save_path = convert_args.save_path
|
41 |
+
cache_dir = convert_args.cache_dir
|
42 |
+
|
43 |
+
# Step 1: Download the original LLaMA model
|
44 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, cache_dir=cache_dir)
|
45 |
+
|
46 |
+
# Step 2: Initialize the model configuration for FP8 or other custom config
|
47 |
+
config = AutoConfig.from_pretrained(model_name, cache_dir=cache_dir)
|
48 |
+
|
49 |
+
# Step 3: Apply make_state_dict_compatible to convert weights
|
50 |
+
compatible_state_dict = make_state_dict_compatible(model.state_dict())
|
51 |
+
|
52 |
+
# Step 4: Create a new model instance with compatible configuration
|
53 |
+
fp8_config = CoatLlamaConfig(**config.to_dict())
|
54 |
+
fp8_config.coat_fp8_args = asdict(quantization_args)
|
55 |
+
|
56 |
+
converted_model = AutoModelForCausalLM.from_config(fp8_config)
|
57 |
+
converted_model.load_state_dict(compatible_state_dict)
|
58 |
+
|
59 |
+
# Step 5: Save the converted model and configuration using save_pretrained
|
60 |
+
os.makedirs(save_path, exist_ok=True)
|
61 |
+
converted_model.save_pretrained(save_path)
|
62 |
+
print(f"Converted model saved at {save_path}")
|
63 |
+
|
64 |
+
|
65 |
+
if __name__ == "__main__":
|
66 |
+
# Parse command-line arguments
|
67 |
+
parser = transformers.HfArgumentParser((ConvertArguments, QuantizationConfig)) # NOTE: FP8
|
68 |
+
convert_args, quantization_args = parser.parse_args_into_dataclasses()
|
69 |
+
|
70 |
+
# Call the function with parsed arguments
|
71 |
+
download_and_convert_llama(convert_args, quantization_args)
|
llava/model/coat/activation/models/coat_olmo.py
ADDED
@@ -0,0 +1,1942 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 NVIDIA CORPORATION.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
|
5 |
+
# LICENSE is in incl_licenses directory.
|
6 |
+
|
7 |
+
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
#
|
21 |
+
# SPDX-License-Identifier: Apache-2.0
|
22 |
+
|
23 |
+
"""
|
24 |
+
Adapted from
|
25 |
+
[MosaiclML](https://github.com/mosaicml/examples.git) and
|
26 |
+
[minGPT](https://github.com/karpathy/minGPT.git)
|
27 |
+
"""
|
28 |
+
|
29 |
+
from __future__ import annotations
|
30 |
+
|
31 |
+
import logging
|
32 |
+
import math
|
33 |
+
import sys
|
34 |
+
from abc import abstractmethod
|
35 |
+
from collections import defaultdict
|
36 |
+
from functools import partial
|
37 |
+
from typing import Callable, Dict, Iterable, List, NamedTuple, Optional, Sequence, Set, Tuple, cast
|
38 |
+
|
39 |
+
import torch
|
40 |
+
import torch.backends.cuda
|
41 |
+
import torch.nn as nn
|
42 |
+
import torch.nn.functional as F
|
43 |
+
from olmo.aliases import PathOrStr
|
44 |
+
from olmo.beam_search import BeamSearch, Constraint, FinalSequenceScorer, Sampler
|
45 |
+
from olmo.config import (
|
46 |
+
ActivationCheckpointingStrategy,
|
47 |
+
ActivationType,
|
48 |
+
BlockType,
|
49 |
+
CheckpointType,
|
50 |
+
FSDPWrapStrategy,
|
51 |
+
InitFnType,
|
52 |
+
LayerNormType,
|
53 |
+
ModelConfig,
|
54 |
+
QuantActivationConfig,
|
55 |
+
ShardedCheckpointerType,
|
56 |
+
TrainConfig,
|
57 |
+
)
|
58 |
+
from olmo.exceptions import OLMoConfigurationError
|
59 |
+
from olmo.initialization import init_normal
|
60 |
+
from olmo.model import (
|
61 |
+
Activation,
|
62 |
+
BufferCache,
|
63 |
+
Dropout,
|
64 |
+
LayerNorm,
|
65 |
+
LayerNormBase,
|
66 |
+
OLMo,
|
67 |
+
OLMoBlock,
|
68 |
+
OLMoBlockGroup,
|
69 |
+
OLMoGenerateOutput,
|
70 |
+
OLMoOutput,
|
71 |
+
RMSLayerNorm,
|
72 |
+
RotaryEmbedding,
|
73 |
+
_non_meta_init_device,
|
74 |
+
activation_checkpoint_function,
|
75 |
+
alibi_attention_bias,
|
76 |
+
causal_attention_bias,
|
77 |
+
get_causal_attention_bias,
|
78 |
+
should_checkpoint_block,
|
79 |
+
)
|
80 |
+
from olmo.torch_util import ensure_finite_, get_cumulative_document_lengths
|
81 |
+
from torch import einsum
|
82 |
+
|
83 |
+
from ..real_quantization import (
|
84 |
+
Coat_quantize_bgn,
|
85 |
+
Coat_quantize_end,
|
86 |
+
fp8_add_Ifp_Ifp_Ofp_Og16,
|
87 |
+
fp8_add_Ifp_Ifp_Ofp_Opt,
|
88 |
+
fp8_division,
|
89 |
+
fp8_division_transpose,
|
90 |
+
fp8_gelu_backward,
|
91 |
+
fp8_gelu_forward,
|
92 |
+
fp8_layernorm_noparam_backward,
|
93 |
+
fp8_layernorm_noparam_forward,
|
94 |
+
fp8_linear_backward,
|
95 |
+
fp8_linear_forward,
|
96 |
+
fp8_mul_backward,
|
97 |
+
fp8_mul_forward,
|
98 |
+
fp8_quantize,
|
99 |
+
fp8_quantize_pertensor,
|
100 |
+
fp8_quantize_pertensor_transpose,
|
101 |
+
fp8_rmsnorm_backward,
|
102 |
+
fp8_rmsnorm_forward,
|
103 |
+
fp8_silu_backward,
|
104 |
+
fp8_silu_forward,
|
105 |
+
fp8_transpose,
|
106 |
+
)
|
107 |
+
from ._fp8_weightcache import FP8CacheWeightModule
|
108 |
+
from ._fp8manager import FP8Manager
|
109 |
+
|
110 |
+
if sys.version_info.minor > 8:
|
111 |
+
from collections.abc import MutableMapping
|
112 |
+
elif sys.version_info.minor == 8:
|
113 |
+
from typing import MutableMapping
|
114 |
+
else:
|
115 |
+
raise SystemExit("This script supports Python 3.8 or higher")
|
116 |
+
|
117 |
+
__all__ = [
|
118 |
+
"LayerNormBase",
|
119 |
+
"LayerNorm",
|
120 |
+
"RMSLayerNorm",
|
121 |
+
"RotaryEmbedding",
|
122 |
+
"Activation",
|
123 |
+
"GELU",
|
124 |
+
"ReLU",
|
125 |
+
"SwiGLU",
|
126 |
+
"OLMoBlock",
|
127 |
+
"OLMoSequentialBlock",
|
128 |
+
"OLMo",
|
129 |
+
"OLMoOutput",
|
130 |
+
"OLMoGenerateOutput",
|
131 |
+
]
|
132 |
+
|
133 |
+
|
134 |
+
log = logging.getLogger(__name__)
|
135 |
+
|
136 |
+
|
137 |
+
class CoatOLMoBeforeAttentionResidual(FP8CacheWeightModule):
|
138 |
+
"""
|
139 |
+
This is a typical transformer attention module that contains (1) Residual (2) LayerNorm / RMSNorm (3) 1 * Linear layers
|
140 |
+
"""
|
141 |
+
|
142 |
+
def __init__(self, config: ModelConfig, qargs: QuantActivationConfig, layer_id, fused_dims: tuple):
|
143 |
+
super().__init__(config, qargs, layer_id)
|
144 |
+
|
145 |
+
self.qargs = qargs
|
146 |
+
self.fwobits = {
|
147 |
+
"fabit": self.qargs.fabit,
|
148 |
+
"fwbit": self.qargs.fwbit,
|
149 |
+
"fobit": self.qargs.fobit,
|
150 |
+
"babit": self.qargs.babit,
|
151 |
+
"bwbit": self.qargs.bwbit,
|
152 |
+
"bobit": self.qargs.bobit,
|
153 |
+
}
|
154 |
+
self.ln_normalized_shape = config.d_model
|
155 |
+
self.att_proj = nn.Linear(config.d_model, sum(fused_dims), bias=config.include_bias, device=config.init_device)
|
156 |
+
|
157 |
+
self.attn_norm = LayerNorm.build(config)
|
158 |
+
|
159 |
+
def forward(self, re_x, x, s):
|
160 |
+
if self.training:
|
161 |
+
if self.qargs.weight_memory_efficient:
|
162 |
+
# Prepare
|
163 |
+
with torch.no_grad():
|
164 |
+
weight1_s = self.prepare_weight(self.att_proj.weight, "att_proj", FP8Manager.is_first_microbatch)
|
165 |
+
return _CoatOLMoBeforeAttentionResidual.apply(
|
166 |
+
re_x,
|
167 |
+
x,
|
168 |
+
s,
|
169 |
+
self.att_proj.weight,
|
170 |
+
None,
|
171 |
+
None,
|
172 |
+
weight1_s,
|
173 |
+
self.qargs.group_size,
|
174 |
+
self.fwobits,
|
175 |
+
self.layer_id,
|
176 |
+
self.config,
|
177 |
+
self.qargs,
|
178 |
+
)
|
179 |
+
else:
|
180 |
+
# Prepare
|
181 |
+
with torch.no_grad():
|
182 |
+
weight1, weight1_t, weight1_s = self.prepare_weight(
|
183 |
+
self.att_proj.weight, "att_proj", FP8Manager.is_first_microbatch
|
184 |
+
)
|
185 |
+
return _CoatOLMoBeforeAttentionResidual.apply(
|
186 |
+
re_x,
|
187 |
+
x,
|
188 |
+
s,
|
189 |
+
self.att_proj.weight,
|
190 |
+
weight1,
|
191 |
+
weight1_t,
|
192 |
+
weight1_s,
|
193 |
+
self.qargs.group_size,
|
194 |
+
self.fwobits,
|
195 |
+
self.layer_id,
|
196 |
+
self.config,
|
197 |
+
self.qargs,
|
198 |
+
)
|
199 |
+
else:
|
200 |
+
return re_x, self.att_proj(self.attn_norm(re_x))
|
201 |
+
|
202 |
+
|
203 |
+
class _CoatOLMoBeforeAttentionResidual(torch.autograd.Function):
|
204 |
+
@staticmethod
|
205 |
+
def forward(
|
206 |
+
ctx,
|
207 |
+
re_x,
|
208 |
+
in_x,
|
209 |
+
in_s,
|
210 |
+
weight1_origin,
|
211 |
+
weight1,
|
212 |
+
weight1_t,
|
213 |
+
weight1_s,
|
214 |
+
group_size,
|
215 |
+
fwobits,
|
216 |
+
layer_id,
|
217 |
+
config,
|
218 |
+
qargs,
|
219 |
+
eps=1e-5,
|
220 |
+
):
|
221 |
+
# for autograd
|
222 |
+
if fwobits["fabit"] == "E4M3":
|
223 |
+
# in_x = in_x.to(torch.float8_e4m3fn)
|
224 |
+
in_x = in_x.view(torch.float8_e4m3fn)
|
225 |
+
else:
|
226 |
+
raise ValueError("fabit should be E4M3")
|
227 |
+
|
228 |
+
# LayerNorm
|
229 |
+
ln_x, ln_s, ln_x_t, ln_utils = fp8_layernorm_noparam_forward(
|
230 |
+
in_x, in_s, group_size, eps, transpose_output_2d=True
|
231 |
+
)
|
232 |
+
|
233 |
+
# Linear Layer QKV Projection
|
234 |
+
if qargs.weight_memory_efficient:
|
235 |
+
assert weight1 is None # memory efficient
|
236 |
+
weight1, weight1_s = fp8_division(weight1_origin, qargs.group_size, fwobits["fwbit"], weight1_s)
|
237 |
+
fc1_x = fp8_linear_forward(ln_x, ln_s, weight1, weight1_s, False, group_size)
|
238 |
+
|
239 |
+
# ==================== save for backward ====================
|
240 |
+
ctx.save_for_backward(in_x, in_s, ln_x_t, ln_s)
|
241 |
+
if qargs.weight_memory_efficient:
|
242 |
+
assert weight1_t is None
|
243 |
+
ctx.weight = weight1_origin, weight1_s
|
244 |
+
else:
|
245 |
+
ctx.weight = weight1_t, weight1_s
|
246 |
+
ctx.group_size = group_size
|
247 |
+
ctx.ln_utils = ln_utils
|
248 |
+
ctx.utils = fwobits, layer_id, config, qargs
|
249 |
+
|
250 |
+
return re_x, fc1_x
|
251 |
+
|
252 |
+
@staticmethod
|
253 |
+
def backward(ctx, fp_grad, flash_g):
|
254 |
+
in_x, in_s, ln_x_t, ln_s = ctx.saved_tensors
|
255 |
+
weight1_t, weight1_s = ctx.weight
|
256 |
+
group_size = ctx.group_size
|
257 |
+
mean, rstd, num_warps = ctx.ln_utils
|
258 |
+
fwobits, layer_id, config, qargs = ctx.utils
|
259 |
+
|
260 |
+
# ==================== Begin backward ====================
|
261 |
+
# Quantize the RoPE and FlashAttention Output. grad_input and grad_weight requires different data layout.
|
262 |
+
flash_g, flash_gs, flash_g_t = fp8_quantize_pertensor_transpose(
|
263 |
+
flash_g, group_size, fwobits["babit"], transpose_output_2d=True, stochastic=False
|
264 |
+
)
|
265 |
+
|
266 |
+
# Linear Layer QKV Projection
|
267 |
+
if qargs.weight_memory_efficient:
|
268 |
+
weight1_t, weight1_s = fp8_division_transpose(
|
269 |
+
weight1_t, qargs.group_size, fwobits["fwbit"], weight1_s, only_transposed=True
|
270 |
+
)
|
271 |
+
fc1_g, att_proj_wg = fp8_linear_backward(
|
272 |
+
ln_x_t, ln_s, flash_g, flash_gs, flash_g_t, weight1_t, weight1_s, group_size
|
273 |
+
)
|
274 |
+
|
275 |
+
# LayerNorm
|
276 |
+
in_g = fp8_layernorm_noparam_backward(in_x, in_s, fc1_g, group_size, mean, rstd, num_warps)
|
277 |
+
|
278 |
+
# Add the gradient together, and prepare the input of the next layer.
|
279 |
+
re_g, (in_g, in_sg, in_sg_g16) = fp8_add_Ifp_Ifp_Ofp_Opt(
|
280 |
+
fp_grad, in_g, group_size, fwobits["babit"], stochastic=False
|
281 |
+
)
|
282 |
+
|
283 |
+
# for autograd. forward's data type should be the same of backward tensor. this will not change the actual binary representation.
|
284 |
+
in_g = in_g.view(torch.float8_e4m3fn)
|
285 |
+
|
286 |
+
# Although the next operator is a linear layer in MLPResidual module, we return in_sg_g16 to make the size compatible with the forward. Otherwise it will not pass autograd.
|
287 |
+
return re_g, in_g, in_sg_g16, att_proj_wg, None, None, None, None, None, None, None, None, None
|
288 |
+
|
289 |
+
|
290 |
+
class CoatOLMoAfterAttentionResidual(FP8CacheWeightModule):
|
291 |
+
"""
|
292 |
+
This is a typical transformer attention module that contains (1) Residual (2) 1 * Linear layers
|
293 |
+
"""
|
294 |
+
|
295 |
+
def __init__(self, config: ModelConfig, qargs: QuantActivationConfig, layer_id):
|
296 |
+
super().__init__(config, qargs, layer_id)
|
297 |
+
|
298 |
+
self.qargs = qargs
|
299 |
+
self.fwobits = {
|
300 |
+
"fabit": self.qargs.fabit,
|
301 |
+
"fwbit": self.qargs.fwbit,
|
302 |
+
"fobit": self.qargs.fobit,
|
303 |
+
"babit": self.qargs.babit,
|
304 |
+
"bwbit": self.qargs.bwbit,
|
305 |
+
"bobit": self.qargs.bobit,
|
306 |
+
}
|
307 |
+
self.attn_out = nn.Linear(config.d_model, config.d_model, bias=config.include_bias, device=config.init_device)
|
308 |
+
|
309 |
+
def forward(self, re_x, in_x):
|
310 |
+
if self.training:
|
311 |
+
if self.qargs.weight_memory_efficient:
|
312 |
+
# prepare for the weight
|
313 |
+
with torch.no_grad():
|
314 |
+
weight2_s = self.prepare_weight(self.attn_out.weight, "attn_out", FP8Manager.is_first_microbatch)
|
315 |
+
|
316 |
+
return _CoatOLMoAfterAttentionResidual.apply(
|
317 |
+
re_x,
|
318 |
+
in_x,
|
319 |
+
self.attn_out.weight,
|
320 |
+
None,
|
321 |
+
None,
|
322 |
+
weight2_s,
|
323 |
+
self.qargs.group_size,
|
324 |
+
self.fwobits,
|
325 |
+
self.layer_id,
|
326 |
+
self.config,
|
327 |
+
self.qargs,
|
328 |
+
)
|
329 |
+
else:
|
330 |
+
# prepare for the weight
|
331 |
+
with torch.no_grad():
|
332 |
+
weight2, weight2_t, weight2_s = self.prepare_weight(
|
333 |
+
self.attn_out.weight, "attn_out", FP8Manager.is_first_microbatch
|
334 |
+
)
|
335 |
+
|
336 |
+
return _CoatOLMoAfterAttentionResidual.apply(
|
337 |
+
re_x,
|
338 |
+
in_x,
|
339 |
+
self.attn_out.weight,
|
340 |
+
weight2,
|
341 |
+
weight2_t,
|
342 |
+
weight2_s,
|
343 |
+
self.qargs.group_size,
|
344 |
+
self.fwobits,
|
345 |
+
self.layer_id,
|
346 |
+
self.config,
|
347 |
+
self.qargs,
|
348 |
+
)
|
349 |
+
else:
|
350 |
+
return re_x + self.attn_out(in_x), None, None
|
351 |
+
|
352 |
+
|
353 |
+
class _CoatOLMoAfterAttentionResidual(torch.autograd.Function):
|
354 |
+
@staticmethod
|
355 |
+
def forward(
|
356 |
+
ctx, re_x, flash_x, weight2_origin, weight2, weight2_t, weight2_s, group_size, fwobits, layer_id, config, qargs
|
357 |
+
):
|
358 |
+
# Quantize the FlashAttention Output
|
359 |
+
flash_qx, flash_s, _ = fp8_quantize_pertensor(
|
360 |
+
flash_x, group_size, fwobits["fabit"]
|
361 |
+
) # Modified to make it memory efficient
|
362 |
+
|
363 |
+
# # Attention Projection Linear Layer
|
364 |
+
if qargs.weight_memory_efficient:
|
365 |
+
assert weight2 is None # memory efficient
|
366 |
+
weight2, weight2_s = fp8_division(weight2_origin, qargs.group_size, fwobits["fwbit"], weight2_s)
|
367 |
+
fc2_x = fp8_linear_forward(flash_qx, flash_s, weight2, weight2_s, False, group_size) #
|
368 |
+
|
369 |
+
# import IPython
|
370 |
+
# IPython.embed()
|
371 |
+
# Add the activations together
|
372 |
+
fp_x, (out_x, out_s) = fp8_add_Ifp_Ifp_Ofp_Og16(re_x, fc2_x, flash_qx.dtype, group_size)
|
373 |
+
|
374 |
+
# ==================== save for backward ====================
|
375 |
+
ctx.save_for_backward(flash_x, flash_s)
|
376 |
+
if qargs.weight_memory_efficient:
|
377 |
+
assert weight2_t is None
|
378 |
+
ctx.weight = weight2_origin, weight2_s
|
379 |
+
else:
|
380 |
+
ctx.weight = weight2_t, weight2_s
|
381 |
+
ctx.group_size = group_size
|
382 |
+
ctx.fwobits = fwobits
|
383 |
+
ctx.utils = fwobits, layer_id, config, qargs
|
384 |
+
|
385 |
+
# For autograd
|
386 |
+
out_x = out_x.view(torch.float8_e4m3fn)
|
387 |
+
|
388 |
+
return fp_x, out_x, out_s
|
389 |
+
|
390 |
+
@staticmethod
|
391 |
+
def backward(ctx, fp_grad, out_g, out_gs):
|
392 |
+
flash_x, flash_s = ctx.saved_tensors
|
393 |
+
weight2_t, weight2_s = ctx.weight
|
394 |
+
group_size = ctx.group_size
|
395 |
+
fwobits = ctx.fwobits
|
396 |
+
fwobits, layer_id, config, qargs = ctx.utils
|
397 |
+
|
398 |
+
# for autograd
|
399 |
+
if fwobits["babit"] == "E5M2":
|
400 |
+
# out_g = out_g.to(torch.float8_e5m2)
|
401 |
+
out_g = out_g.view(torch.float8_e5m2)
|
402 |
+
else:
|
403 |
+
raise ValueError("babit should be E5M2")
|
404 |
+
out_gs_max = out_gs.max()
|
405 |
+
|
406 |
+
# ==================== Begin backward ====================
|
407 |
+
# Output Projection
|
408 |
+
out_g_t = fp8_transpose(out_g, transpose_output_2d=True)
|
409 |
+
|
410 |
+
# We do not save an extra flash_x to save the memory usage
|
411 |
+
flash_x_t, flash_s = fp8_division_transpose(
|
412 |
+
flash_x, group_size, fwobits["fabit"], flash_s, stochastic=False, only_transposed=True
|
413 |
+
)
|
414 |
+
|
415 |
+
if qargs.weight_memory_efficient:
|
416 |
+
weight2_t, weight2_s = fp8_division_transpose(
|
417 |
+
weight2_t, qargs.group_size, fwobits["fwbit"], weight2_s, only_transposed=True
|
418 |
+
)
|
419 |
+
fc2_g, attn_out_wg = fp8_linear_backward(
|
420 |
+
flash_x_t, flash_s, out_g, out_gs_max, out_g_t, weight2_t, weight2_s, group_size
|
421 |
+
)
|
422 |
+
|
423 |
+
return fp_grad, fc2_g, attn_out_wg, None, None, None, None, None, None, None, None
|
424 |
+
|
425 |
+
|
426 |
+
class CoatOLMoMLPResidual(FP8CacheWeightModule):
|
427 |
+
"""
|
428 |
+
This is a typical transformer attention module that contains (1) Residual (2) LayerNorm / RMSNorm (3) 2 / 3 * Linear layers
|
429 |
+
(4) GELU / Silu Activation
|
430 |
+
"""
|
431 |
+
|
432 |
+
def __init__(self, config: ModelConfig, qargs: QuantActivationConfig, layer_id, hidden_size: int):
|
433 |
+
super().__init__(config, qargs, layer_id)
|
434 |
+
|
435 |
+
self.qargs = qargs
|
436 |
+
self.fwobits = {
|
437 |
+
"fabit": self.qargs.fabit,
|
438 |
+
"fwbit": self.qargs.fwbit,
|
439 |
+
"fobit": self.qargs.fobit,
|
440 |
+
"babit": self.qargs.babit,
|
441 |
+
"bwbit": self.qargs.bwbit,
|
442 |
+
"bobit": self.qargs.bobit,
|
443 |
+
}
|
444 |
+
self.ln_normalized_shape = config.d_model
|
445 |
+
self.act_output_multiplier = 0.5 if config.activation_type == ActivationType.swiglu else 1
|
446 |
+
self.ff_proj = nn.Linear(config.d_model, hidden_size, bias=config.include_bias, device=config.init_device)
|
447 |
+
self.ff_out = nn.Linear(
|
448 |
+
int(self.act_output_multiplier * hidden_size),
|
449 |
+
config.d_model,
|
450 |
+
bias=config.include_bias,
|
451 |
+
device=config.init_device,
|
452 |
+
)
|
453 |
+
self.training = True
|
454 |
+
|
455 |
+
# below is only used when training = False
|
456 |
+
self.ff_norm = LayerNorm.build(config)
|
457 |
+
self.act = Activation.build(config)
|
458 |
+
assert (self.act.output_multiplier * hidden_size) % 1 == 0
|
459 |
+
|
460 |
+
def forward(self, re_x, x, s):
|
461 |
+
if self.training:
|
462 |
+
if self.qargs.weight_memory_efficient: # prepare for the weight
|
463 |
+
with torch.no_grad():
|
464 |
+
weight1_s = self.prepare_weight(self.ff_proj.weight, "ff_proj", FP8Manager.is_first_microbatch)
|
465 |
+
weight2_s = self.prepare_weight(self.ff_out.weight, "ff_out", FP8Manager.is_first_microbatch)
|
466 |
+
|
467 |
+
return _CoatOLMoMLPResidual.apply(
|
468 |
+
re_x,
|
469 |
+
x,
|
470 |
+
s,
|
471 |
+
self.ff_proj.weight,
|
472 |
+
None,
|
473 |
+
None,
|
474 |
+
weight1_s,
|
475 |
+
self.ff_out.weight,
|
476 |
+
None,
|
477 |
+
None,
|
478 |
+
weight2_s,
|
479 |
+
self.qargs.group_size,
|
480 |
+
self.fwobits,
|
481 |
+
self.layer_id,
|
482 |
+
self.config,
|
483 |
+
self.qargs,
|
484 |
+
)
|
485 |
+
else:
|
486 |
+
# prepare for the weight
|
487 |
+
with torch.no_grad():
|
488 |
+
weight1, weight1_t, weight1_s = self.prepare_weight(
|
489 |
+
self.ff_proj.weight, "ff_proj", FP8Manager.is_first_microbatch
|
490 |
+
)
|
491 |
+
weight2, weight2_t, weight2_s = self.prepare_weight(
|
492 |
+
self.ff_out.weight, "ff_out", FP8Manager.is_first_microbatch
|
493 |
+
)
|
494 |
+
|
495 |
+
return _CoatOLMoMLPResidual.apply(
|
496 |
+
re_x,
|
497 |
+
x,
|
498 |
+
s,
|
499 |
+
self.ff_proj.weight,
|
500 |
+
weight1,
|
501 |
+
weight1_t,
|
502 |
+
weight1_s,
|
503 |
+
self.ff_out.weight,
|
504 |
+
weight2,
|
505 |
+
weight2_t,
|
506 |
+
weight2_s,
|
507 |
+
self.qargs.group_size,
|
508 |
+
self.fwobits,
|
509 |
+
self.layer_id,
|
510 |
+
self.config,
|
511 |
+
self.qargs,
|
512 |
+
)
|
513 |
+
else:
|
514 |
+
og_x = re_x
|
515 |
+
re_x = self.ff_norm(re_x)
|
516 |
+
re_x = self.ff_proj(re_x)
|
517 |
+
re_x = self.act(re_x)
|
518 |
+
re_x = self.ff_out(re_x)
|
519 |
+
re_x = og_x + re_x
|
520 |
+
return re_x, None, None
|
521 |
+
|
522 |
+
|
523 |
+
class _CoatOLMoMLPResidual(torch.autograd.Function):
|
524 |
+
@staticmethod
|
525 |
+
def forward(
|
526 |
+
ctx,
|
527 |
+
re_x,
|
528 |
+
in_x,
|
529 |
+
in_s,
|
530 |
+
weight1_origin,
|
531 |
+
weight1,
|
532 |
+
weight1_t,
|
533 |
+
weight1_s,
|
534 |
+
weight2_origin,
|
535 |
+
weight2,
|
536 |
+
weight2_t,
|
537 |
+
weight2_s,
|
538 |
+
group_size,
|
539 |
+
fwobits,
|
540 |
+
layer_id,
|
541 |
+
config,
|
542 |
+
qargs,
|
543 |
+
eps=1e-5,
|
544 |
+
):
|
545 |
+
# For autograd
|
546 |
+
if fwobits["fabit"] == "E4M3":
|
547 |
+
# in_x = in_x.to(torch.float8_e4m3fn)
|
548 |
+
in_x = in_x.view(torch.float8_e4m3fn)
|
549 |
+
else:
|
550 |
+
raise ValueError("fabit should be E4M3")
|
551 |
+
|
552 |
+
# LayerNorm
|
553 |
+
ln_x, ln_s, ln_x_t, ln_utils = fp8_layernorm_noparam_forward(
|
554 |
+
in_x, in_s, group_size, eps, transpose_output_2d=True
|
555 |
+
)
|
556 |
+
|
557 |
+
# Linear Layer of Up Projection and Gate Projection. They are fused as one linear layer.
|
558 |
+
if qargs.weight_memory_efficient:
|
559 |
+
assert weight1 is None # memory efficient
|
560 |
+
weight1, weight1_s = fp8_division(weight1_origin, qargs.group_size, fwobits["fwbit"], weight1_s)
|
561 |
+
fc1_x, fc1_s = fp8_linear_forward(ln_x, ln_s, weight1, weight1_s, True, group_size)
|
562 |
+
|
563 |
+
# NOTE: Becareful of the order
|
564 |
+
up_x, gate_x = fc1_x.chunk(2, dim=-1)
|
565 |
+
up_s, gate_s = fc1_s.chunk(2, dim=-1)
|
566 |
+
|
567 |
+
# silu Activation
|
568 |
+
silu_x, silu_s = fp8_silu_forward(gate_x, gate_s, group_size)
|
569 |
+
|
570 |
+
# Element-wise Multiplication
|
571 |
+
mul_x, mul_s, mul_x_t = fp8_mul_forward(silu_x, silu_s, up_x, up_s, group_size, transpose_output_2d=True)
|
572 |
+
|
573 |
+
# Output Projection
|
574 |
+
if weight2 is None: # memory efficient
|
575 |
+
weight2, weight2_s = fp8_division(weight2_origin, qargs.group_size, fwobits["fwbit"], weight2_s)
|
576 |
+
fc2_x = fp8_linear_forward(mul_x, mul_s, weight2, weight2_s, False, group_size)
|
577 |
+
|
578 |
+
# Add the activation together
|
579 |
+
fp_x, (out_x, out_s) = fp8_add_Ifp_Ifp_Ofp_Og16(re_x, fc2_x, mul_x.dtype, group_size)
|
580 |
+
|
581 |
+
# ==================== save for backward ====================
|
582 |
+
ctx.save_for_backward(in_x, in_s, ln_x_t, ln_s, gate_x, gate_s, up_x, up_s, silu_x, silu_s, mul_x_t, mul_s)
|
583 |
+
|
584 |
+
ctx.weight = (weight1_t, weight1_s, weight2_t, weight2_s)
|
585 |
+
if (
|
586 |
+
qargs.weight_memory_efficient
|
587 |
+
): # Weight_1/2_origin will not be saved twice, so it will be more memory efficient.
|
588 |
+
assert weight1_t is None
|
589 |
+
ctx.weight = (weight1_origin, weight1_s, weight2_origin, weight2_s)
|
590 |
+
else: # Weight1/2_t is different from the origin weight, so saving it will consumes additional memory footprint.
|
591 |
+
ctx.weight = (weight1_t, weight1_s, weight2_t, weight2_s)
|
592 |
+
|
593 |
+
ctx.group_size = group_size
|
594 |
+
ctx.ln_utils = ln_utils
|
595 |
+
ctx.utils = fwobits, layer_id, config, qargs
|
596 |
+
|
597 |
+
out_x = out_x.view(torch.float8_e4m3fn)
|
598 |
+
|
599 |
+
return fp_x, out_x, out_s
|
600 |
+
|
601 |
+
@staticmethod
|
602 |
+
def backward(ctx, fp_grad, out_g, out_gs):
|
603 |
+
fwobits, layer_id, config, qargs = ctx.utils
|
604 |
+
|
605 |
+
in_x, in_s, ln_x_t, ln_s, gate_x, gate_s, up_x, up_s, silu_x, silu_s, mul_x_t, mul_s = ctx.saved_tensors
|
606 |
+
|
607 |
+
(weight1_t, weight1_s, weight2_t, weight2_s) = ctx.weight
|
608 |
+
group_size = ctx.group_size
|
609 |
+
mean, rstd, num_warps = ctx.ln_utils
|
610 |
+
fwobits, layer_id, config, qargs = ctx.utils
|
611 |
+
|
612 |
+
# For autograd
|
613 |
+
if fwobits["babit"] == "E5M2":
|
614 |
+
# out_g = out_g.to(torch.float8_e5m2)
|
615 |
+
out_g = out_g.view(torch.float8_e5m2)
|
616 |
+
else:
|
617 |
+
raise ValueError("babit should be E5M2")
|
618 |
+
out_gs_max = out_gs.max()
|
619 |
+
|
620 |
+
# ==================== Begin backward ====================
|
621 |
+
# Output Projection
|
622 |
+
out_gs = out_gs.max()
|
623 |
+
out_g_t = fp8_transpose(out_g, transpose_output_2d=True)
|
624 |
+
|
625 |
+
if qargs.weight_memory_efficient:
|
626 |
+
weight2_t, weight2_s = fp8_division_transpose(
|
627 |
+
weight2_t, qargs.group_size, fwobits["fwbit"], weight2_s, only_transposed=True
|
628 |
+
)
|
629 |
+
fc2_g, weight2_grad = fp8_linear_backward(
|
630 |
+
mul_x_t, mul_s, out_g, out_gs_max, out_g_t, weight2_t, weight2_s, group_size
|
631 |
+
)
|
632 |
+
|
633 |
+
# [MEM TEST]
|
634 |
+
del out_g, out_g_t, weight2_t
|
635 |
+
|
636 |
+
# Element-wise Multiplication, 1 means gate, 2 means up
|
637 |
+
mul_g1, (mul_g2, mul_gs2) = fp8_mul_backward(silu_x, silu_s, up_x, up_s, fc2_g, group_size, fwobits["babit"])
|
638 |
+
|
639 |
+
# Silu activation
|
640 |
+
silu_g, silu_gs = fp8_silu_backward(gate_x, gate_s, mul_g1, group_size, fwobits["babit"])
|
641 |
+
|
642 |
+
# Prepare the input of Linear Layer. NOTE: Becareful of the order
|
643 |
+
gateup_g = torch.cat([mul_g2, silu_g], dim=-1)
|
644 |
+
gateup_gs = torch.cat([mul_gs2, silu_gs])
|
645 |
+
gateup_gs = torch.max(gateup_gs)
|
646 |
+
|
647 |
+
gateup_g, gateup_gs, gateup_g_t = fp8_division_transpose(
|
648 |
+
gateup_g, group_size, fwobits["babit"], gateup_gs, stochastic=False
|
649 |
+
)
|
650 |
+
|
651 |
+
# Linear Layer of Up and Gate Projection
|
652 |
+
if qargs.weight_memory_efficient:
|
653 |
+
weight1_t, weight1_s = fp8_division_transpose(
|
654 |
+
weight1_t, group_size, fwobits["fwbit"], weight1_s, only_transposed=True
|
655 |
+
)
|
656 |
+
fc1_g, weight1_grad = fp8_linear_backward(
|
657 |
+
ln_x_t, ln_s, gateup_g, gateup_gs, gateup_g_t, weight1_t, weight1_s, group_size
|
658 |
+
)
|
659 |
+
|
660 |
+
# layerNorm
|
661 |
+
in_g = fp8_layernorm_noparam_backward(in_x, in_s, fc1_g, group_size, mean, rstd, num_warps)
|
662 |
+
|
663 |
+
# Add the gradient together
|
664 |
+
re_g, (in_g, in_sg, in_sg_g16) = fp8_add_Ifp_Ifp_Ofp_Opt(
|
665 |
+
fp_grad, in_g, group_size, fwobits["babit"], stochastic=False
|
666 |
+
)
|
667 |
+
|
668 |
+
in_g = in_g.view(torch.float8_e4m3fn)
|
669 |
+
|
670 |
+
return (
|
671 |
+
re_g,
|
672 |
+
in_g,
|
673 |
+
in_sg_g16,
|
674 |
+
weight1_grad,
|
675 |
+
None,
|
676 |
+
None,
|
677 |
+
None,
|
678 |
+
weight2_grad,
|
679 |
+
None,
|
680 |
+
None,
|
681 |
+
None,
|
682 |
+
None,
|
683 |
+
None,
|
684 |
+
None,
|
685 |
+
None,
|
686 |
+
None,
|
687 |
+
None,
|
688 |
+
)
|
689 |
+
|
690 |
+
|
691 |
+
class CoatOLMoBlock(nn.Module):
|
692 |
+
"""
|
693 |
+
A base class for transformer block implementations.
|
694 |
+
"""
|
695 |
+
|
696 |
+
def __init__(self, layer_id: int, config: ModelConfig, qargs: QuantActivationConfig, cache: BufferCache):
|
697 |
+
super().__init__()
|
698 |
+
self.layer_id = layer_id
|
699 |
+
self.config = config
|
700 |
+
self.qargs = qargs
|
701 |
+
self.hidden_size = (
|
702 |
+
config.mlp_hidden_size if config.mlp_hidden_size is not None else config.mlp_ratio * config.d_model
|
703 |
+
)
|
704 |
+
self.__cache = cache
|
705 |
+
assert config.d_model % config.n_heads == 0
|
706 |
+
|
707 |
+
self._activation_checkpoint_fn: Callable | None = None
|
708 |
+
|
709 |
+
# Dropout.
|
710 |
+
self.dropout = Dropout(config.residual_dropout)
|
711 |
+
|
712 |
+
# Layer norms.
|
713 |
+
self.k_norm: LayerNormBase | None = None
|
714 |
+
self.q_norm: LayerNormBase | None = None
|
715 |
+
if config.attention_layer_norm:
|
716 |
+
assert config.effective_n_kv_heads is not None
|
717 |
+
self.k_norm = LayerNormBase.build(
|
718 |
+
config,
|
719 |
+
size=(config.d_model // config.n_heads) * config.effective_n_kv_heads,
|
720 |
+
elementwise_affine=config.attention_layer_norm_with_affine,
|
721 |
+
)
|
722 |
+
self.q_norm = LayerNormBase.build(config, elementwise_affine=config.attention_layer_norm_with_affine)
|
723 |
+
|
724 |
+
# Make sure QKV clip coefficient is positive, otherwise it's not well-defined.
|
725 |
+
if config.clip_qkv is not None:
|
726 |
+
assert config.clip_qkv > 0
|
727 |
+
|
728 |
+
# Activation function.
|
729 |
+
self.act = Activation.build(config)
|
730 |
+
assert (self.act.output_multiplier * self.hidden_size) % 1 == 0
|
731 |
+
|
732 |
+
if not self.qargs.use_quantize_model:
|
733 |
+
# Attention output projection.
|
734 |
+
self.attn_out = nn.Linear(
|
735 |
+
config.d_model, config.d_model, bias=config.include_bias, device=config.init_device
|
736 |
+
)
|
737 |
+
|
738 |
+
# Feed-forward output projection.
|
739 |
+
self.ff_out = nn.Linear(
|
740 |
+
int(self.act.output_multiplier * self.hidden_size),
|
741 |
+
config.d_model,
|
742 |
+
bias=config.include_bias,
|
743 |
+
device=config.init_device,
|
744 |
+
)
|
745 |
+
self.ff_out._is_residual = True # type: ignore
|
746 |
+
|
747 |
+
# Rotary embeddings.
|
748 |
+
if self.config.rope:
|
749 |
+
self.rotary_emb = RotaryEmbedding(config, self.__cache)
|
750 |
+
|
751 |
+
self.flash_attn_func = None
|
752 |
+
self.flash_attn_varlen_func = None
|
753 |
+
if config.flash_attention:
|
754 |
+
try:
|
755 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func # type: ignore
|
756 |
+
|
757 |
+
self.flash_attn_func = flash_attn_func
|
758 |
+
self.flash_attn_varlen_func = flash_attn_varlen_func
|
759 |
+
except ModuleNotFoundError:
|
760 |
+
pass
|
761 |
+
|
762 |
+
def reset_parameters(self):
|
763 |
+
if self.k_norm is not None:
|
764 |
+
self.k_norm.reset_parameters()
|
765 |
+
if self.q_norm is not None:
|
766 |
+
self.q_norm.reset_parameters()
|
767 |
+
|
768 |
+
if not self.qargs.use_quantize_model:
|
769 |
+
if self.config.init_fn == InitFnType.normal:
|
770 |
+
attn_out_std = ff_out_std = self.config.init_std
|
771 |
+
cutoff_factor = self.config.init_cutoff_factor
|
772 |
+
|
773 |
+
elif self.config.init_fn == InitFnType.mitchell:
|
774 |
+
attn_out_std = 1 / (math.sqrt(2 * self.config.d_model * (self.layer_id + 1)))
|
775 |
+
ff_out_std = 1 / (math.sqrt(2 * self.ff_out.in_features * (self.layer_id + 1)))
|
776 |
+
cutoff_factor = self.config.init_cutoff_factor or 3.0
|
777 |
+
|
778 |
+
elif self.config.init_fn == InitFnType.full_megatron:
|
779 |
+
attn_out_std = ff_out_std = self.config.init_std / math.sqrt(2.0 * self.config.n_layers)
|
780 |
+
cutoff_factor = self.config.init_cutoff_factor or 3.0
|
781 |
+
|
782 |
+
else:
|
783 |
+
raise NotImplementedError(self.config.init_fn)
|
784 |
+
|
785 |
+
init_normal(self.attn_out, std=attn_out_std, init_cutoff_factor=cutoff_factor)
|
786 |
+
init_normal(self.ff_out, std=ff_out_std, init_cutoff_factor=cutoff_factor)
|
787 |
+
|
788 |
+
def set_activation_checkpointing(
|
789 |
+
self, strategy: ActivationCheckpointingStrategy | None, checkpoint_func: Callable | None = None
|
790 |
+
):
|
791 |
+
if strategy == ActivationCheckpointingStrategy.fine_grained:
|
792 |
+
self._activation_checkpoint_fn = checkpoint_func or activation_checkpoint_function(self.config)
|
793 |
+
else:
|
794 |
+
self._activation_checkpoint_fn = None
|
795 |
+
|
796 |
+
@classmethod
|
797 |
+
def _cast_attn_bias(cls, bias: torch.Tensor, input_dtype: torch.dtype) -> torch.Tensor:
|
798 |
+
target_dtype = input_dtype
|
799 |
+
# NOTE: `is_autocast_enabled()` only checks for CUDA autocast, so we use the separate function
|
800 |
+
# `is_autocast_cpu_enabled()` for CPU autocast.
|
801 |
+
# See https://github.com/pytorch/pytorch/issues/110966.
|
802 |
+
if bias.device.type == "cuda" and torch.is_autocast_enabled():
|
803 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
804 |
+
elif bias.device.type == "cpu" and torch.is_autocast_cpu_enabled():
|
805 |
+
target_dtype = torch.get_autocast_cpu_dtype()
|
806 |
+
if bias.dtype != target_dtype:
|
807 |
+
bias = bias.to(target_dtype)
|
808 |
+
ensure_finite_(bias, check_neg_inf=True, check_pos_inf=False)
|
809 |
+
return bias
|
810 |
+
|
811 |
+
def _scaled_dot_product_attention(
|
812 |
+
self,
|
813 |
+
q: torch.Tensor,
|
814 |
+
k: torch.Tensor,
|
815 |
+
v: torch.Tensor,
|
816 |
+
attn_mask: torch.Tensor | None = None,
|
817 |
+
dropout_p: float = 0.0,
|
818 |
+
is_causal: bool = False,
|
819 |
+
max_doc_len: int | None = None,
|
820 |
+
cu_doc_lens: torch.Tensor | None = None,
|
821 |
+
) -> torch.Tensor:
|
822 |
+
"""
|
823 |
+
Computes scaled dot product attention on query, key and value tensors, using an optional
|
824 |
+
attention mask if passed, and applying dropout if a probability greater than 0.0 is specified.
|
825 |
+
"""
|
826 |
+
if max_doc_len is not None and cu_doc_lens is not None:
|
827 |
+
assert self.flash_attn_varlen_func is not None, "flash-attn is required for document masking"
|
828 |
+
assert attn_mask is None, "attn-mask is currently not supported with document masking"
|
829 |
+
B, T, D = q.size(0), q.size(2), q.size(3)
|
830 |
+
r = self.flash_attn_varlen_func(
|
831 |
+
q.transpose(1, 2).view(B * T, -1, D),
|
832 |
+
k.transpose(1, 2).view(B * T, -1, D),
|
833 |
+
v.transpose(1, 2).view(B * T, -1, D),
|
834 |
+
cu_doc_lens,
|
835 |
+
cu_doc_lens,
|
836 |
+
max_doc_len,
|
837 |
+
max_doc_len,
|
838 |
+
dropout_p=dropout_p,
|
839 |
+
causal=is_causal,
|
840 |
+
)
|
841 |
+
return r.view(B, T, -1, D).transpose(1, 2)
|
842 |
+
elif self.flash_attn_func is not None and attn_mask is None:
|
843 |
+
r = self.flash_attn_func(
|
844 |
+
q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), dropout_p=dropout_p, causal=is_causal
|
845 |
+
)
|
846 |
+
return r.transpose(1, 2)
|
847 |
+
else:
|
848 |
+
# torch's sdpa doesn't support GQA, so we're doing this
|
849 |
+
assert k.size(1) == v.size(1)
|
850 |
+
num_kv_heads = k.size(1)
|
851 |
+
num_q_heads = q.size(1)
|
852 |
+
if num_q_heads != num_kv_heads:
|
853 |
+
assert num_q_heads % num_kv_heads == 0
|
854 |
+
k = k.repeat_interleave(num_q_heads // num_kv_heads, dim=1, output_size=num_q_heads)
|
855 |
+
v = v.repeat_interleave(num_q_heads // num_kv_heads, dim=1, output_size=num_q_heads)
|
856 |
+
|
857 |
+
return F.scaled_dot_product_attention(
|
858 |
+
q,
|
859 |
+
k,
|
860 |
+
v,
|
861 |
+
attn_mask=attn_mask,
|
862 |
+
dropout_p=dropout_p,
|
863 |
+
is_causal=is_causal,
|
864 |
+
)
|
865 |
+
|
866 |
+
def attention(
|
867 |
+
self,
|
868 |
+
q: torch.Tensor,
|
869 |
+
k: torch.Tensor,
|
870 |
+
v: torch.Tensor,
|
871 |
+
attention_bias: torch.Tensor | None = None,
|
872 |
+
layer_past: tuple[torch.Tensor, torch.Tensor] | None = None,
|
873 |
+
use_cache: bool = False,
|
874 |
+
max_doc_len: int | None = None,
|
875 |
+
cu_doc_lens: torch.Tensor | None = None,
|
876 |
+
) -> tuple[torch.Tensor, tuple[torch.Tensor, torch.Tensor] | None]:
|
877 |
+
B, T, C = q.size() # batch size, sequence length, d_model
|
878 |
+
dtype = k.dtype
|
879 |
+
|
880 |
+
# Optionally apply layer norm to keys and queries.
|
881 |
+
if self.q_norm is not None and self.k_norm is not None:
|
882 |
+
q = self.q_norm(q).to(dtype=dtype)
|
883 |
+
k = self.k_norm(k).to(dtype=dtype)
|
884 |
+
|
885 |
+
# Move head forward to be next to the batch dim.
|
886 |
+
# shape: (B, nh, T, hs)
|
887 |
+
q = q.view(B, T, self.config.n_heads, C // self.config.n_heads).transpose(1, 2)
|
888 |
+
# shape: (B, n_kv_h, T, hs)
|
889 |
+
k = k.view(B, T, self.config.effective_n_kv_heads, C // self.config.n_heads).transpose(1, 2)
|
890 |
+
# shape: (B, n_kv_h, T, hs)
|
891 |
+
v = v.view(B, T, self.config.effective_n_kv_heads, C // self.config.n_heads).transpose(1, 2)
|
892 |
+
|
893 |
+
if layer_past is not None:
|
894 |
+
past_key, past_value = layer_past
|
895 |
+
k = torch.cat((past_key, k), dim=-2)
|
896 |
+
v = torch.cat((past_value, v), dim=-2)
|
897 |
+
|
898 |
+
present = (k, v) if use_cache else None
|
899 |
+
query_len, key_len = q.shape[-2], k.shape[-2] # could be different if layer_past not None
|
900 |
+
|
901 |
+
if self.config.rope:
|
902 |
+
# Apply rotary embeddings.
|
903 |
+
q, k = self.rotary_emb(q, k)
|
904 |
+
|
905 |
+
if attention_bias is not None:
|
906 |
+
# Resize and cast attention bias.
|
907 |
+
# The current dtype of the attention bias might not match the dtype that the SDP attn function will
|
908 |
+
# run in if AMP is enabled, and this can be a problem if some tokens are masked out due to padding
|
909 |
+
# as down-casting the attention bias to the autocast precision will result in -infs, which will
|
910 |
+
# cause the SDP attn function to produce NaNs.
|
911 |
+
attention_bias = self._cast_attn_bias(attention_bias[:, :, key_len - query_len : key_len, :key_len], dtype)
|
912 |
+
|
913 |
+
# Get the attention scores.
|
914 |
+
# shape: (B, nh, T, hs)
|
915 |
+
att = self._scaled_dot_product_attention(
|
916 |
+
q,
|
917 |
+
k,
|
918 |
+
v,
|
919 |
+
attn_mask=attention_bias,
|
920 |
+
dropout_p=0.0 if not self.training else self.config.attention_dropout,
|
921 |
+
is_causal=attention_bias is None,
|
922 |
+
max_doc_len=max_doc_len,
|
923 |
+
cu_doc_lens=cu_doc_lens,
|
924 |
+
)
|
925 |
+
|
926 |
+
# Re-assemble all head outputs side-by-side.
|
927 |
+
att = att.transpose(1, 2).contiguous().view(B, T, C)
|
928 |
+
|
929 |
+
# Apply output projection. NOTE: We move the attn output outside of this attention function
|
930 |
+
return att, present
|
931 |
+
|
932 |
+
@abstractmethod
|
933 |
+
def forward(
|
934 |
+
self,
|
935 |
+
x: torch.Tensor,
|
936 |
+
attention_bias: torch.FloatTensor | None = None,
|
937 |
+
layer_past: tuple[torch.Tensor, torch.Tensor] | None = None,
|
938 |
+
use_cache: bool = False,
|
939 |
+
max_doc_len: int | None = None,
|
940 |
+
cu_doc_lens: torch.Tensor | None = None,
|
941 |
+
) -> tuple[torch.Tensor, tuple[torch.Tensor, torch.Tensor] | None]:
|
942 |
+
raise NotImplementedError
|
943 |
+
|
944 |
+
@classmethod
|
945 |
+
def build(cls, layer_id: int, config: ModelConfig, qargs: QuantActivationConfig, cache: BufferCache) -> OLMoBlock:
|
946 |
+
if config.block_type == BlockType.sequential:
|
947 |
+
return CoatOLMoSequentialBlock(layer_id, config, qargs, cache)
|
948 |
+
elif config.block_type == BlockType.llama:
|
949 |
+
return CoatOLMoLlamaBlock(layer_id, config, qargs, cache)
|
950 |
+
else:
|
951 |
+
raise NotImplementedError(f"Unknown block type: '{config.block_type}'")
|
952 |
+
|
953 |
+
|
954 |
+
class CoatOLMoSequentialBlock(CoatOLMoBlock):
|
955 |
+
"""
|
956 |
+
This is a typical transformer block where the output is computed as ``MLP(LN(x + Attention(LN(x))))``
|
957 |
+
(plus another skip connection). To compute it as ``LN(MLP(x + LN(Attention(x))))``,
|
958 |
+
use the flag `norm_after`.
|
959 |
+
"""
|
960 |
+
|
961 |
+
def __init__(self, layer_id: int, config: ModelConfig, qargs: QuantActivationConfig, cache: BufferCache):
|
962 |
+
super().__init__(layer_id, config, qargs, cache)
|
963 |
+
# Attention input projection. Projects x -> (q, k, v)
|
964 |
+
|
965 |
+
assert not self.config.norm_after, "COAT currently does not support PostNorm"
|
966 |
+
|
967 |
+
head_dim = config.d_model // config.n_heads
|
968 |
+
self.fused_dims = (
|
969 |
+
config.d_model,
|
970 |
+
config.effective_n_kv_heads * head_dim,
|
971 |
+
config.effective_n_kv_heads * head_dim,
|
972 |
+
)
|
973 |
+
|
974 |
+
if self.qargs.use_quantize_model:
|
975 |
+
self.BeforeAttention = CoatOLMoBeforeAttentionResidual(config, qargs, self.layer_id, self.fused_dims)
|
976 |
+
self.AfterAttention = CoatOLMoAfterAttentionResidual(config, qargs, self.layer_id)
|
977 |
+
self.MLPResidual = CoatOLMoMLPResidual(config, qargs, self.layer_id, self.hidden_size)
|
978 |
+
else:
|
979 |
+
self.att_proj = nn.Linear(
|
980 |
+
config.d_model, sum(self.fused_dims), bias=config.include_bias, device=config.init_device
|
981 |
+
)
|
982 |
+
# Feed-forward input projection.
|
983 |
+
self.ff_proj = nn.Linear(
|
984 |
+
config.d_model, self.hidden_size, bias=config.include_bias, device=config.init_device
|
985 |
+
)
|
986 |
+
|
987 |
+
# Layer norms.
|
988 |
+
self.attn_norm = LayerNorm.build(config, size=config.d_model)
|
989 |
+
self.ff_norm = LayerNorm.build(config, size=config.d_model)
|
990 |
+
|
991 |
+
def reset_parameters(self):
|
992 |
+
super().reset_parameters()
|
993 |
+
self.attn_norm.reset_parameters()
|
994 |
+
self.ff_norm.reset_parameters()
|
995 |
+
# NOTE: the standard deviation for these weights does not depend on the layer.
|
996 |
+
|
997 |
+
if self.qargs.use_quantize_model: # The initialization appears here, not in CoatOLMoBlock's reset_parameters
|
998 |
+
if self.config.init_fn == InitFnType.normal:
|
999 |
+
attn_out_std = ff_out_std = self.config.init_std
|
1000 |
+
cutoff_factor = self.config.init_cutoff_factor
|
1001 |
+
|
1002 |
+
elif self.config.init_fn == InitFnType.mitchell:
|
1003 |
+
attn_out_std = 1 / (math.sqrt(2 * self.config.d_model * (self.layer_id + 1)))
|
1004 |
+
ff_out_std = 1 / (math.sqrt(2 * self.MLPResidual.ff_out.in_features * (self.layer_id + 1)))
|
1005 |
+
cutoff_factor = self.config.init_cutoff_factor or 3.0
|
1006 |
+
|
1007 |
+
elif self.config.init_fn == InitFnType.full_megatron:
|
1008 |
+
attn_out_std = ff_out_std = self.config.init_std / math.sqrt(2.0 * self.config.n_layers)
|
1009 |
+
cutoff_factor = self.config.init_cutoff_factor or 3.0
|
1010 |
+
|
1011 |
+
else:
|
1012 |
+
raise NotImplementedError(self.config.init_fn)
|
1013 |
+
|
1014 |
+
init_normal(self.AfterAttention.attn_out, std=attn_out_std, init_cutoff_factor=cutoff_factor)
|
1015 |
+
init_normal(self.MLPResidual.ff_out, std=ff_out_std, init_cutoff_factor=cutoff_factor)
|
1016 |
+
|
1017 |
+
if self.config.init_fn == InitFnType.normal:
|
1018 |
+
std = self.config.init_std
|
1019 |
+
cutoff_factor = self.config.init_cutoff_factor
|
1020 |
+
elif self.config.init_fn == InitFnType.mitchell:
|
1021 |
+
std = 1 / math.sqrt(self.config.d_model)
|
1022 |
+
cutoff_factor = self.config.init_cutoff_factor or 3.0
|
1023 |
+
elif self.config.init_fn == InitFnType.full_megatron:
|
1024 |
+
std = self.config.init_std
|
1025 |
+
cutoff_factor = self.config.init_cutoff_factor or 3.0
|
1026 |
+
else:
|
1027 |
+
raise NotImplementedError(self.config.init_fn)
|
1028 |
+
|
1029 |
+
if not self.qargs.use_quantize_model:
|
1030 |
+
init_normal(self.att_proj, std, cutoff_factor)
|
1031 |
+
init_normal(self.ff_proj, std, cutoff_factor)
|
1032 |
+
else:
|
1033 |
+
init_normal(self.BeforeAttention.att_proj, std, cutoff_factor)
|
1034 |
+
init_normal(self.MLPResidual.ff_proj, std, cutoff_factor)
|
1035 |
+
|
1036 |
+
def forward(
|
1037 |
+
self,
|
1038 |
+
x: torch.Tensor,
|
1039 |
+
qx: torch.Tensor,
|
1040 |
+
sx: torch.Tensor,
|
1041 |
+
attention_bias: torch.Tensor | None = None,
|
1042 |
+
layer_past: tuple[torch.Tensor, torch.Tensor] | None = None,
|
1043 |
+
use_cache: bool = False,
|
1044 |
+
max_doc_len: int | None = None,
|
1045 |
+
cu_doc_lens: torch.Tensor | None = None,
|
1046 |
+
) -> tuple[torch.Tensor, tuple[torch.Tensor, torch.Tensor] | None]:
|
1047 |
+
# Get query, key, value projections.
|
1048 |
+
# shape:
|
1049 |
+
# - for regular attn q, k, v: (batch_size, seq_len, d_model)
|
1050 |
+
# - for multi-query attn q: (batch_size, seq_len, d_model)
|
1051 |
+
# k, v: (batch_size, seq_len, d_model // n_heads)
|
1052 |
+
# - for group query attn q: (batch_size, seq_len, d_model)
|
1053 |
+
# k, v: (batch_size, seq_len, d_model // n_kv_heads)
|
1054 |
+
|
1055 |
+
# import IPython
|
1056 |
+
# IPython.embed()
|
1057 |
+
|
1058 |
+
if self.qargs.use_quantize_model:
|
1059 |
+
# if False:
|
1060 |
+
x, qkv = self.BeforeAttention(x, qx, sx)
|
1061 |
+
else:
|
1062 |
+
# apply norm before
|
1063 |
+
h = self.attn_norm(x)
|
1064 |
+
|
1065 |
+
qkv = self.BeforeAttention.att_proj(h)
|
1066 |
+
|
1067 |
+
if self.config.clip_qkv is not None:
|
1068 |
+
qkv.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
|
1069 |
+
|
1070 |
+
q, k, v = qkv.split(self.fused_dims, dim=-1)
|
1071 |
+
|
1072 |
+
# Get attention scores.
|
1073 |
+
att, cache = self.attention(
|
1074 |
+
q,
|
1075 |
+
k,
|
1076 |
+
v,
|
1077 |
+
attention_bias,
|
1078 |
+
layer_past=layer_past,
|
1079 |
+
use_cache=use_cache,
|
1080 |
+
max_doc_len=max_doc_len,
|
1081 |
+
cu_doc_lens=cu_doc_lens,
|
1082 |
+
)
|
1083 |
+
|
1084 |
+
# import IPython
|
1085 |
+
# IPython.embed()
|
1086 |
+
if self.qargs.use_quantize_model:
|
1087 |
+
# if False:
|
1088 |
+
x, qx, sx = self.AfterAttention(x, att)
|
1089 |
+
else:
|
1090 |
+
att = self.AfterAttention.attn_out(att)
|
1091 |
+
|
1092 |
+
# Add attention scores.
|
1093 |
+
# shape: (B, T, C)
|
1094 |
+
x = x + self.dropout(att)
|
1095 |
+
|
1096 |
+
if self.qargs.use_quantize_model:
|
1097 |
+
# if False:
|
1098 |
+
x, qx, sx = self.MLPResidual(x, qx, sx)
|
1099 |
+
else:
|
1100 |
+
# Add feed-forward projection.
|
1101 |
+
# shape: (batch_size, seq_len, d_model)
|
1102 |
+
og_x = x
|
1103 |
+
|
1104 |
+
x = self.ff_norm(x)
|
1105 |
+
|
1106 |
+
x = self.MLPResidual.ff_proj(x)
|
1107 |
+
|
1108 |
+
if self._activation_checkpoint_fn is not None:
|
1109 |
+
x = self._activation_checkpoint_fn(self.act, x) # type: ignore
|
1110 |
+
else:
|
1111 |
+
x = self.act(x)
|
1112 |
+
x = self.MLPResidual.ff_out(x)
|
1113 |
+
|
1114 |
+
x = self.dropout(x)
|
1115 |
+
x = og_x + x
|
1116 |
+
|
1117 |
+
# import IPython
|
1118 |
+
# IPython.embed()
|
1119 |
+
|
1120 |
+
return x, qx, sx, cache
|
1121 |
+
|
1122 |
+
|
1123 |
+
class CoatOLMoLlamaBlock(OLMoBlock):
|
1124 |
+
"""
|
1125 |
+
This is a transformer block where the output is computed as ``MLP(LN(x + Attention(LN(x))))``
|
1126 |
+
(plus another skip connection). This block is similar to `OLMoSequentialBlock`
|
1127 |
+
but some operations have slightly different implementations to imitate the
|
1128 |
+
behavior of Llama.
|
1129 |
+
"""
|
1130 |
+
|
1131 |
+
def __init__(self, layer_id: int, config: ModelConfig, qargs: QuantActivationConfig, cache: BufferCache):
|
1132 |
+
super().__init__(layer_id, config, qargs, cache)
|
1133 |
+
# Layer norms.
|
1134 |
+
self.attn_norm = LayerNorm.build(config)
|
1135 |
+
self.ff_norm = LayerNorm.build(config)
|
1136 |
+
self.__cache = cache
|
1137 |
+
|
1138 |
+
# Attention input projection. Projects x -> (q, k, v)
|
1139 |
+
if config.multi_query_attention:
|
1140 |
+
q_proj_out_dim = config.d_model
|
1141 |
+
k_proj_out_dim = config.d_model // config.n_heads
|
1142 |
+
v_proj_out_dim = config.d_model // config.n_heads
|
1143 |
+
else:
|
1144 |
+
q_proj_out_dim = config.d_model
|
1145 |
+
k_proj_out_dim = config.d_model
|
1146 |
+
v_proj_out_dim = config.d_model
|
1147 |
+
self.q_proj = nn.Linear(config.d_model, q_proj_out_dim, bias=config.include_bias, device=config.init_device)
|
1148 |
+
self.k_proj = nn.Linear(config.d_model, k_proj_out_dim, bias=config.include_bias, device=config.init_device)
|
1149 |
+
self.v_proj = nn.Linear(config.d_model, v_proj_out_dim, bias=config.include_bias, device=config.init_device)
|
1150 |
+
|
1151 |
+
# Feed-forward input projection.
|
1152 |
+
self.ff_proj = nn.Linear(config.d_model, self.hidden_size, bias=config.include_bias, device=config.init_device)
|
1153 |
+
|
1154 |
+
def reset_parameters(self):
|
1155 |
+
super().reset_parameters()
|
1156 |
+
self.attn_norm.reset_parameters()
|
1157 |
+
self.ff_norm.reset_parameters()
|
1158 |
+
# NOTE: the standard deviation for these weights does not depend on the layer.
|
1159 |
+
|
1160 |
+
if self.config.init_fn == InitFnType.normal:
|
1161 |
+
std = self.config.init_std
|
1162 |
+
cutoff_factor = self.config.init_cutoff_factor
|
1163 |
+
elif self.config.init_fn == InitFnType.mitchell:
|
1164 |
+
std = 1 / math.sqrt(self.config.d_model)
|
1165 |
+
cutoff_factor = self.config.init_cutoff_factor or 3.0
|
1166 |
+
elif self.config.init_fn == InitFnType.full_megatron:
|
1167 |
+
std = self.config.init_std
|
1168 |
+
cutoff_factor = self.config.init_cutoff_factor or 3.0
|
1169 |
+
else:
|
1170 |
+
raise NotImplementedError(self.config.init_fn)
|
1171 |
+
|
1172 |
+
init_normal(self.q_proj, std, cutoff_factor)
|
1173 |
+
init_normal(self.k_proj, std, cutoff_factor)
|
1174 |
+
init_normal(self.v_proj, std, cutoff_factor)
|
1175 |
+
init_normal(self.ff_proj, std, cutoff_factor)
|
1176 |
+
|
1177 |
+
def _scaled_dot_product_attention(
|
1178 |
+
self,
|
1179 |
+
q: torch.Tensor,
|
1180 |
+
k: torch.Tensor,
|
1181 |
+
v: torch.Tensor,
|
1182 |
+
attn_mask: torch.Tensor | None = None,
|
1183 |
+
dropout_p: float = 0.0,
|
1184 |
+
is_causal: bool = False,
|
1185 |
+
max_doc_len: int | None = None,
|
1186 |
+
cu_doc_lens: torch.Tensor | None = None,
|
1187 |
+
) -> torch.Tensor:
|
1188 |
+
if max_doc_len is not None or cu_doc_lens is not None:
|
1189 |
+
raise NotImplementedError(f"attention document masking is not implemented for {self.__class__.__name__}")
|
1190 |
+
|
1191 |
+
attn_weights = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(q.size(-1))
|
1192 |
+
|
1193 |
+
if is_causal:
|
1194 |
+
assert attn_mask is None
|
1195 |
+
|
1196 |
+
query_len, key_len = q.shape[-2], k.shape[-2] # could be different if layer_past not None
|
1197 |
+
attn_bias = get_causal_attention_bias(self.__cache, key_len, q.device)[:, :, :query_len, :key_len]
|
1198 |
+
elif attn_mask is not None:
|
1199 |
+
attn_bias = attn_mask.to(q.dtype)
|
1200 |
+
else:
|
1201 |
+
attn_bias = torch.zeros_like(attn_weights)
|
1202 |
+
|
1203 |
+
attn_weights += attn_bias
|
1204 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1).to(q.dtype)
|
1205 |
+
attn_weights = nn.functional.dropout(attn_weights, p=dropout_p)
|
1206 |
+
return torch.matmul(attn_weights, v)
|
1207 |
+
|
1208 |
+
def forward(
|
1209 |
+
self,
|
1210 |
+
x: torch.Tensor,
|
1211 |
+
qx: torch.Tensor,
|
1212 |
+
sx: torch.Tensor,
|
1213 |
+
attention_bias: torch.Tensor | None = None,
|
1214 |
+
layer_past: tuple[torch.Tensor, torch.Tensor] | None = None,
|
1215 |
+
use_cache: bool = False,
|
1216 |
+
max_doc_len: int | None = None,
|
1217 |
+
cu_doc_lens: torch.Tensor | None = None,
|
1218 |
+
) -> tuple[torch.Tensor, tuple[torch.Tensor, torch.Tensor] | None]:
|
1219 |
+
# Get query, key, value projections.
|
1220 |
+
# shape:
|
1221 |
+
# - for regular attn q, k, v: (batch_size, seq_len, d_model)
|
1222 |
+
# - for multi-query attn q: (batch_size, seq_len, d_model)
|
1223 |
+
# k, v: (batch_size, seq_len, d_model // n_heads)
|
1224 |
+
x_normed = self.attn_norm(x)
|
1225 |
+
q = self.q_proj(x_normed)
|
1226 |
+
k = self.k_proj(x_normed)
|
1227 |
+
v = self.v_proj(x_normed)
|
1228 |
+
|
1229 |
+
if self.config.clip_qkv is not None:
|
1230 |
+
q.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
|
1231 |
+
k.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
|
1232 |
+
v.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
|
1233 |
+
|
1234 |
+
# Get attention scores.
|
1235 |
+
att, cache = self.attention(
|
1236 |
+
q,
|
1237 |
+
k,
|
1238 |
+
v,
|
1239 |
+
attention_bias,
|
1240 |
+
layer_past=layer_past,
|
1241 |
+
use_cache=use_cache,
|
1242 |
+
max_doc_len=max_doc_len,
|
1243 |
+
cu_doc_lens=cu_doc_lens,
|
1244 |
+
)
|
1245 |
+
|
1246 |
+
att = self.attn_out(att) # NOTE: we move the attn_out outside the self.attention module
|
1247 |
+
|
1248 |
+
# Add attention scores.
|
1249 |
+
# shape: (B, T, C)
|
1250 |
+
x = x + self.dropout(att)
|
1251 |
+
|
1252 |
+
# Add feed-forward projection.
|
1253 |
+
# shape: (batch_size, seq_len, d_model)
|
1254 |
+
og_x = x
|
1255 |
+
if self._activation_checkpoint_fn is not None:
|
1256 |
+
x = self._activation_checkpoint_fn(self.ff_norm, x) # type: ignore
|
1257 |
+
else:
|
1258 |
+
x = self.ff_norm(x)
|
1259 |
+
x = self.ff_proj(x)
|
1260 |
+
if self._activation_checkpoint_fn is not None:
|
1261 |
+
x = self._activation_checkpoint_fn(self.act, x) # type: ignore
|
1262 |
+
else:
|
1263 |
+
x = self.act(x)
|
1264 |
+
x = self.ff_out(x)
|
1265 |
+
x = self.dropout(x)
|
1266 |
+
x = og_x + x
|
1267 |
+
|
1268 |
+
return x, cache
|
1269 |
+
|
1270 |
+
|
1271 |
+
class CoatOLMoBlockGroup(nn.ModuleList):
|
1272 |
+
def __init__(self, config: ModelConfig, layer_offset: int, modules: Iterable[nn.Module] | None = None):
|
1273 |
+
super().__init__(modules)
|
1274 |
+
self.config = config
|
1275 |
+
self.layer_offset = layer_offset
|
1276 |
+
self.activation_checkpointing_strategy: ActivationCheckpointingStrategy | None = None
|
1277 |
+
self._activation_checkpoint_fn = activation_checkpoint_function(self.config)
|
1278 |
+
|
1279 |
+
def forward(
|
1280 |
+
self,
|
1281 |
+
x: torch.Tensor,
|
1282 |
+
attention_bias: torch.FloatTensor | None = None,
|
1283 |
+
layers_past: list[tuple[torch.Tensor, torch.Tensor]] | None = None,
|
1284 |
+
use_cache: bool = False,
|
1285 |
+
max_doc_len: int | None = None,
|
1286 |
+
cu_doc_lens: torch.Tensor | None = None,
|
1287 |
+
) -> tuple[torch.Tensor, list[tuple[torch.Tensor, torch.Tensor]] | None]:
|
1288 |
+
attn_key_values: list[tuple[torch.Tensor, torch.Tensor]] | None = [] if use_cache else None
|
1289 |
+
for block_idx, block in enumerate(self):
|
1290 |
+
layer_past = None if layers_past is None else layers_past[block_idx]
|
1291 |
+
block_idx += self.layer_offset
|
1292 |
+
if should_checkpoint_block(self.activation_checkpointing_strategy, block_idx):
|
1293 |
+
# shape: (batch_size, seq_len, d_model)
|
1294 |
+
x, cache = self._activation_checkpoint_fn( # type: ignore
|
1295 |
+
block,
|
1296 |
+
x,
|
1297 |
+
attention_bias=attention_bias,
|
1298 |
+
layer_past=layer_past,
|
1299 |
+
use_cache=use_cache,
|
1300 |
+
max_doc_len=max_doc_len,
|
1301 |
+
cu_doc_lens=cu_doc_lens,
|
1302 |
+
)
|
1303 |
+
else:
|
1304 |
+
# shape: (batch_size, seq_len, d_model)
|
1305 |
+
x, cache = block(
|
1306 |
+
x,
|
1307 |
+
attention_bias=attention_bias,
|
1308 |
+
layer_past=layer_past,
|
1309 |
+
use_cache=use_cache,
|
1310 |
+
max_doc_len=max_doc_len,
|
1311 |
+
cu_doc_lens=cu_doc_lens,
|
1312 |
+
)
|
1313 |
+
if attn_key_values is not None:
|
1314 |
+
assert cache is not None
|
1315 |
+
attn_key_values.append(cache)
|
1316 |
+
return x, attn_key_values
|
1317 |
+
|
1318 |
+
def reset_parameters(self):
|
1319 |
+
for block in self:
|
1320 |
+
block.reset_parameters()
|
1321 |
+
|
1322 |
+
def set_activation_checkpointing(
|
1323 |
+
self, strategy: ActivationCheckpointingStrategy | None, checkpoint_func: Callable | None = None
|
1324 |
+
):
|
1325 |
+
self.activation_checkpointing_strategy = strategy
|
1326 |
+
for block in self:
|
1327 |
+
block.set_activation_checkpointing(strategy, checkpoint_func=checkpoint_func)
|
1328 |
+
|
1329 |
+
|
1330 |
+
class CoatOLMo(nn.Module):
|
1331 |
+
def __init__(self, config: ModelConfig, qargs: QuantActivationConfig, init_params: bool = True):
|
1332 |
+
super().__init__()
|
1333 |
+
self.config = config
|
1334 |
+
self.qargs = qargs
|
1335 |
+
self.__cache = BufferCache()
|
1336 |
+
|
1337 |
+
# Validate config.
|
1338 |
+
if self.config.alibi and self.config.flash_attention:
|
1339 |
+
raise OLMoConfigurationError("ALiBi is currently not supported with FlashAttention")
|
1340 |
+
|
1341 |
+
if self.config.alibi and self.config.rope:
|
1342 |
+
raise OLMoConfigurationError("ALiBi and RoPE are mutually exclusive")
|
1343 |
+
|
1344 |
+
if self.config.embedding_size is not None and self.config.embedding_size != self.config.vocab_size:
|
1345 |
+
if self.config.embedding_size < self.config.vocab_size:
|
1346 |
+
raise OLMoConfigurationError("embedding size should be at least as big as vocab size")
|
1347 |
+
elif self.config.embedding_size % 128 != 0:
|
1348 |
+
import warnings
|
1349 |
+
|
1350 |
+
warnings.warn(
|
1351 |
+
"Embedding size is not a multiple of 128! This could hurt throughput performance.", UserWarning
|
1352 |
+
)
|
1353 |
+
|
1354 |
+
self.activation_checkpointing_strategy: ActivationCheckpointingStrategy | None = None
|
1355 |
+
self._activation_checkpoint_fn: Callable = activation_checkpoint_function(self.config)
|
1356 |
+
|
1357 |
+
if not (
|
1358 |
+
0 < self.config.block_group_size <= self.config.n_layers
|
1359 |
+
and self.config.n_layers % self.config.block_group_size == 0
|
1360 |
+
):
|
1361 |
+
raise OLMoConfigurationError("n layers must be divisible by block group size")
|
1362 |
+
|
1363 |
+
torch.backends.cuda.enable_flash_sdp(True)
|
1364 |
+
torch.backends.cuda.enable_mem_efficient_sdp(False) # this is super slow so make sure torch won't use it
|
1365 |
+
|
1366 |
+
self.transformer = nn.ModuleDict(
|
1367 |
+
dict(
|
1368 |
+
wte=nn.Embedding(config.embedding_size or config.vocab_size, config.d_model, device=config.init_device),
|
1369 |
+
emb_drop=Dropout(config.embedding_dropout),
|
1370 |
+
ln_f=LayerNorm.build(config),
|
1371 |
+
)
|
1372 |
+
)
|
1373 |
+
|
1374 |
+
blocks = [CoatOLMoBlock.build(i, config, qargs, self.__cache) for i in range(config.n_layers)]
|
1375 |
+
if self.config.block_group_size > 1:
|
1376 |
+
block_groups = [
|
1377 |
+
CoatOLMoBlockGroup(config, i, blocks[i : i + config.block_group_size])
|
1378 |
+
for i in range(0, config.n_layers, config.block_group_size)
|
1379 |
+
]
|
1380 |
+
self.transformer.update({"block_groups": nn.ModuleList(block_groups)})
|
1381 |
+
else:
|
1382 |
+
self.transformer.update({"blocks": nn.ModuleList(blocks)})
|
1383 |
+
|
1384 |
+
if not (self.config.alibi or self.config.rope):
|
1385 |
+
self.transformer.update(
|
1386 |
+
{"wpe": nn.Embedding(config.max_sequence_length, config.d_model, device=config.init_device)}
|
1387 |
+
)
|
1388 |
+
if not config.weight_tying:
|
1389 |
+
self.transformer.update(
|
1390 |
+
{
|
1391 |
+
"ff_out": nn.Linear(
|
1392 |
+
config.d_model,
|
1393 |
+
config.embedding_size or config.vocab_size,
|
1394 |
+
bias=config.include_bias,
|
1395 |
+
device=config.init_device,
|
1396 |
+
)
|
1397 |
+
}
|
1398 |
+
)
|
1399 |
+
if config.embedding_layer_norm:
|
1400 |
+
self.transformer.update({"emb_norm": LayerNorm.build(config)})
|
1401 |
+
|
1402 |
+
# When `init_device="meta"` FSDP will call `reset_parameters()` to initialize weights.
|
1403 |
+
if init_params and self.config.init_device != "meta":
|
1404 |
+
self.reset_parameters()
|
1405 |
+
self.__num_fwd_flops: int | None = None
|
1406 |
+
self.__num_bck_flops: int | None = None
|
1407 |
+
|
1408 |
+
# Warm up cache.
|
1409 |
+
if self.config.alibi:
|
1410 |
+
get_causal_attention_bias(self.__cache, config.max_sequence_length, _non_meta_init_device(config))
|
1411 |
+
self.get_alibi_attention_bias(config.max_sequence_length, _non_meta_init_device(config))
|
1412 |
+
|
1413 |
+
# Quantize
|
1414 |
+
self.quantize_input_before_block = Coat_quantize_bgn(qargs)
|
1415 |
+
self.quantize_output_after_block = Coat_quantize_end(qargs)
|
1416 |
+
|
1417 |
+
set_activation_checkpointing = OLMo.set_activation_checkpointing
|
1418 |
+
device = OLMo.device
|
1419 |
+
reset_parameters = OLMo.reset_parameters
|
1420 |
+
get_alibi_attention_bias = OLMo.get_alibi_attention_bias
|
1421 |
+
|
1422 |
+
def forward(
|
1423 |
+
self,
|
1424 |
+
input_ids: torch.LongTensor,
|
1425 |
+
input_embeddings: torch.FloatTensor | None = None,
|
1426 |
+
attention_mask: torch.Tensor | None = None,
|
1427 |
+
attention_bias: torch.Tensor | None = None,
|
1428 |
+
past_key_values: Sequence[tuple[torch.Tensor, torch.Tensor]] | None = None,
|
1429 |
+
use_cache: bool = False,
|
1430 |
+
last_logits_only: bool = False,
|
1431 |
+
output_hidden_states: bool | None = None,
|
1432 |
+
doc_lens: torch.Tensor | None = None,
|
1433 |
+
max_doc_lens: Sequence[int] | None = None,
|
1434 |
+
) -> OLMoOutput:
|
1435 |
+
"""
|
1436 |
+
:param input_ids: A tensor of shape `(batch_size, seq_len)`.
|
1437 |
+
:param input_embeddings: A tensor of shape `(batch_size, seq_len, d_model)` with input
|
1438 |
+
embeddings. When provided, it is treated as the output of the input embedding layer.
|
1439 |
+
:param attention_mask: A tensor of shape `(batch_size, seq_len)` that indicates
|
1440 |
+
which input IDs are masked. A `1` value in the mask means that
|
1441 |
+
the corresponding input ID should *not* be ignored. A `0` means
|
1442 |
+
that the corresponding input ID is masked.
|
1443 |
+
|
1444 |
+
This has the same meaning as the `attention_mask` in HuggingFace's `transformers`
|
1445 |
+
library.
|
1446 |
+
:param attention_bias: A tensor of shape `(batch_size, 1, seq_len, seq_len)`,
|
1447 |
+
`(1, 1, seq_len, seq_len)`, or `(seq_len, seq_len)`. This is used
|
1448 |
+
to introduce causal or other biases.
|
1449 |
+
|
1450 |
+
If the tensor is a bool or byte tensor, a `True` or `1` at `attention_bias[:, :, i, j]`
|
1451 |
+
indicates that the i-th element in the sequence is allowed to attend to the j-th
|
1452 |
+
element in the sequence.
|
1453 |
+
|
1454 |
+
If the tensor is a float tensor, it will just be added to the attention
|
1455 |
+
scores before the softmax.
|
1456 |
+
|
1457 |
+
The default is causal, which corresponds to a lower-diagonal byte matrix of ones.
|
1458 |
+
:param past_key_values: Pre-computed keys and values for each attention block.
|
1459 |
+
Can be used to speed up sequential decoding. The `input_ids` which have
|
1460 |
+
their past given to this model should not be passed as `input_ids` as they have already been computed.
|
1461 |
+
:param use_cache: If `True`, return key and value tensors for each block.
|
1462 |
+
:param last_logits_only: If `True`, only compute the logits for the last token of each sequence.
|
1463 |
+
This can speed up decoding when you only care about the next token.
|
1464 |
+
:param doc_lens: Document lengths to use in attention for intra-document masking.
|
1465 |
+
Shape `(batch_size, max_docs)`.
|
1466 |
+
:param max_doc_lens: Maximum document length for each instance in the batch.
|
1467 |
+
"""
|
1468 |
+
output_hidden_states = output_hidden_states if output_hidden_states is not None else False
|
1469 |
+
|
1470 |
+
if past_key_values:
|
1471 |
+
assert len(past_key_values) == self.config.n_layers
|
1472 |
+
|
1473 |
+
batch_size, seq_len = input_ids.size() if input_embeddings is None else input_embeddings.size()[:2]
|
1474 |
+
if past_key_values is None:
|
1475 |
+
past_length = 0
|
1476 |
+
else:
|
1477 |
+
past_length = past_key_values[0][0].size(-2)
|
1478 |
+
|
1479 |
+
max_doc_len: int | None = None
|
1480 |
+
cu_doc_lens: torch.Tensor | None = None
|
1481 |
+
if doc_lens is not None and max_doc_lens is not None:
|
1482 |
+
max_doc_len = max(max_doc_lens)
|
1483 |
+
cu_doc_lens = get_cumulative_document_lengths(doc_lens)
|
1484 |
+
|
1485 |
+
# Get embeddings of input.
|
1486 |
+
# shape: (batch_size, seq_len, d_model)
|
1487 |
+
x = self.transformer.wte(input_ids) if input_embeddings is None else input_embeddings # type: ignore
|
1488 |
+
|
1489 |
+
# Apply embedding layer norm.
|
1490 |
+
if self.config.embedding_layer_norm:
|
1491 |
+
x = self.transformer.emb_norm(x)
|
1492 |
+
|
1493 |
+
if not (self.config.alibi or self.config.rope):
|
1494 |
+
# Get positional embeddings.
|
1495 |
+
# shape: (1, seq_len)
|
1496 |
+
pos = torch.arange(past_length, past_length + seq_len, dtype=torch.long, device=x.device).unsqueeze(0)
|
1497 |
+
# shape: (1, seq_len, d_model)
|
1498 |
+
pos_emb = self.transformer.wpe(pos) # type: ignore
|
1499 |
+
x = pos_emb + x
|
1500 |
+
|
1501 |
+
# Apply dropout.
|
1502 |
+
# shape: (batch_size, seq_len, d_model)
|
1503 |
+
x = self.transformer.emb_drop(x) # type: ignore
|
1504 |
+
|
1505 |
+
# Transform the attention mask into what the blocks expect.
|
1506 |
+
if attention_mask is not None:
|
1507 |
+
# shape: (batch_size, 1, 1, seq_len)
|
1508 |
+
attention_mask = attention_mask.to(dtype=torch.float).view(batch_size, -1)[:, None, None, :]
|
1509 |
+
attention_mask = (1.0 - attention_mask) * torch.finfo(attention_mask.dtype).min
|
1510 |
+
|
1511 |
+
# Merge attention mask with attention bias.
|
1512 |
+
if (
|
1513 |
+
attention_bias is not None
|
1514 |
+
or attention_mask is not None
|
1515 |
+
or self.config.alibi
|
1516 |
+
# NOTE (epwalsh): we need to initialize the attn bias in order for attn to work properly
|
1517 |
+
# with key+value cache. Otherwise `F.scaled_dot_product_attention()` doesn't seem to compute
|
1518 |
+
# scores correctly.
|
1519 |
+
or past_key_values is not None
|
1520 |
+
):
|
1521 |
+
if attention_bias is None and self.config.alibi:
|
1522 |
+
attention_bias = get_causal_attention_bias(
|
1523 |
+
self.__cache, past_length + seq_len, x.device
|
1524 |
+
) + self.get_alibi_attention_bias(past_length + seq_len, x.device)
|
1525 |
+
elif attention_bias is None:
|
1526 |
+
attention_bias = get_causal_attention_bias(self.__cache, past_length + seq_len, x.device)
|
1527 |
+
elif attention_bias.dtype in (torch.int8, torch.bool):
|
1528 |
+
attention_bias = attention_bias.to(dtype=torch.float)
|
1529 |
+
attention_bias.masked_fill_(attention_bias == 0.0, torch.finfo(attention_bias.dtype).min)
|
1530 |
+
|
1531 |
+
# Transform to the right shape and data type.
|
1532 |
+
mask_len = seq_len
|
1533 |
+
if attention_mask is not None:
|
1534 |
+
mask_len = attention_mask.shape[-1]
|
1535 |
+
elif past_key_values is not None:
|
1536 |
+
mask_len = past_key_values[0][0].shape[-2] + seq_len
|
1537 |
+
attention_bias = attention_bias[:, :, :mask_len, :mask_len].to(dtype=torch.float)
|
1538 |
+
|
1539 |
+
# Add in the masking bias.
|
1540 |
+
if attention_mask is not None:
|
1541 |
+
attention_bias = attention_bias + attention_mask
|
1542 |
+
# Might get -infs after adding attention mask, since dtype.min + dtype.min = -inf.
|
1543 |
+
# `F.scaled_dot_product_attention()` doesn't handle -inf like you'd expect, instead
|
1544 |
+
# it can produce NaNs.
|
1545 |
+
ensure_finite_(attention_bias, check_neg_inf=True, check_pos_inf=False)
|
1546 |
+
|
1547 |
+
attn_key_values: list[tuple[torch.Tensor, torch.Tensor]] | None = [] if use_cache else None
|
1548 |
+
|
1549 |
+
# decoder layers
|
1550 |
+
all_hidden_states = []
|
1551 |
+
|
1552 |
+
# Prepare the input for COAT decoderlayer
|
1553 |
+
x, qx, sx = self.quantize_input_before_block(x)
|
1554 |
+
|
1555 |
+
# Apply blocks one-by-one.
|
1556 |
+
if self.config.block_group_size == 1:
|
1557 |
+
for block_idx, block in enumerate(self.transformer.blocks):
|
1558 |
+
if output_hidden_states:
|
1559 |
+
# add hidden states
|
1560 |
+
all_hidden_states.append(x)
|
1561 |
+
|
1562 |
+
layer_past = None if past_key_values is None else past_key_values[block_idx]
|
1563 |
+
if should_checkpoint_block(self.activation_checkpointing_strategy, block_idx):
|
1564 |
+
# shape: (batch_size, seq_len, d_model)
|
1565 |
+
x, qx, sx, cache = self._activation_checkpoint_fn(
|
1566 |
+
block,
|
1567 |
+
x,
|
1568 |
+
qx,
|
1569 |
+
sx,
|
1570 |
+
attention_bias=attention_bias,
|
1571 |
+
layer_past=layer_past,
|
1572 |
+
use_cache=use_cache,
|
1573 |
+
max_doc_len=max_doc_len,
|
1574 |
+
cu_doc_lens=cu_doc_lens,
|
1575 |
+
)
|
1576 |
+
else:
|
1577 |
+
# shape: (batch_size, seq_len, d_model)
|
1578 |
+
x, qx, sx, cache = block(
|
1579 |
+
x,
|
1580 |
+
qx,
|
1581 |
+
sx,
|
1582 |
+
attention_bias=attention_bias,
|
1583 |
+
layer_past=layer_past,
|
1584 |
+
use_cache=use_cache,
|
1585 |
+
max_doc_len=max_doc_len,
|
1586 |
+
cu_doc_lens=cu_doc_lens,
|
1587 |
+
)
|
1588 |
+
|
1589 |
+
if attn_key_values is not None:
|
1590 |
+
assert cache is not None
|
1591 |
+
attn_key_values.append(cache)
|
1592 |
+
else:
|
1593 |
+
for group_idx, block_group in enumerate(self.transformer.block_groups):
|
1594 |
+
if output_hidden_states:
|
1595 |
+
# add hidden states
|
1596 |
+
all_hidden_states.append(x)
|
1597 |
+
|
1598 |
+
layers_past = (
|
1599 |
+
None
|
1600 |
+
if past_key_values is None
|
1601 |
+
else past_key_values[
|
1602 |
+
group_idx * self.config.block_group_size : (group_idx + 1) * self.config.block_group_size
|
1603 |
+
]
|
1604 |
+
)
|
1605 |
+
x, cache = block_group(
|
1606 |
+
x,
|
1607 |
+
attention_bias=attention_bias,
|
1608 |
+
layers_past=layers_past,
|
1609 |
+
use_cache=use_cache,
|
1610 |
+
max_doc_len=max_doc_len,
|
1611 |
+
cu_doc_lens=cu_doc_lens,
|
1612 |
+
)
|
1613 |
+
if attn_key_values is not None:
|
1614 |
+
assert cache is not None
|
1615 |
+
attn_key_values.extend(cache)
|
1616 |
+
|
1617 |
+
# Summarize the output of the Decoder Layer
|
1618 |
+
x = self.quantize_output_after_block(x, qx, sx)
|
1619 |
+
|
1620 |
+
if last_logits_only:
|
1621 |
+
# shape: (batch_size, 1, d_model)
|
1622 |
+
x = x[:, -1, :].unsqueeze(1)
|
1623 |
+
|
1624 |
+
# Apply final layer norm.
|
1625 |
+
# shape: (batch_size, seq_len or 1, d_model)
|
1626 |
+
x = self.transformer.ln_f(x) # type: ignore
|
1627 |
+
if output_hidden_states:
|
1628 |
+
# add final hidden state post-final-layernorm, following HuggingFace's convention
|
1629 |
+
all_hidden_states.append(x)
|
1630 |
+
|
1631 |
+
# Get logits.
|
1632 |
+
# shape: (batch_size, seq_len or 1, vocab_size)
|
1633 |
+
if self.config.weight_tying:
|
1634 |
+
logits = F.linear(x, self.transformer.wte.weight, None) # type: ignore
|
1635 |
+
else:
|
1636 |
+
logits = self.transformer.ff_out(x) # type: ignore
|
1637 |
+
if self.config.scale_logits:
|
1638 |
+
logits.mul_(1 / math.sqrt(self.config.d_model))
|
1639 |
+
|
1640 |
+
return OLMoOutput(
|
1641 |
+
logits=logits,
|
1642 |
+
attn_key_values=attn_key_values,
|
1643 |
+
hidden_states=tuple(all_hidden_states) if output_hidden_states else None,
|
1644 |
+
)
|
1645 |
+
|
1646 |
+
def get_fsdp_wrap_policy(self, wrap_strategy: FSDPWrapStrategy | None = None):
|
1647 |
+
if wrap_strategy is None:
|
1648 |
+
return None
|
1649 |
+
|
1650 |
+
# The 'recurse' mode for the wrap function does not behave like you'd expect.
|
1651 |
+
# Even if we return False, it may still recurse because PyTorch does what it wants,
|
1652 |
+
# not what you want. This causes issues when, for example, we want to wrap 'ff_out' (a linear layer)
|
1653 |
+
# but not other linear layers within a block.
|
1654 |
+
# So we have to explicitly tell PyTorch which linear layers to wrap, and we also just
|
1655 |
+
# return True in 'recurse' mode for simplicity.
|
1656 |
+
size_based_module_to_wrap = {self.transformer.wte}
|
1657 |
+
if hasattr(self.transformer, "ff_out"):
|
1658 |
+
size_based_module_to_wrap.add(self.transformer.ff_out)
|
1659 |
+
|
1660 |
+
if wrap_strategy == FSDPWrapStrategy.by_block:
|
1661 |
+
|
1662 |
+
def fsdp_wrap_fn(module, recurse: bool = True, nonwrapped_numel: int = 0):
|
1663 |
+
del nonwrapped_numel
|
1664 |
+
wrap = isinstance(module, CoatOLMoBlock)
|
1665 |
+
if recurse:
|
1666 |
+
return True
|
1667 |
+
else:
|
1668 |
+
return wrap
|
1669 |
+
|
1670 |
+
return fsdp_wrap_fn
|
1671 |
+
elif wrap_strategy == FSDPWrapStrategy.by_block_and_size:
|
1672 |
+
|
1673 |
+
def fsdp_wrap_fn(module, recurse: bool = True, nonwrapped_numel: int = 0):
|
1674 |
+
del nonwrapped_numel
|
1675 |
+
wrap = isinstance(module, (CoatOLMoBlock,)) or module in size_based_module_to_wrap
|
1676 |
+
if recurse:
|
1677 |
+
return True
|
1678 |
+
else:
|
1679 |
+
return wrap
|
1680 |
+
|
1681 |
+
return fsdp_wrap_fn
|
1682 |
+
elif wrap_strategy == FSDPWrapStrategy.by_block_group:
|
1683 |
+
if self.config.block_group_size <= 1:
|
1684 |
+
raise OLMoConfigurationError(
|
1685 |
+
"'by_block_group' FSDP wrapping strategy requires block group size greater than 1"
|
1686 |
+
)
|
1687 |
+
|
1688 |
+
def fsdp_wrap_fn(module, recurse: bool = True, nonwrapped_numel: int = 0):
|
1689 |
+
del nonwrapped_numel
|
1690 |
+
wrap = isinstance(module, CoatOLMoBlockGroup)
|
1691 |
+
if recurse:
|
1692 |
+
return True
|
1693 |
+
else:
|
1694 |
+
return wrap
|
1695 |
+
|
1696 |
+
return fsdp_wrap_fn
|
1697 |
+
elif wrap_strategy == FSDPWrapStrategy.by_block_group_and_size:
|
1698 |
+
if self.config.block_group_size <= 1:
|
1699 |
+
raise OLMoConfigurationError(
|
1700 |
+
"'by_block_group_and_size' FSDP wrapping strategy requires block group size greater than 1"
|
1701 |
+
)
|
1702 |
+
|
1703 |
+
def fsdp_wrap_fn(module, recurse: bool = True, nonwrapped_numel: int = 0):
|
1704 |
+
del nonwrapped_numel
|
1705 |
+
wrap = isinstance(module, (CoatOLMoBlockGroup,)) or module in size_based_module_to_wrap
|
1706 |
+
if recurse:
|
1707 |
+
return True
|
1708 |
+
else:
|
1709 |
+
return wrap
|
1710 |
+
|
1711 |
+
return fsdp_wrap_fn
|
1712 |
+
elif wrap_strategy == FSDPWrapStrategy.size_based:
|
1713 |
+
from torch.distributed.fsdp.wrap import size_based_auto_wrap_policy
|
1714 |
+
|
1715 |
+
return size_based_auto_wrap_policy
|
1716 |
+
elif wrap_strategy in {
|
1717 |
+
FSDPWrapStrategy.one_in_two,
|
1718 |
+
FSDPWrapStrategy.one_in_three,
|
1719 |
+
FSDPWrapStrategy.one_in_four,
|
1720 |
+
FSDPWrapStrategy.one_in_five,
|
1721 |
+
}:
|
1722 |
+
c = {
|
1723 |
+
FSDPWrapStrategy.one_in_two: 2,
|
1724 |
+
FSDPWrapStrategy.one_in_three: 3,
|
1725 |
+
FSDPWrapStrategy.one_in_four: 4,
|
1726 |
+
FSDPWrapStrategy.one_in_five: 5,
|
1727 |
+
}[wrap_strategy]
|
1728 |
+
|
1729 |
+
def fsdp_wrap_fn(module, recurse: bool = True, nonwrapped_numel: int = 0):
|
1730 |
+
del nonwrapped_numel
|
1731 |
+
wrap = isinstance(module, CoatOLMoBlock) and module.layer_id % c == 0
|
1732 |
+
if recurse:
|
1733 |
+
return True
|
1734 |
+
else:
|
1735 |
+
return wrap
|
1736 |
+
|
1737 |
+
return fsdp_wrap_fn
|
1738 |
+
else:
|
1739 |
+
raise NotImplementedError(wrap_strategy)
|
1740 |
+
|
1741 |
+
num_params = OLMo.num_params
|
1742 |
+
|
1743 |
+
@property
|
1744 |
+
def num_fwd_flops(self):
|
1745 |
+
if self.__num_fwd_flops:
|
1746 |
+
return self.__num_fwd_flops
|
1747 |
+
|
1748 |
+
# embedding table is just a lookup in the forward pass
|
1749 |
+
n_params = self.num_params(include_embedding=False)
|
1750 |
+
# the number of parameters is approximately the number of multiply-accumulates (MAC) in the network
|
1751 |
+
# each MAC has 2 FLOPs - we multiply by 2 ie 2 * n_param
|
1752 |
+
# this gets us FLOPs / token
|
1753 |
+
params_flops_per_token = 2 * n_params
|
1754 |
+
# there are 2 FLOPS per mac; there is A=Q*K^T and out=A*V ops (ie mult by 2)
|
1755 |
+
attn_flops_per_token = self.config.n_layers * 2 * 2 * (self.config.d_model * self.config.max_sequence_length)
|
1756 |
+
self.__num_fwd_flops = params_flops_per_token + attn_flops_per_token
|
1757 |
+
return self.__num_fwd_flops
|
1758 |
+
|
1759 |
+
@property
|
1760 |
+
def num_bck_flops(self):
|
1761 |
+
if self.__num_bck_flops:
|
1762 |
+
return self.__num_bck_flops
|
1763 |
+
|
1764 |
+
n_params = self.num_params()
|
1765 |
+
params_flops_per_token = 4 * n_params
|
1766 |
+
attn_flops_per_token = self.config.n_layers * 8 * (self.config.d_model * self.config.max_sequence_length)
|
1767 |
+
self.__num_bck_flops = params_flops_per_token + attn_flops_per_token
|
1768 |
+
return self.__num_bck_flops
|
1769 |
+
|
1770 |
+
generate = OLMo.generate
|
1771 |
+
|
1772 |
+
@classmethod
|
1773 |
+
def from_checkpoint(
|
1774 |
+
cls, checkpoint_dir: PathOrStr, device: str = "cpu", checkpoint_type: CheckpointType | None = None
|
1775 |
+
) -> CoatOLMo:
|
1776 |
+
"""
|
1777 |
+
Load an OLMo model from a checkpoint.
|
1778 |
+
"""
|
1779 |
+
from olmo.util import resource_path
|
1780 |
+
|
1781 |
+
# Guess checkpoint type.
|
1782 |
+
if checkpoint_type is None:
|
1783 |
+
try:
|
1784 |
+
if resource_path(checkpoint_dir, "model.pt").is_file():
|
1785 |
+
checkpoint_type = CheckpointType.unsharded
|
1786 |
+
else:
|
1787 |
+
checkpoint_type = CheckpointType.sharded
|
1788 |
+
except FileNotFoundError:
|
1789 |
+
checkpoint_type = CheckpointType.sharded
|
1790 |
+
|
1791 |
+
# Load config.
|
1792 |
+
config_path = resource_path(checkpoint_dir, "config.yaml")
|
1793 |
+
model_config = ModelConfig.load(config_path, key="model", validate_paths=False)
|
1794 |
+
|
1795 |
+
if checkpoint_type == CheckpointType.unsharded:
|
1796 |
+
# Initialize model (always on CPU to start with so we don't run out of GPU memory).
|
1797 |
+
model_config.init_device = "cpu"
|
1798 |
+
model = CoatOLMo(model_config)
|
1799 |
+
|
1800 |
+
# Load state dict directly to target device.
|
1801 |
+
state_dict_path = resource_path(checkpoint_dir, "model.pt")
|
1802 |
+
state_dict = torch.load(state_dict_path, map_location="cpu")
|
1803 |
+
model.load_state_dict(model._make_state_dict_compatible(state_dict)[0])
|
1804 |
+
model = model.to(torch.device(device))
|
1805 |
+
else:
|
1806 |
+
train_config = TrainConfig.load(config_path)
|
1807 |
+
if train_config.sharded_checkpointer == ShardedCheckpointerType.olmo_core:
|
1808 |
+
from olmo_core.distributed.checkpoint import load_model_and_optim_state # type: ignore
|
1809 |
+
|
1810 |
+
model_config.init_device = device
|
1811 |
+
model = CoatOLMo(model_config)
|
1812 |
+
load_model_and_optim_state(checkpoint_dir, model)
|
1813 |
+
else:
|
1814 |
+
# train_config.sharded_checkpointer == ShardedCheckpointerType.torch_new
|
1815 |
+
from olmo.checkpoint import load_model_state
|
1816 |
+
|
1817 |
+
# Initialize model on target device. In this case the state dict is loaded in-place
|
1818 |
+
# so it's not necessary to start on CPU if the target device is a GPU.
|
1819 |
+
model_config.init_device = device
|
1820 |
+
model = CoatOLMo(model_config)
|
1821 |
+
|
1822 |
+
# Load state dict in place.
|
1823 |
+
load_model_state(checkpoint_dir, model)
|
1824 |
+
|
1825 |
+
return model.eval()
|
1826 |
+
|
1827 |
+
def _make_state_dict_compatible(
|
1828 |
+
self, state_dict: dict[str, torch.Tensor]
|
1829 |
+
) -> tuple[dict[str, torch.Tensor], dict[str, set[str]]]:
|
1830 |
+
"""
|
1831 |
+
Handles some cases where the state dict is valid yet may need to be transformed in order to
|
1832 |
+
be loaded.
|
1833 |
+
|
1834 |
+
This modifies the state dict in-place and also returns it, along with a mapping of original key
|
1835 |
+
names to new key names in cases where the keys were simply renamed. That mapping can be used
|
1836 |
+
to make a corresponding optimizer state dict compatible as well.
|
1837 |
+
"""
|
1838 |
+
import re
|
1839 |
+
from fnmatch import fnmatch
|
1840 |
+
|
1841 |
+
new_keys_to_og_keys: dict[str, str] = {}
|
1842 |
+
|
1843 |
+
# Remove "_fsdp_wrapped_module." prefix from all keys. We don't want this prefix when the model is
|
1844 |
+
# not wrapped in FSDP. And when the model is wrapped in FSDP, loading this state dict will still work
|
1845 |
+
# fine without the prefixes. This also simplifies the other steps below.
|
1846 |
+
for key in list(state_dict.keys()):
|
1847 |
+
state_dict[(new_key := key.replace("_fsdp_wrapped_module.", ""))] = state_dict.pop(key)
|
1848 |
+
new_keys_to_og_keys[new_key] = key
|
1849 |
+
|
1850 |
+
# For backwards compatibility prior to fixing https://github.com/allenai/LLM/issues/222
|
1851 |
+
if self.config.block_type == BlockType.sequential:
|
1852 |
+
for key in list(state_dict.keys()):
|
1853 |
+
if fnmatch(key, "transformer.*.norm.weight"):
|
1854 |
+
tensor = state_dict.pop(key)
|
1855 |
+
state_dict[(new_key := key.replace("norm.weight", "attn_norm.weight"))] = tensor
|
1856 |
+
new_keys_to_og_keys[new_key] = new_keys_to_og_keys[key]
|
1857 |
+
state_dict[(new_key := key.replace("norm.weight", "ff_norm.weight"))] = tensor.clone()
|
1858 |
+
new_keys_to_og_keys[new_key] = new_keys_to_og_keys[key]
|
1859 |
+
del new_keys_to_og_keys[key]
|
1860 |
+
elif fnmatch(key, "transformer.*.norm.bias"):
|
1861 |
+
tensor = state_dict.pop(key)
|
1862 |
+
state_dict[(new_key := key.replace("norm.bias", "attn_norm.bias"))] = tensor
|
1863 |
+
new_keys_to_og_keys[new_key] = new_keys_to_og_keys[key]
|
1864 |
+
state_dict[(new_key := key.replace("norm.bias", "ff_norm.bias"))] = tensor.clone()
|
1865 |
+
new_keys_to_og_keys[new_key] = new_keys_to_og_keys[key]
|
1866 |
+
del new_keys_to_og_keys[key]
|
1867 |
+
|
1868 |
+
# Realquantization will change the place the linear layers happen
|
1869 |
+
if self.qargs.use_quantize_model == "coat_real":
|
1870 |
+
for key in list(state_dict.keys()):
|
1871 |
+
if fnmatch(key, "transformer.blocks.*.att_proj.weight") and "BeforeAttention" not in key:
|
1872 |
+
tensor = state_dict.pop(key)
|
1873 |
+
state_dict[(new_key := key.replace("att_proj.weight", "BeforeAttention.att_proj.weight"))] = tensor
|
1874 |
+
new_keys_to_og_keys[new_key] = new_keys_to_og_keys[key]
|
1875 |
+
del new_keys_to_og_keys[key]
|
1876 |
+
elif fnmatch(key, "transformer.blocks.*.attn_out.weight") and "AfterAttention" not in key:
|
1877 |
+
tensor = state_dict.pop(key)
|
1878 |
+
state_dict[(new_key := key.replace("attn_out.weight", "AfterAttention.attn_out.weight"))] = tensor
|
1879 |
+
new_keys_to_og_keys[new_key] = new_keys_to_og_keys[key]
|
1880 |
+
del new_keys_to_og_keys[key]
|
1881 |
+
elif fnmatch(key, "transformer.blocks.*.ff_proj.weight") and "MLPResidual" not in key:
|
1882 |
+
tensor = state_dict.pop(key)
|
1883 |
+
state_dict[(new_key := key.replace("ff_proj.weight", "MLPResidual.ff_proj.weight"))] = tensor
|
1884 |
+
new_keys_to_og_keys[new_key] = new_keys_to_og_keys[key]
|
1885 |
+
del new_keys_to_og_keys[key]
|
1886 |
+
elif fnmatch(key, "transformer.blocks.*.ff_out.weight") and "MLPResidual" not in key:
|
1887 |
+
tensor = state_dict.pop(key)
|
1888 |
+
state_dict[(new_key := key.replace("ff_out.weight", "MLPResidual.ff_out.weight"))] = tensor
|
1889 |
+
new_keys_to_og_keys[new_key] = new_keys_to_og_keys[key]
|
1890 |
+
del new_keys_to_og_keys[key]
|
1891 |
+
|
1892 |
+
# For loading a state dict that was saved with a different `block_group_size`.
|
1893 |
+
if "transformer.block_groups.0.0.attn_out.weight" in state_dict.keys():
|
1894 |
+
state_dict_block_group_size = len(
|
1895 |
+
[k for k in state_dict.keys() if fnmatch(k, "transformer.block_groups.0.*.attn_out.weight")]
|
1896 |
+
)
|
1897 |
+
else:
|
1898 |
+
state_dict_block_group_size = 1
|
1899 |
+
if self.config.block_group_size != state_dict_block_group_size:
|
1900 |
+
log.info(
|
1901 |
+
f"Regrouping state dict blocks from group size {state_dict_block_group_size} to "
|
1902 |
+
f"group size {self.config.block_group_size}"
|
1903 |
+
)
|
1904 |
+
# For simplicity we're first going to flatten out the block groups in the state dict (if necessary)
|
1905 |
+
# and then (re-)group them into the right block sizes.
|
1906 |
+
if state_dict_block_group_size > 1:
|
1907 |
+
for key in list(state_dict.keys()):
|
1908 |
+
if (m := re.match(r"transformer.block_groups\.(\d+)\.(\d+)\..*", key)) is not None:
|
1909 |
+
group_idx, group_block_idx = int(m.group(1)), int(m.group(2))
|
1910 |
+
block_idx = (group_idx * state_dict_block_group_size) + group_block_idx
|
1911 |
+
state_dict[
|
1912 |
+
(
|
1913 |
+
new_key := key.replace(
|
1914 |
+
f"block_groups.{group_idx}.{group_block_idx}.", f"blocks.{block_idx}."
|
1915 |
+
)
|
1916 |
+
)
|
1917 |
+
] = state_dict.pop(key)
|
1918 |
+
new_keys_to_og_keys[new_key] = new_keys_to_og_keys.pop(key)
|
1919 |
+
|
1920 |
+
if self.config.block_group_size > 1:
|
1921 |
+
# Group the state dict blocks into the right block size.
|
1922 |
+
for key in list(state_dict.keys()):
|
1923 |
+
if (m := re.match(r"transformer.blocks\.(\d+)\..*", key)) is not None:
|
1924 |
+
block_idx = int(m.group(1))
|
1925 |
+
group_idx, group_block_idx = (
|
1926 |
+
block_idx // self.config.block_group_size,
|
1927 |
+
block_idx % self.config.block_group_size,
|
1928 |
+
)
|
1929 |
+
state_dict[
|
1930 |
+
(
|
1931 |
+
new_key := key.replace(
|
1932 |
+
f"blocks.{block_idx}.", f"block_groups.{group_idx}.{group_block_idx}."
|
1933 |
+
)
|
1934 |
+
)
|
1935 |
+
] = state_dict.pop(key)
|
1936 |
+
new_keys_to_og_keys[new_key] = new_keys_to_og_keys.pop(key)
|
1937 |
+
|
1938 |
+
og_keys_to_new: dict[str, set[str]] = defaultdict(set)
|
1939 |
+
for new_key, og_key in new_keys_to_og_keys.items():
|
1940 |
+
og_keys_to_new[og_key].add(new_key)
|
1941 |
+
|
1942 |
+
return state_dict, og_keys_to_new
|
llava/model/coat/activation/real_quantization/__init__.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 NVIDIA CORPORATION.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
|
5 |
+
# LICENSE is in incl_licenses directory.
|
6 |
+
|
7 |
+
# Activation
|
8 |
+
# Utils
|
9 |
+
from ._dequantize import fp8_dequantize
|
10 |
+
from ._division import fp8_division
|
11 |
+
from ._division_transpose import fp8_division_transpose
|
12 |
+
from ._quantize import fp8_quantize
|
13 |
+
from ._quantize_pertensor import fp8_quantize_pertensor
|
14 |
+
from ._quantize_pertensor_transpose import fp8_quantize_pertensor_transpose
|
15 |
+
from ._transpose import fp8_transpose
|
16 |
+
from .add_bwd import fp8_add_Ifp_Ifp_Ofp_Opt
|
17 |
+
from .add_fwd import fp8_add_Ifp_Ifp_Ofp_Og16
|
18 |
+
|
19 |
+
# Normalization
|
20 |
+
from .func_layernorm_noparam import fp8_layernorm_noparam_backward, fp8_layernorm_noparam_forward
|
21 |
+
from .func_quantize import Coat_quantize_bgn, Coat_quantize_end
|
22 |
+
from .func_rmsnorm import fp8_rmsnorm_backward, fp8_rmsnorm_forward
|
23 |
+
from .gelu_bwd import fp8_gelu_backward
|
24 |
+
from .gelu_fwd import fp8_gelu_forward
|
25 |
+
|
26 |
+
# linear and add
|
27 |
+
from .linear import fp8_linear_backward, fp8_linear_forward
|
28 |
+
from .mul_bwd import fp8_mul_backward
|
29 |
+
from .mul_fwd import fp8_mul_forward
|
30 |
+
from .silu_bwd import fp8_silu_backward
|
31 |
+
from .silu_fwd import fp8_silu_forward
|
llava/model/coat/activation/real_quantization/_dequantize.py
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 NVIDIA CORPORATION.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
|
5 |
+
# LICENSE is in incl_licenses directory.
|
6 |
+
|
7 |
+
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
#
|
21 |
+
# SPDX-License-Identifier: Apache-2.0
|
22 |
+
|
23 |
+
import torch
|
24 |
+
|
25 |
+
# 4 block
|
26 |
+
import triton
|
27 |
+
import triton.language as tl
|
28 |
+
from triton.language.extra.cuda import libdevice
|
29 |
+
|
30 |
+
from .common import FP8_MAX_VALUE, SCALE_MIN_THRES, get_configs_io_block
|
31 |
+
|
32 |
+
"""Quantize Operator"""
|
33 |
+
"""Input uses 1 * 16 group quantization"""
|
34 |
+
"""Output uses 1 * 16 group quantization"""
|
35 |
+
"""The input can be 2D or 3D, but the calculation is performed in 2D"""
|
36 |
+
|
37 |
+
|
38 |
+
@triton.autotune(
|
39 |
+
configs=[] + get_configs_io_block(),
|
40 |
+
key=[
|
41 |
+
"N",
|
42 |
+
],
|
43 |
+
)
|
44 |
+
@triton.heuristics(
|
45 |
+
{
|
46 |
+
"BLOCK_SN": lambda args: args["BLOCK_N"] // args["QB"],
|
47 |
+
}
|
48 |
+
)
|
49 |
+
@triton.jit
|
50 |
+
def _fp8_dequantize_kernel(
|
51 |
+
output_ptr, # output
|
52 |
+
input_ptr,
|
53 |
+
input_scale_ptr, # input
|
54 |
+
M,
|
55 |
+
N,
|
56 |
+
SN,
|
57 |
+
QB: tl.constexpr, # shape
|
58 |
+
input_stride_0,
|
59 |
+
input_stride_1, # input stride
|
60 |
+
s_input_stride_0,
|
61 |
+
s_input_stride_1, # scale of output stride
|
62 |
+
output_stride_0,
|
63 |
+
output_stride_1, # output stride
|
64 |
+
BLOCK_M: tl.constexpr,
|
65 |
+
BLOCK_N: tl.constexpr,
|
66 |
+
BLOCK_SN: tl.constexpr,
|
67 |
+
): # CUDA block size
|
68 |
+
|
69 |
+
# Block PID
|
70 |
+
pid = tl.program_id(0)
|
71 |
+
NUM_BLOCK_N = tl.cdiv(N, BLOCK_N)
|
72 |
+
pid_dim0 = pid // NUM_BLOCK_N
|
73 |
+
pid_dim1 = pid % NUM_BLOCK_N
|
74 |
+
|
75 |
+
# pointers
|
76 |
+
input_block_ptr = tl.make_block_ptr(
|
77 |
+
base=input_ptr,
|
78 |
+
shape=(M, N),
|
79 |
+
strides=(input_stride_0, input_stride_1),
|
80 |
+
offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
|
81 |
+
block_shape=(BLOCK_M, BLOCK_N),
|
82 |
+
order=(1, 0),
|
83 |
+
)
|
84 |
+
# input ptr
|
85 |
+
scale_input_ptr = tl.make_block_ptr(
|
86 |
+
base=input_scale_ptr,
|
87 |
+
shape=(M, SN),
|
88 |
+
strides=(s_input_stride_0, s_input_stride_1),
|
89 |
+
offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_SN),
|
90 |
+
block_shape=(BLOCK_M, BLOCK_SN),
|
91 |
+
order=(1, 0),
|
92 |
+
)
|
93 |
+
|
94 |
+
input = tl.load(input_block_ptr)
|
95 |
+
scale_input = tl.load(scale_input_ptr)
|
96 |
+
|
97 |
+
input = input.to(tl.float32)
|
98 |
+
scale_input = scale_input.to(tl.float32)
|
99 |
+
|
100 |
+
# Dequantize and gelu calculation
|
101 |
+
scale_input = tl.reshape(scale_input, (BLOCK_M, BLOCK_SN, 1))
|
102 |
+
input = tl.reshape(input, (BLOCK_M, BLOCK_SN, QB))
|
103 |
+
output = input * scale_input
|
104 |
+
|
105 |
+
output = tl.reshape(output, (BLOCK_M, BLOCK_N))
|
106 |
+
output = output.to(output_ptr.dtype.element_ty)
|
107 |
+
|
108 |
+
# debug
|
109 |
+
# gelu_output = input
|
110 |
+
# scale_output = scale_input
|
111 |
+
|
112 |
+
# pointers
|
113 |
+
output_block_ptr = tl.make_block_ptr(
|
114 |
+
base=output_ptr,
|
115 |
+
shape=(M, N),
|
116 |
+
strides=(output_stride_0, output_stride_1),
|
117 |
+
offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
|
118 |
+
block_shape=(BLOCK_M, BLOCK_N),
|
119 |
+
order=(1, 0),
|
120 |
+
)
|
121 |
+
|
122 |
+
tl.store(output_block_ptr, output, boundary_check=(0, 1))
|
123 |
+
|
124 |
+
|
125 |
+
def fp8_dequantize(x, s_x, QB):
|
126 |
+
# Change batched 3D input to 2D
|
127 |
+
batched = False
|
128 |
+
if len(x.shape) == 3:
|
129 |
+
batched = True
|
130 |
+
BS = x.shape[0]
|
131 |
+
x = x.reshape(-1, x.shape[-1])
|
132 |
+
s_x = s_x.reshape(-1, s_x.shape[-1])
|
133 |
+
|
134 |
+
# defining the input and output tensor
|
135 |
+
M, N = x.shape
|
136 |
+
SN = N // QB
|
137 |
+
|
138 |
+
y = torch.empty_like(x, dtype=torch.bfloat16)
|
139 |
+
|
140 |
+
grid = lambda META: (triton.cdiv(M, META["BLOCK_M"]) * triton.cdiv(N, META["BLOCK_N"]),)
|
141 |
+
|
142 |
+
_fp8_dequantize_kernel[grid](
|
143 |
+
y,
|
144 |
+
x,
|
145 |
+
s_x,
|
146 |
+
M,
|
147 |
+
N,
|
148 |
+
SN,
|
149 |
+
QB,
|
150 |
+
x.stride(0),
|
151 |
+
x.stride(1),
|
152 |
+
s_x.stride(0),
|
153 |
+
s_x.stride(1),
|
154 |
+
y.stride(0),
|
155 |
+
y.stride(1),
|
156 |
+
)
|
157 |
+
|
158 |
+
# Recover 2D to 3D
|
159 |
+
if batched:
|
160 |
+
y = y.reshape(BS, -1, y.shape[-1])
|
161 |
+
|
162 |
+
return y
|
llava/model/coat/activation/real_quantization/_division.py
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 NVIDIA CORPORATION.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
|
5 |
+
# LICENSE is in incl_licenses directory.
|
6 |
+
|
7 |
+
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
#
|
21 |
+
# SPDX-License-Identifier: Apache-2.0
|
22 |
+
|
23 |
+
import torch
|
24 |
+
|
25 |
+
# 4 block
|
26 |
+
import triton
|
27 |
+
import triton.language as tl
|
28 |
+
from triton.language.extra.cuda import libdevice
|
29 |
+
|
30 |
+
from .common import FP8_MAX_VALUE, SCALE_MIN_THRES, convert_fp8_to_embit, convert_str_to_fp8, get_configs_io_block
|
31 |
+
|
32 |
+
"""Quantize and Transpose Operator"""
|
33 |
+
"""Input uses 1 * 16 group quantization"""
|
34 |
+
"""Output uses 1 * 16 group quantization"""
|
35 |
+
"""The input can be 2D or 3D, but the calculation is performed in 2D"""
|
36 |
+
|
37 |
+
|
38 |
+
@triton.autotune(
|
39 |
+
configs=[] + get_configs_io_block(),
|
40 |
+
key=[
|
41 |
+
"N",
|
42 |
+
],
|
43 |
+
)
|
44 |
+
@triton.heuristics(
|
45 |
+
{
|
46 |
+
"BLOCK_SN": lambda args: args["BLOCK_N"] // args["QB"],
|
47 |
+
}
|
48 |
+
)
|
49 |
+
@triton.jit
|
50 |
+
def _fp8_division_kernel(
|
51 |
+
output_ptr, # output
|
52 |
+
input_ptr,
|
53 |
+
input_scale_ptr, # input
|
54 |
+
noise_ptr, # noise for stochastic
|
55 |
+
M,
|
56 |
+
N,
|
57 |
+
SN,
|
58 |
+
QB: tl.constexpr,
|
59 |
+
fp8_max,
|
60 |
+
e_bit: tl.constexpr,
|
61 |
+
m_bit: tl.constexpr, # shape
|
62 |
+
input_stride_0,
|
63 |
+
input_stride_1, # input stride
|
64 |
+
output_stride_0,
|
65 |
+
output_stride_1, # output stride
|
66 |
+
SCALE_MIN_THRES: tl.constexpr, # We do not use it since we believe SCALE_MIN_THRES should be used in previous kernel when calculating scaling factor
|
67 |
+
STOCHASTIC: tl.constexpr,
|
68 |
+
BLOCK_M: tl.constexpr,
|
69 |
+
BLOCK_N: tl.constexpr,
|
70 |
+
BLOCK_SN: tl.constexpr,
|
71 |
+
): # CUDA block size
|
72 |
+
|
73 |
+
# Block PID
|
74 |
+
pid = tl.program_id(0)
|
75 |
+
NUM_BLOCK_N = tl.cdiv(N, BLOCK_N)
|
76 |
+
pid_dim0 = pid // NUM_BLOCK_N
|
77 |
+
pid_dim1 = pid % NUM_BLOCK_N
|
78 |
+
|
79 |
+
# pointers
|
80 |
+
input_block_ptr = tl.make_block_ptr(
|
81 |
+
base=input_ptr,
|
82 |
+
shape=(M, N),
|
83 |
+
strides=(input_stride_0, input_stride_1),
|
84 |
+
offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
|
85 |
+
block_shape=(BLOCK_M, BLOCK_N),
|
86 |
+
order=(1, 0),
|
87 |
+
)
|
88 |
+
|
89 |
+
input = tl.load(input_block_ptr)
|
90 |
+
input = input.to(tl.float32)
|
91 |
+
scale_output = tl.load(input_scale_ptr)
|
92 |
+
scale_output = scale_output.to(tl.float32)
|
93 |
+
|
94 |
+
output = tl.reshape(input, (BLOCK_M, BLOCK_SN, QB))
|
95 |
+
|
96 |
+
# Quantize Scale calculation
|
97 |
+
# Quantize
|
98 |
+
output = tl.fdiv(output, scale_output)
|
99 |
+
output = tl.reshape(output, (BLOCK_M, BLOCK_N))
|
100 |
+
|
101 |
+
if STOCHASTIC:
|
102 |
+
# noise_block_ptr = tl.make_block_ptr(
|
103 |
+
# base=noise_ptr,
|
104 |
+
# shape=(M, N),
|
105 |
+
# strides=(input_stride_0, input_stride_1),
|
106 |
+
# offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
|
107 |
+
# block_shape=(BLOCK_M, BLOCK_N),
|
108 |
+
# order=(1, 0)
|
109 |
+
# )
|
110 |
+
# noise = tl.load(noise_block_ptr)
|
111 |
+
|
112 |
+
offs_m = pid_dim0 * BLOCK_M + tl.arange(0, BLOCK_M)
|
113 |
+
offs_n = pid_dim1 * BLOCK_N + tl.arange(0, BLOCK_N)
|
114 |
+
noise_offset = offs_m[:, None] * input_stride_0 + offs_n[None, :] * input_stride_1
|
115 |
+
noise = tl.rand(0, noise_offset)
|
116 |
+
|
117 |
+
output = _stochastic_rounding(output, noise, e_bit, m_bit)
|
118 |
+
|
119 |
+
output = output.to(output_ptr.type.element_ty)
|
120 |
+
|
121 |
+
# pointers
|
122 |
+
output_block_ptr = tl.make_block_ptr(
|
123 |
+
base=output_ptr,
|
124 |
+
shape=(M, N),
|
125 |
+
strides=(output_stride_0, output_stride_1),
|
126 |
+
offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
|
127 |
+
block_shape=(BLOCK_M, BLOCK_N),
|
128 |
+
order=(1, 0),
|
129 |
+
)
|
130 |
+
|
131 |
+
tl.store(output_block_ptr, output, boundary_check=(0, 1))
|
132 |
+
|
133 |
+
|
134 |
+
@triton.jit
|
135 |
+
def _stochastic_rounding(output, noise, e_bit: tl.constexpr, m_bit: tl.constexpr):
|
136 |
+
subnormal_min = tl.exp2(2 - tl.exp2(e_bit - 1) - m_bit)
|
137 |
+
# subnormal_should_be = tl.exp2(2 - tl.exp2(e_bit) - 1)
|
138 |
+
|
139 |
+
output_int32 = tl.cast(output, tl.int32, bitcast=True)
|
140 |
+
output_int32 = output_int32 & 0x7F800000
|
141 |
+
output_float32 = tl.cast(output_int32, tl.float32, bitcast=True)
|
142 |
+
output_exp = tl.maximum(output_float32, subnormal_min)
|
143 |
+
|
144 |
+
noise_rescale = tl.exp2(m_bit) + (output_exp == subnormal_min) * (
|
145 |
+
1 - tl.exp2(m_bit)
|
146 |
+
) # 2^m_bit for normal, 1 for subnormal
|
147 |
+
|
148 |
+
noise = output_exp * noise / noise_rescale
|
149 |
+
sign = 1 - 2 * libdevice.signbit(output)
|
150 |
+
output = tl.abs(output) + noise
|
151 |
+
|
152 |
+
minmax_ratio = 2 + (output_exp == subnormal_min) * (tl.exp2(m_bit) - 2) # 2 for normal, and 2^M for subnormal
|
153 |
+
output = sign * tl.clamp(output, min=output_exp, max=minmax_ratio * output_exp)
|
154 |
+
|
155 |
+
return output
|
156 |
+
|
157 |
+
|
158 |
+
def fp8_division(x, QB, fp8type, s_y=None, stochastic=False):
|
159 |
+
# Change batched 3D input to 2D
|
160 |
+
batched = False
|
161 |
+
if len(x.shape) == 3:
|
162 |
+
batched = True
|
163 |
+
BS = x.shape[0]
|
164 |
+
x = x.reshape(-1, x.shape[-1])
|
165 |
+
|
166 |
+
if stochastic:
|
167 |
+
# noise = torch.zeros_like(x, dtype=torch.float32).uniform_(-0.5, 0.5)
|
168 |
+
noise = None
|
169 |
+
else:
|
170 |
+
noise = None
|
171 |
+
|
172 |
+
# defining the input and output tensor
|
173 |
+
M, N = x.shape
|
174 |
+
SN = N // QB
|
175 |
+
|
176 |
+
if isinstance(fp8type, str):
|
177 |
+
fp8type = convert_str_to_fp8[fp8type]
|
178 |
+
|
179 |
+
y = torch.empty_like(x, dtype=fp8type)
|
180 |
+
fp8MaxValue = FP8_MAX_VALUE[fp8type] # E4M3 and E5M2 have different max value
|
181 |
+
e_bit, m_bit = convert_fp8_to_embit[fp8type]
|
182 |
+
|
183 |
+
if s_y is None:
|
184 |
+
s_y = (x.abs().max() + SCALE_MIN_THRES) / fp8MaxValue
|
185 |
+
|
186 |
+
grid = lambda META: (triton.cdiv(M, META["BLOCK_M"]) * triton.cdiv(N, META["BLOCK_N"]),)
|
187 |
+
|
188 |
+
_fp8_division_kernel[grid](
|
189 |
+
y,
|
190 |
+
x,
|
191 |
+
s_y,
|
192 |
+
noise,
|
193 |
+
M,
|
194 |
+
N,
|
195 |
+
SN,
|
196 |
+
QB,
|
197 |
+
fp8MaxValue,
|
198 |
+
e_bit,
|
199 |
+
m_bit,
|
200 |
+
x.stride(0),
|
201 |
+
x.stride(1),
|
202 |
+
y.stride(0),
|
203 |
+
y.stride(1),
|
204 |
+
SCALE_MIN_THRES=SCALE_MIN_THRES,
|
205 |
+
STOCHASTIC=stochastic,
|
206 |
+
)
|
207 |
+
|
208 |
+
# Recover 2D to 3D
|
209 |
+
if batched:
|
210 |
+
y = y.reshape(BS, -1, y.shape[-1])
|
211 |
+
|
212 |
+
return y, s_y # y_t is expected to be 2D tensor
|
llava/model/coat/activation/real_quantization/_division_transpose.py
ADDED
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 NVIDIA CORPORATION.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
|
5 |
+
# LICENSE is in incl_licenses directory.
|
6 |
+
|
7 |
+
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
#
|
21 |
+
# SPDX-License-Identifier: Apache-2.0
|
22 |
+
|
23 |
+
import torch
|
24 |
+
|
25 |
+
# 4 block
|
26 |
+
import triton
|
27 |
+
import triton.language as tl
|
28 |
+
from triton.language.extra.cuda import libdevice
|
29 |
+
|
30 |
+
from ._division import _stochastic_rounding
|
31 |
+
from .common import FP8_MAX_VALUE, SCALE_MIN_THRES, convert_fp8_to_embit, convert_str_to_fp8, get_configs_io_block
|
32 |
+
|
33 |
+
"""Division and Transpose Operator"""
|
34 |
+
"""Input uses full-precision/BF16"""
|
35 |
+
"""Output uses per tensor quantization"""
|
36 |
+
"""Output_t uses per tensor quantization and is transposed, but is flattened to 2D"""
|
37 |
+
"""The input can be 2D or 3D, but the calculation is performed in 2D"""
|
38 |
+
|
39 |
+
|
40 |
+
@triton.autotune(
|
41 |
+
configs=[] + get_configs_io_block(), # triton.Config({'BLOCK_M': 1, 'BLOCK_N': 16}, num_stages=4, num_warps=1,)
|
42 |
+
# configs=[triton.Config({'BLOCK_M': 1, 'BLOCK_N': 16}, num_stages=4, num_warps=1,)], #
|
43 |
+
key=[
|
44 |
+
"N",
|
45 |
+
],
|
46 |
+
)
|
47 |
+
@triton.heuristics(
|
48 |
+
{
|
49 |
+
"BLOCK_SN": lambda args: args["BLOCK_N"] // args["QB"],
|
50 |
+
}
|
51 |
+
)
|
52 |
+
@triton.jit
|
53 |
+
def _fp8_division_transpose_kernel(
|
54 |
+
output_ptr,
|
55 |
+
output_t_ptr, # output
|
56 |
+
input_ptr,
|
57 |
+
input_scale_ptr, # input
|
58 |
+
noise_ptr, # noise for stochastic
|
59 |
+
M,
|
60 |
+
N,
|
61 |
+
SN,
|
62 |
+
QB: tl.constexpr,
|
63 |
+
fp8_max,
|
64 |
+
e_bit,
|
65 |
+
m_bit, # shape
|
66 |
+
input_stride_0,
|
67 |
+
input_stride_1, # input stride
|
68 |
+
output_stride_0,
|
69 |
+
output_stride_1, # output stride
|
70 |
+
output_t_stride_0,
|
71 |
+
output_t_stride_1, # output stride
|
72 |
+
SCALE_MIN_THRES: tl.constexpr, # We do not use it since we believe SCALE_MIN_THRES should be used in previous kernel when calculating scaling factor
|
73 |
+
STOCHASTIC: tl.constexpr,
|
74 |
+
ONLY_TRANSPOSED: tl.constexpr,
|
75 |
+
BLOCK_M: tl.constexpr,
|
76 |
+
BLOCK_N: tl.constexpr,
|
77 |
+
BLOCK_SN: tl.constexpr,
|
78 |
+
): # CUDA block size
|
79 |
+
|
80 |
+
# Block PID
|
81 |
+
pid = tl.program_id(0)
|
82 |
+
NUM_BLOCK_N = tl.cdiv(N, BLOCK_N)
|
83 |
+
pid_dim0 = pid // NUM_BLOCK_N
|
84 |
+
pid_dim1 = pid % NUM_BLOCK_N
|
85 |
+
|
86 |
+
# pointers
|
87 |
+
input_block_ptr = tl.make_block_ptr(
|
88 |
+
base=input_ptr,
|
89 |
+
shape=(M, N),
|
90 |
+
strides=(input_stride_0, input_stride_1),
|
91 |
+
offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
|
92 |
+
block_shape=(BLOCK_M, BLOCK_N),
|
93 |
+
order=(1, 0),
|
94 |
+
)
|
95 |
+
|
96 |
+
input = tl.load(input_block_ptr)
|
97 |
+
input = input.to(tl.float32)
|
98 |
+
scale_output = tl.load(input_scale_ptr)
|
99 |
+
scale_output = scale_output.to(tl.float32)
|
100 |
+
|
101 |
+
output = tl.reshape(input, (BLOCK_M, BLOCK_SN, QB))
|
102 |
+
|
103 |
+
# Quantize Scale calculation
|
104 |
+
# Quantize
|
105 |
+
output = tl.fdiv(output, scale_output)
|
106 |
+
output = tl.reshape(output, (BLOCK_M, BLOCK_N))
|
107 |
+
|
108 |
+
if STOCHASTIC:
|
109 |
+
# noise_block_ptr = tl.make_block_ptr(
|
110 |
+
# base=noise_ptr,
|
111 |
+
# shape=(M, N),
|
112 |
+
# strides=(input_stride_0, input_stride_1),
|
113 |
+
# offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
|
114 |
+
# block_shape=(BLOCK_M, BLOCK_N),
|
115 |
+
# order=(1, 0)
|
116 |
+
# )
|
117 |
+
# noise = tl.load(noise_block_ptr)
|
118 |
+
|
119 |
+
offs_m = pid_dim0 * BLOCK_M + tl.arange(0, BLOCK_M)
|
120 |
+
offs_n = pid_dim1 * BLOCK_N + tl.arange(0, BLOCK_N)
|
121 |
+
noise_offset = offs_m[:, None] * input_stride_0 + offs_n[None, :] * input_stride_1
|
122 |
+
noise = tl.rand(0, noise_offset)
|
123 |
+
|
124 |
+
output = _stochastic_rounding(output, noise, e_bit, m_bit)
|
125 |
+
|
126 |
+
output = output.to(output_ptr.type.element_ty)
|
127 |
+
# tl.device_print("3: ", output)
|
128 |
+
output_t = tl.trans(output)
|
129 |
+
|
130 |
+
# pointers
|
131 |
+
output_block_ptr = tl.make_block_ptr(
|
132 |
+
base=output_ptr,
|
133 |
+
shape=(M, N),
|
134 |
+
strides=(output_stride_0, output_stride_1),
|
135 |
+
offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
|
136 |
+
block_shape=(BLOCK_M, BLOCK_N),
|
137 |
+
order=(1, 0),
|
138 |
+
)
|
139 |
+
output_t_block_ptr = tl.make_block_ptr(
|
140 |
+
base=output_t_ptr,
|
141 |
+
shape=(N, M),
|
142 |
+
strides=(output_t_stride_0, output_t_stride_1),
|
143 |
+
offsets=(pid_dim1 * BLOCK_N, pid_dim0 * BLOCK_M),
|
144 |
+
block_shape=(BLOCK_N, BLOCK_M),
|
145 |
+
order=(1, 0),
|
146 |
+
)
|
147 |
+
if not ONLY_TRANSPOSED:
|
148 |
+
tl.store(output_block_ptr, output, boundary_check=(0, 1))
|
149 |
+
tl.store(output_t_block_ptr, output_t, boundary_check=(0, 1))
|
150 |
+
|
151 |
+
|
152 |
+
def fp8_division_transpose(x, QB, fp8type, s_y=None, stochastic=False, only_transposed=False):
|
153 |
+
# Change batched 3D input to 2D
|
154 |
+
batched = False
|
155 |
+
if len(x.shape) == 3:
|
156 |
+
batched = True
|
157 |
+
BS = x.shape[0]
|
158 |
+
x = x.reshape(-1, x.shape[-1])
|
159 |
+
|
160 |
+
if stochastic:
|
161 |
+
# noise = torch.empty_like(x, dtype=torch.float32).uniform_(-0.5, 0.5)
|
162 |
+
noise = None
|
163 |
+
else:
|
164 |
+
noise = None
|
165 |
+
|
166 |
+
# defining the input and output tensor
|
167 |
+
M, N = x.shape
|
168 |
+
SN = N // QB
|
169 |
+
|
170 |
+
if isinstance(fp8type, str):
|
171 |
+
fp8type = convert_str_to_fp8[fp8type]
|
172 |
+
|
173 |
+
y = torch.empty_like(x, dtype=fp8type)
|
174 |
+
y_t = torch.empty((N, M), dtype=fp8type, device=x.device)
|
175 |
+
fp8MaxValue = FP8_MAX_VALUE[fp8type] # E4M3 and E5M2 have different max value
|
176 |
+
e_bit, m_bit = convert_fp8_to_embit[fp8type]
|
177 |
+
|
178 |
+
if s_y is None:
|
179 |
+
# print("Warning: do not specify s_y in fp8_division_transpose")
|
180 |
+
s_y = (x.abs().max() + SCALE_MIN_THRES) / fp8MaxValue
|
181 |
+
|
182 |
+
grid = lambda META: (triton.cdiv(M, META["BLOCK_M"]) * triton.cdiv(N, META["BLOCK_N"]),)
|
183 |
+
|
184 |
+
_fp8_division_transpose_kernel[grid](
|
185 |
+
y,
|
186 |
+
y_t,
|
187 |
+
x,
|
188 |
+
s_y,
|
189 |
+
noise,
|
190 |
+
M,
|
191 |
+
N,
|
192 |
+
SN,
|
193 |
+
QB,
|
194 |
+
fp8MaxValue,
|
195 |
+
e_bit,
|
196 |
+
m_bit,
|
197 |
+
x.stride(0),
|
198 |
+
x.stride(1),
|
199 |
+
y.stride(0),
|
200 |
+
y.stride(1),
|
201 |
+
y_t.stride(0),
|
202 |
+
y_t.stride(1),
|
203 |
+
SCALE_MIN_THRES=SCALE_MIN_THRES,
|
204 |
+
STOCHASTIC=stochastic,
|
205 |
+
ONLY_TRANSPOSED=only_transposed,
|
206 |
+
)
|
207 |
+
|
208 |
+
if not only_transposed:
|
209 |
+
# Recover 2D to 3D
|
210 |
+
if batched:
|
211 |
+
y = y.reshape(BS, -1, y.shape[-1])
|
212 |
+
|
213 |
+
return y, s_y, y_t # y_t is expected to be 2D tensor
|
214 |
+
else:
|
215 |
+
return y_t, s_y
|
llava/model/coat/activation/real_quantization/_memory_io.py
ADDED
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 NVIDIA CORPORATION.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
|
5 |
+
# LICENSE is in incl_licenses directory.
|
6 |
+
|
7 |
+
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
#
|
21 |
+
# SPDX-License-Identifier: Apache-2.0
|
22 |
+
|
23 |
+
import torch
|
24 |
+
|
25 |
+
# 4 block
|
26 |
+
import triton
|
27 |
+
import triton.language as tl
|
28 |
+
from triton.language.extra.cuda import libdevice
|
29 |
+
|
30 |
+
CONST_BLOCK = 32
|
31 |
+
|
32 |
+
# The kernel with 1 load operation and 4 store operation
|
33 |
+
def get_configs_io_block():
|
34 |
+
configs = []
|
35 |
+
for nstages in [3, 4, 5, 6]:
|
36 |
+
for block_m in [32, 64, 128]:
|
37 |
+
for block_n in [32, 64, 128]:
|
38 |
+
for nwarps in [4, 8, 16, 32]:
|
39 |
+
configs.append(
|
40 |
+
triton.Config(
|
41 |
+
{"BLOCK_M": block_m, "BLOCK_N": block_n},
|
42 |
+
num_stages=nstages,
|
43 |
+
num_warps=nwarps,
|
44 |
+
)
|
45 |
+
)
|
46 |
+
return configs
|
47 |
+
|
48 |
+
|
49 |
+
@triton.autotune(
|
50 |
+
configs=[] + get_configs_io_block(),
|
51 |
+
key=[
|
52 |
+
"N",
|
53 |
+
],
|
54 |
+
)
|
55 |
+
@triton.jit
|
56 |
+
def bench_memory_io_kernel_forward(
|
57 |
+
output_ptr,
|
58 |
+
input_ptr,
|
59 |
+
M,
|
60 |
+
N,
|
61 |
+
B: tl.constexpr,
|
62 |
+
input_stride_0,
|
63 |
+
input_stride_1,
|
64 |
+
output_stride_0,
|
65 |
+
output_stride_1,
|
66 |
+
BLOCK_M: tl.constexpr,
|
67 |
+
BLOCK_N: tl.constexpr,
|
68 |
+
):
|
69 |
+
|
70 |
+
# Block PID
|
71 |
+
pid = tl.program_id(0)
|
72 |
+
NUM_BLOCK_M = tl.cdiv(M, BLOCK_M)
|
73 |
+
NUM_BLOCK_N = tl.cdiv(N, BLOCK_N)
|
74 |
+
pid_dim0 = pid // NUM_BLOCK_N
|
75 |
+
pid_dim1 = pid % NUM_BLOCK_N
|
76 |
+
|
77 |
+
# pointers
|
78 |
+
input_block_ptr = tl.make_block_ptr(
|
79 |
+
base=input_ptr,
|
80 |
+
shape=(M, N),
|
81 |
+
strides=(input_stride_0, input_stride_1),
|
82 |
+
offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
|
83 |
+
block_shape=(BLOCK_M, BLOCK_N),
|
84 |
+
order=(1, 0),
|
85 |
+
)
|
86 |
+
|
87 |
+
input = tl.load(input_block_ptr)
|
88 |
+
input = input.to(tl.float32)
|
89 |
+
|
90 |
+
output = input * 2
|
91 |
+
|
92 |
+
# pointers
|
93 |
+
output_block_ptr = tl.make_block_ptr(
|
94 |
+
base=output_ptr,
|
95 |
+
shape=(M, N),
|
96 |
+
strides=(output_stride_0, output_stride_1),
|
97 |
+
offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
|
98 |
+
block_shape=(BLOCK_M, BLOCK_N),
|
99 |
+
order=(1, 0),
|
100 |
+
)
|
101 |
+
|
102 |
+
output = output.to(output_ptr.type.element_ty)
|
103 |
+
tl.store(output_block_ptr, output, boundary_check=(0, 1))
|
104 |
+
|
105 |
+
|
106 |
+
def bench_memory_io_forward(x, B):
|
107 |
+
# defining the input and output tensor
|
108 |
+
M, N = x.shape
|
109 |
+
|
110 |
+
y = torch.empty_like(x, dtype=x.dtype)
|
111 |
+
|
112 |
+
grid = lambda META: (triton.cdiv(M, META["BLOCK_M"]) * triton.cdiv(N, META["BLOCK_N"]),)
|
113 |
+
|
114 |
+
bench_memory_io_kernel_forward[grid](
|
115 |
+
y,
|
116 |
+
x,
|
117 |
+
M,
|
118 |
+
N,
|
119 |
+
B,
|
120 |
+
x.stride(0),
|
121 |
+
x.stride(1),
|
122 |
+
y.stride(0),
|
123 |
+
y.stride(1),
|
124 |
+
)
|
125 |
+
return y
|
126 |
+
|
127 |
+
|
128 |
+
configs = []
|
129 |
+
for SL in [8192]:
|
130 |
+
configs.append(
|
131 |
+
triton.testing.Benchmark( # test different matrix size influence
|
132 |
+
x_names=["CDIM"],
|
133 |
+
x_vals=[1024, 2048, 4096, 8192],
|
134 |
+
line_arg="dtype",
|
135 |
+
line_vals=[torch.int8, torch.float16, torch.float32],
|
136 |
+
line_names=["float8", "float16", "float32"],
|
137 |
+
styles=[("blue", "-"), ("green", "-"), ("red", "-")],
|
138 |
+
ylabel="time-cost",
|
139 |
+
plot_name=f"INT8GELU<BLSZ={CONST_BLOCK}><SL={SL}>",
|
140 |
+
args={"SL": SL, "B": CONST_BLOCK, "provider": "triton", "mode": "time-consuming"},
|
141 |
+
)
|
142 |
+
)
|
143 |
+
|
144 |
+
|
145 |
+
@triton.testing.perf_report(configs)
|
146 |
+
def bench_load_store(
|
147 |
+
SL, CDIM, B, provider, dtype, mode="forward"
|
148 |
+
): # I only use triton as the provider, and mode when benchmarking
|
149 |
+
# create data
|
150 |
+
x = torch.randn(SL, CDIM, dtype=torch.float32).cuda()
|
151 |
+
x = x.to(dtype)
|
152 |
+
|
153 |
+
quantiles = [0.5, 0.2, 0.8]
|
154 |
+
# utility functions
|
155 |
+
if provider == "triton":
|
156 |
+
|
157 |
+
def y_fwd():
|
158 |
+
bench_memory_io_forward(x, B)
|
159 |
+
|
160 |
+
if provider == "torch":
|
161 |
+
torch_gelu = torch.nn.GELU()
|
162 |
+
|
163 |
+
def y_fwd():
|
164 |
+
return torch_gelu(x)
|
165 |
+
|
166 |
+
# forward pass
|
167 |
+
if mode == "time-consuming":
|
168 |
+
convert_func = lambda ms: ms
|
169 |
+
ms, min_ms, max_ms = triton.testing.do_bench(y_fwd, quantiles=quantiles, rep=100)
|
170 |
+
# backward pass
|
171 |
+
if mode == "gbps":
|
172 |
+
convert_func = lambda ms: 2 * x.numel() * x.element_size() / ms * 1e-6
|
173 |
+
ms, min_ms, max_ms = triton.testing.do_bench(y_fwd, quantiles=quantiles, rep=100)
|
174 |
+
return convert_func(ms), convert_func(max_ms), convert_func(min_ms)
|
175 |
+
|
176 |
+
|
177 |
+
if __name__ == "__main__":
|
178 |
+
torch.manual_seed(0)
|
179 |
+
torch.set_printoptions(precision=8, linewidth=1600, sci_mode=False, edgeitems=3)
|
180 |
+
bench_load_store.run(print_data=True)
|
llava/model/coat/activation/real_quantization/_quantize.py
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 NVIDIA CORPORATION.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
|
5 |
+
# LICENSE is in incl_licenses directory.
|
6 |
+
|
7 |
+
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
#
|
21 |
+
# SPDX-License-Identifier: Apache-2.0
|
22 |
+
|
23 |
+
import torch
|
24 |
+
|
25 |
+
# 4 block
|
26 |
+
import triton
|
27 |
+
import triton.language as tl
|
28 |
+
from triton.language.extra.cuda import libdevice
|
29 |
+
|
30 |
+
from .common import FP8_MAX_VALUE, SCALE_MIN_THRES, convert_fp8_to_embit, convert_str_to_fp8, get_configs_io_block
|
31 |
+
|
32 |
+
"""Quantize Operator"""
|
33 |
+
"""Input uses 1 * 16 group quantization"""
|
34 |
+
"""Output uses 1 * 16 group quantization"""
|
35 |
+
"""The input can be 2D or 3D, but the calculation is performed in 2D"""
|
36 |
+
|
37 |
+
|
38 |
+
@triton.autotune(
|
39 |
+
configs=[] + get_configs_io_block(),
|
40 |
+
key=[
|
41 |
+
"N",
|
42 |
+
],
|
43 |
+
)
|
44 |
+
@triton.heuristics(
|
45 |
+
{
|
46 |
+
"BLOCK_SN": lambda args: args["BLOCK_N"] // args["QB"],
|
47 |
+
}
|
48 |
+
)
|
49 |
+
@triton.jit
|
50 |
+
def _fp8_quantize_kernel(
|
51 |
+
output_ptr,
|
52 |
+
output_scale_ptr, # output
|
53 |
+
input_ptr, # input
|
54 |
+
M,
|
55 |
+
N,
|
56 |
+
SN,
|
57 |
+
QB: tl.constexpr,
|
58 |
+
fp8_max, # shape
|
59 |
+
input_stride_0,
|
60 |
+
input_stride_1, # input stride
|
61 |
+
output_stride_0,
|
62 |
+
output_stride_1, # output stride
|
63 |
+
s_output_stride_0,
|
64 |
+
s_output_stride_1, # scale of output stride
|
65 |
+
SCALE_MIN_THRES: tl.constexpr,
|
66 |
+
BLOCK_M: tl.constexpr,
|
67 |
+
BLOCK_N: tl.constexpr,
|
68 |
+
BLOCK_SN: tl.constexpr,
|
69 |
+
): # CUDA block size
|
70 |
+
|
71 |
+
# Block PID
|
72 |
+
pid = tl.program_id(0)
|
73 |
+
NUM_BLOCK_N = tl.cdiv(N, BLOCK_N)
|
74 |
+
pid_dim0 = pid // NUM_BLOCK_N
|
75 |
+
pid_dim1 = pid % NUM_BLOCK_N
|
76 |
+
|
77 |
+
# pointers
|
78 |
+
input_block_ptr = tl.make_block_ptr(
|
79 |
+
base=input_ptr,
|
80 |
+
shape=(M, N),
|
81 |
+
strides=(input_stride_0, input_stride_1),
|
82 |
+
offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
|
83 |
+
block_shape=(BLOCK_M, BLOCK_N),
|
84 |
+
order=(1, 0),
|
85 |
+
)
|
86 |
+
|
87 |
+
input = tl.load(input_block_ptr)
|
88 |
+
input = input.to(tl.float32)
|
89 |
+
|
90 |
+
output = tl.reshape(input, (BLOCK_M, BLOCK_SN, QB))
|
91 |
+
|
92 |
+
# Quantize Scale calculation
|
93 |
+
abs_output = tl.abs(output)
|
94 |
+
max_val = tl.max(abs_output, axis=2) + SCALE_MIN_THRES
|
95 |
+
scale_output = max_val / fp8_max
|
96 |
+
scale_output = tl.reshape(scale_output, (BLOCK_M, BLOCK_SN, 1))
|
97 |
+
|
98 |
+
# Quantize
|
99 |
+
output = tl.fdiv(output, scale_output)
|
100 |
+
|
101 |
+
output = output.to(output_ptr.type.element_ty)
|
102 |
+
|
103 |
+
scale_output = scale_output.to(output_scale_ptr.type.element_ty)
|
104 |
+
scale_output = tl.reshape(scale_output, (BLOCK_M, BLOCK_SN))
|
105 |
+
output = tl.reshape(output, (BLOCK_M, BLOCK_N))
|
106 |
+
|
107 |
+
# debug
|
108 |
+
# gelu_output = input
|
109 |
+
# scale_output = scale_input
|
110 |
+
|
111 |
+
# pointers
|
112 |
+
output_block_ptr = tl.make_block_ptr(
|
113 |
+
base=output_ptr,
|
114 |
+
shape=(M, N),
|
115 |
+
strides=(output_stride_0, output_stride_1),
|
116 |
+
offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
|
117 |
+
block_shape=(BLOCK_M, BLOCK_N),
|
118 |
+
order=(1, 0),
|
119 |
+
)
|
120 |
+
scale_output_ptr = tl.make_block_ptr(
|
121 |
+
base=output_scale_ptr,
|
122 |
+
shape=(M, SN),
|
123 |
+
strides=(s_output_stride_0, s_output_stride_1),
|
124 |
+
offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_SN),
|
125 |
+
block_shape=(BLOCK_M, BLOCK_SN),
|
126 |
+
order=(1, 0),
|
127 |
+
)
|
128 |
+
|
129 |
+
tl.store(output_block_ptr, output, boundary_check=(0, 1))
|
130 |
+
tl.store(scale_output_ptr, scale_output, boundary_check=(0, 1))
|
131 |
+
|
132 |
+
|
133 |
+
def fp8_quantize(x, QB, fp8type):
|
134 |
+
# Change batched 3D input to 2D
|
135 |
+
batched = False
|
136 |
+
if len(x.shape) == 3:
|
137 |
+
batched = True
|
138 |
+
BS = x.shape[0]
|
139 |
+
x = x.reshape(-1, x.shape[-1])
|
140 |
+
|
141 |
+
# defining the input and output tensor
|
142 |
+
M, N = x.shape
|
143 |
+
SN = N // QB
|
144 |
+
|
145 |
+
if isinstance(fp8type, str):
|
146 |
+
fp8type = convert_str_to_fp8[fp8type]
|
147 |
+
y = torch.empty_like(x, dtype=fp8type)
|
148 |
+
s_y = torch.empty((M, SN), dtype=torch.bfloat16, device=x.device)
|
149 |
+
fp8MaxValue = FP8_MAX_VALUE[fp8type] # E4M3 and E5M2 have different max value
|
150 |
+
|
151 |
+
grid = lambda META: (triton.cdiv(M, META["BLOCK_M"]) * triton.cdiv(N, META["BLOCK_N"]),)
|
152 |
+
|
153 |
+
_fp8_quantize_kernel[grid](
|
154 |
+
y,
|
155 |
+
s_y,
|
156 |
+
x,
|
157 |
+
M,
|
158 |
+
N,
|
159 |
+
SN,
|
160 |
+
QB,
|
161 |
+
fp8MaxValue,
|
162 |
+
x.stride(0),
|
163 |
+
x.stride(1),
|
164 |
+
y.stride(0),
|
165 |
+
y.stride(1),
|
166 |
+
s_y.stride(0),
|
167 |
+
s_y.stride(1),
|
168 |
+
SCALE_MIN_THRES=SCALE_MIN_THRES,
|
169 |
+
)
|
170 |
+
|
171 |
+
# Recover 2D to 3D
|
172 |
+
if batched:
|
173 |
+
y = y.reshape(BS, -1, y.shape[-1])
|
174 |
+
s_y = s_y.reshape(BS, -1, s_y.shape[-1])
|
175 |
+
|
176 |
+
return y, s_y
|
llava/model/coat/activation/real_quantization/_quantize_pertensor.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 NVIDIA CORPORATION.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
|
5 |
+
# LICENSE is in incl_licenses directory.
|
6 |
+
|
7 |
+
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
#
|
21 |
+
# SPDX-License-Identifier: Apache-2.0
|
22 |
+
|
23 |
+
import torch
|
24 |
+
|
25 |
+
# 4 block
|
26 |
+
import triton
|
27 |
+
import triton.language as tl
|
28 |
+
from triton.language.extra.cuda import libdevice
|
29 |
+
|
30 |
+
from ._division import fp8_division
|
31 |
+
from .common import FP8_MAX_VALUE, SCALE_MIN_THRES, convert_str_to_fp8, get_configs_io_block
|
32 |
+
|
33 |
+
"""Per Tensor Quantize Operator"""
|
34 |
+
"""Input uses full precision"""
|
35 |
+
"""Output uses per tensor quantization"""
|
36 |
+
"""The input can be 2D or 3D, but the calculation is performed in 2D"""
|
37 |
+
|
38 |
+
|
39 |
+
@triton.autotune(
|
40 |
+
configs=[] + get_configs_io_block(),
|
41 |
+
key=[
|
42 |
+
"N",
|
43 |
+
],
|
44 |
+
)
|
45 |
+
@triton.heuristics(
|
46 |
+
{
|
47 |
+
"BLOCK_SN": lambda args: args["BLOCK_N"] // args["QB"],
|
48 |
+
}
|
49 |
+
)
|
50 |
+
@triton.jit
|
51 |
+
def _fp8_quantize_pertensor_kernel(
|
52 |
+
output_scale_ptr, # output
|
53 |
+
input_ptr, # input
|
54 |
+
M,
|
55 |
+
N,
|
56 |
+
SN,
|
57 |
+
QB: tl.constexpr,
|
58 |
+
fp8_max, # shape
|
59 |
+
input_stride_0,
|
60 |
+
input_stride_1, # input stride
|
61 |
+
s_output_stride_0,
|
62 |
+
s_output_stride_1, # scale of output stride
|
63 |
+
SCALE_MIN_THRES: tl.constexpr,
|
64 |
+
BLOCK_M: tl.constexpr,
|
65 |
+
BLOCK_N: tl.constexpr,
|
66 |
+
BLOCK_SN: tl.constexpr,
|
67 |
+
): # CUDA block size
|
68 |
+
|
69 |
+
# Block PID
|
70 |
+
pid = tl.program_id(0)
|
71 |
+
NUM_BLOCK_N = tl.cdiv(N, BLOCK_N)
|
72 |
+
pid_dim0 = pid // NUM_BLOCK_N
|
73 |
+
pid_dim1 = pid % NUM_BLOCK_N
|
74 |
+
|
75 |
+
# pointers
|
76 |
+
input_block_ptr = tl.make_block_ptr(
|
77 |
+
base=input_ptr,
|
78 |
+
shape=(M, N),
|
79 |
+
strides=(input_stride_0, input_stride_1),
|
80 |
+
offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
|
81 |
+
block_shape=(BLOCK_M, BLOCK_N),
|
82 |
+
order=(1, 0),
|
83 |
+
)
|
84 |
+
|
85 |
+
input = tl.load(input_block_ptr)
|
86 |
+
input = input.to(tl.float32)
|
87 |
+
|
88 |
+
output = tl.reshape(input, (BLOCK_M, BLOCK_SN, QB))
|
89 |
+
|
90 |
+
# Quantize Scale calculation
|
91 |
+
abs_output = tl.abs(output)
|
92 |
+
max_val = tl.max(abs_output, axis=2) + SCALE_MIN_THRES
|
93 |
+
scale_output = max_val / fp8_max
|
94 |
+
scale_output = tl.reshape(scale_output, (BLOCK_M, BLOCK_SN, 1))
|
95 |
+
|
96 |
+
scale_output = scale_output.to(output_scale_ptr.type.element_ty)
|
97 |
+
scale_output = tl.reshape(scale_output, (BLOCK_M, BLOCK_SN))
|
98 |
+
|
99 |
+
scale_output_ptr = tl.make_block_ptr(
|
100 |
+
base=output_scale_ptr,
|
101 |
+
shape=(M, SN),
|
102 |
+
strides=(s_output_stride_0, s_output_stride_1),
|
103 |
+
offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_SN),
|
104 |
+
block_shape=(BLOCK_M, BLOCK_SN),
|
105 |
+
order=(1, 0),
|
106 |
+
)
|
107 |
+
|
108 |
+
tl.store(scale_output_ptr, scale_output, boundary_check=(0, 1))
|
109 |
+
|
110 |
+
|
111 |
+
def fp8_quantize_pertensor(x, QB, fp8type, stochastic=False):
|
112 |
+
# Change batched 3D input to 2D
|
113 |
+
batched = False
|
114 |
+
if len(x.shape) == 3:
|
115 |
+
batched = True
|
116 |
+
BS = x.shape[0]
|
117 |
+
x = x.reshape(-1, x.shape[-1])
|
118 |
+
|
119 |
+
# defining the input and output tensor
|
120 |
+
M, N = x.shape
|
121 |
+
SN = N // QB
|
122 |
+
|
123 |
+
fp8type = convert_str_to_fp8[fp8type]
|
124 |
+
s_y = torch.empty((M, SN), dtype=torch.bfloat16, device=x.device)
|
125 |
+
fp8MaxValue = FP8_MAX_VALUE[fp8type] # E4M3 and E5M2 have different max value
|
126 |
+
|
127 |
+
grid = lambda META: (triton.cdiv(M, META["BLOCK_M"]) * triton.cdiv(N, META["BLOCK_N"]),)
|
128 |
+
|
129 |
+
_fp8_quantize_pertensor_kernel[grid](
|
130 |
+
s_y,
|
131 |
+
x,
|
132 |
+
M,
|
133 |
+
N,
|
134 |
+
SN,
|
135 |
+
QB,
|
136 |
+
fp8MaxValue,
|
137 |
+
x.stride(0),
|
138 |
+
x.stride(1),
|
139 |
+
s_y.stride(0),
|
140 |
+
s_y.stride(1),
|
141 |
+
SCALE_MIN_THRES=SCALE_MIN_THRES,
|
142 |
+
)
|
143 |
+
|
144 |
+
s_y_max = s_y.max()
|
145 |
+
y, s_y_max = fp8_division(x, QB, fp8type, s_y_max, stochastic=stochastic) # reuse the floating point output y1
|
146 |
+
|
147 |
+
# Recover 2D to 3D
|
148 |
+
if batched:
|
149 |
+
y = y.reshape(BS, -1, y.shape[-1])
|
150 |
+
s_y = s_y.reshape(BS, -1, s_y.shape[-1])
|
151 |
+
|
152 |
+
return y, s_y_max, s_y
|
llava/model/coat/activation/real_quantization/_quantize_pertensor_transpose.py
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 NVIDIA CORPORATION.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
|
5 |
+
# LICENSE is in incl_licenses directory.
|
6 |
+
|
7 |
+
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
#
|
21 |
+
# SPDX-License-Identifier: Apache-2.0
|
22 |
+
|
23 |
+
import torch
|
24 |
+
|
25 |
+
# 4 block
|
26 |
+
import triton
|
27 |
+
import triton.language as tl
|
28 |
+
from triton.language.extra.cuda import libdevice
|
29 |
+
|
30 |
+
from ._division_transpose import fp8_division_transpose
|
31 |
+
from .common import FP8_MAX_VALUE, SCALE_MIN_THRES, convert_str_to_fp8, get_configs_io_block
|
32 |
+
|
33 |
+
"""Per Tensor Quantize and Transpose Operator"""
|
34 |
+
"""Input uses floating point tensor"""
|
35 |
+
"""Output uses per-tensor quantization, returns a non-transpose version and a transpose version"""
|
36 |
+
"""The input can be 2D or 3D, but the calculation is performed in 2D"""
|
37 |
+
|
38 |
+
|
39 |
+
@triton.autotune(
|
40 |
+
configs=[] + get_configs_io_block(),
|
41 |
+
key=[
|
42 |
+
"N",
|
43 |
+
],
|
44 |
+
)
|
45 |
+
@triton.heuristics(
|
46 |
+
{
|
47 |
+
"BLOCK_SN": lambda args: args["BLOCK_N"] // args["QB"],
|
48 |
+
}
|
49 |
+
)
|
50 |
+
@triton.jit
|
51 |
+
def _fp8_quantize_pertensor_transpose_kernel(
|
52 |
+
output_scale_ptr, # output
|
53 |
+
input_ptr, # input
|
54 |
+
M,
|
55 |
+
N,
|
56 |
+
SN,
|
57 |
+
QB: tl.constexpr,
|
58 |
+
fp8_max, # shape
|
59 |
+
input_stride_0,
|
60 |
+
input_stride_1, # input stride
|
61 |
+
s_output_stride_0,
|
62 |
+
s_output_stride_1, # scale of output stride
|
63 |
+
SCALE_MIN_THRES: tl.constexpr,
|
64 |
+
BLOCK_M: tl.constexpr,
|
65 |
+
BLOCK_N: tl.constexpr,
|
66 |
+
BLOCK_SN: tl.constexpr,
|
67 |
+
): # CUDA block size
|
68 |
+
|
69 |
+
# Block PID
|
70 |
+
pid = tl.program_id(0)
|
71 |
+
NUM_BLOCK_N = tl.cdiv(N, BLOCK_N)
|
72 |
+
pid_dim0 = pid // NUM_BLOCK_N
|
73 |
+
pid_dim1 = pid % NUM_BLOCK_N
|
74 |
+
|
75 |
+
# pointers
|
76 |
+
input_block_ptr = tl.make_block_ptr(
|
77 |
+
base=input_ptr,
|
78 |
+
shape=(M, N),
|
79 |
+
strides=(input_stride_0, input_stride_1),
|
80 |
+
offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
|
81 |
+
block_shape=(BLOCK_M, BLOCK_N),
|
82 |
+
order=(1, 0),
|
83 |
+
)
|
84 |
+
|
85 |
+
input = tl.load(input_block_ptr)
|
86 |
+
input = input.to(tl.float32)
|
87 |
+
|
88 |
+
output = tl.reshape(input, (BLOCK_M, BLOCK_SN, QB))
|
89 |
+
|
90 |
+
# Quantize Scale calculation
|
91 |
+
abs_output = tl.abs(output)
|
92 |
+
max_val = tl.max(abs_output, axis=2) + SCALE_MIN_THRES
|
93 |
+
scale_output = max_val / fp8_max
|
94 |
+
scale_output = tl.reshape(scale_output, (BLOCK_M, BLOCK_SN, 1))
|
95 |
+
|
96 |
+
scale_output = scale_output.to(output_scale_ptr.type.element_ty)
|
97 |
+
scale_output = tl.reshape(scale_output, (BLOCK_M, BLOCK_SN))
|
98 |
+
|
99 |
+
scale_output_ptr = tl.make_block_ptr(
|
100 |
+
base=output_scale_ptr,
|
101 |
+
shape=(M, SN),
|
102 |
+
strides=(s_output_stride_0, s_output_stride_1),
|
103 |
+
offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_SN),
|
104 |
+
block_shape=(BLOCK_M, BLOCK_SN),
|
105 |
+
order=(1, 0),
|
106 |
+
)
|
107 |
+
|
108 |
+
tl.store(scale_output_ptr, scale_output, boundary_check=(0, 1))
|
109 |
+
|
110 |
+
|
111 |
+
def fp8_quantize_pertensor_transpose(x, QB, fp8type, transpose_output_2d=False, stochastic=False):
|
112 |
+
# Change batched 3D input to 2D
|
113 |
+
batched = False
|
114 |
+
if len(x.shape) == 3:
|
115 |
+
batched = True
|
116 |
+
BS = x.shape[0]
|
117 |
+
x = x.reshape(-1, x.shape[-1])
|
118 |
+
|
119 |
+
# defining the input and output tensor
|
120 |
+
M, N = x.shape
|
121 |
+
SN = N // QB
|
122 |
+
|
123 |
+
fp8type = convert_str_to_fp8[fp8type]
|
124 |
+
s_y = torch.empty((M, SN), dtype=torch.bfloat16, device=x.device)
|
125 |
+
fp8MaxValue = FP8_MAX_VALUE[fp8type] # E4M3 and E5M2 have different max value
|
126 |
+
|
127 |
+
grid = lambda META: (triton.cdiv(M, META["BLOCK_M"]) * triton.cdiv(N, META["BLOCK_N"]),)
|
128 |
+
|
129 |
+
_fp8_quantize_pertensor_transpose_kernel[grid](
|
130 |
+
s_y,
|
131 |
+
x,
|
132 |
+
M,
|
133 |
+
N,
|
134 |
+
SN,
|
135 |
+
QB,
|
136 |
+
fp8MaxValue,
|
137 |
+
x.stride(0),
|
138 |
+
x.stride(1),
|
139 |
+
s_y.stride(0),
|
140 |
+
s_y.stride(1),
|
141 |
+
SCALE_MIN_THRES=SCALE_MIN_THRES,
|
142 |
+
)
|
143 |
+
|
144 |
+
s_y_max = s_y.max()
|
145 |
+
qy, s_y_max, qy_t = fp8_division_transpose(
|
146 |
+
x, QB, fp8type, s_y_max, stochastic=stochastic
|
147 |
+
) # Stochastic Rounding happens here
|
148 |
+
|
149 |
+
# Recover 2D to 3D
|
150 |
+
if batched:
|
151 |
+
qy = qy.reshape(BS, -1, qy.shape[-1])
|
152 |
+
if not transpose_output_2d:
|
153 |
+
qy_t = qy_t.reshape(BS, -1, qy_t.shape[-1])
|
154 |
+
|
155 |
+
return qy, s_y_max, qy_t # y_t is expected to be 2D tensor
|
llava/model/coat/activation/real_quantization/_transpose.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 NVIDIA CORPORATION.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
|
5 |
+
# LICENSE is in incl_licenses directory.
|
6 |
+
|
7 |
+
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
#
|
21 |
+
# SPDX-License-Identifier: Apache-2.0
|
22 |
+
|
23 |
+
import torch
|
24 |
+
|
25 |
+
# 4 block
|
26 |
+
import triton
|
27 |
+
import triton.language as tl
|
28 |
+
from triton.language.extra.cuda import libdevice
|
29 |
+
|
30 |
+
from .common import get_configs_io_block
|
31 |
+
|
32 |
+
"""Quantize Operator"""
|
33 |
+
"""Input uses 1 * 16 group quantization"""
|
34 |
+
"""Output uses 1 * 16 group quantization"""
|
35 |
+
"""The input can be 2D or 3D, but the calculation is performed in 2D"""
|
36 |
+
|
37 |
+
|
38 |
+
@triton.autotune(
|
39 |
+
configs=[] + get_configs_io_block(),
|
40 |
+
key=[
|
41 |
+
"N",
|
42 |
+
],
|
43 |
+
)
|
44 |
+
@triton.jit
|
45 |
+
def _fp8_transpose_kernel(
|
46 |
+
output_ptr, # output
|
47 |
+
input_ptr, # input
|
48 |
+
M,
|
49 |
+
N, # shape
|
50 |
+
input_stride_0,
|
51 |
+
input_stride_1, # input stride
|
52 |
+
output_stride_0,
|
53 |
+
output_stride_1, # output stride
|
54 |
+
BLOCK_M: tl.constexpr,
|
55 |
+
BLOCK_N: tl.constexpr,
|
56 |
+
): # CUDA block size
|
57 |
+
|
58 |
+
# Block PID
|
59 |
+
pid = tl.program_id(0)
|
60 |
+
NUM_BLOCK_N = tl.cdiv(N, BLOCK_N)
|
61 |
+
pid_dim0 = pid // NUM_BLOCK_N
|
62 |
+
pid_dim1 = pid % NUM_BLOCK_N
|
63 |
+
|
64 |
+
# pointers
|
65 |
+
input_block_ptr = tl.make_block_ptr(
|
66 |
+
base=input_ptr,
|
67 |
+
shape=(M, N),
|
68 |
+
strides=(input_stride_0, input_stride_1),
|
69 |
+
offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
|
70 |
+
block_shape=(BLOCK_M, BLOCK_N),
|
71 |
+
order=(1, 0),
|
72 |
+
)
|
73 |
+
|
74 |
+
input = tl.load(input_block_ptr)
|
75 |
+
|
76 |
+
output = tl.trans(input)
|
77 |
+
|
78 |
+
# pointers
|
79 |
+
output_block_ptr = tl.make_block_ptr(
|
80 |
+
base=output_ptr,
|
81 |
+
shape=(N, M),
|
82 |
+
strides=(output_stride_0, output_stride_1),
|
83 |
+
offsets=(pid_dim1 * BLOCK_N, pid_dim0 * BLOCK_M),
|
84 |
+
block_shape=(BLOCK_N, BLOCK_M),
|
85 |
+
order=(1, 0),
|
86 |
+
)
|
87 |
+
|
88 |
+
tl.store(output_block_ptr, output, boundary_check=(0, 1))
|
89 |
+
|
90 |
+
|
91 |
+
def fp8_transpose(x, transpose_output_2d=False):
|
92 |
+
# Change batched 3D input to 2D
|
93 |
+
batched = False
|
94 |
+
if len(x.shape) == 3:
|
95 |
+
batched = True
|
96 |
+
BS = x.shape[0]
|
97 |
+
x = x.reshape(-1, x.shape[-1])
|
98 |
+
|
99 |
+
# defining the input and output tensor
|
100 |
+
M, N = x.shape
|
101 |
+
|
102 |
+
y = torch.empty((N, M), dtype=x.dtype, device=x.device)
|
103 |
+
|
104 |
+
grid = lambda META: (triton.cdiv(M, META["BLOCK_M"]) * triton.cdiv(N, META["BLOCK_N"]),)
|
105 |
+
|
106 |
+
_fp8_transpose_kernel[grid](
|
107 |
+
y,
|
108 |
+
x,
|
109 |
+
M,
|
110 |
+
N,
|
111 |
+
x.stride(0),
|
112 |
+
x.stride(1),
|
113 |
+
y.stride(0),
|
114 |
+
y.stride(1),
|
115 |
+
)
|
116 |
+
|
117 |
+
# Recover 2D to 3D
|
118 |
+
if batched and not transpose_output_2d:
|
119 |
+
y = y.reshape(BS, -1, y.shape[-1])
|
120 |
+
|
121 |
+
return y
|
llava/model/coat/activation/real_quantization/add_bwd.py
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 NVIDIA CORPORATION.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
|
5 |
+
# LICENSE is in incl_licenses directory.
|
6 |
+
|
7 |
+
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
#
|
21 |
+
# SPDX-License-Identifier: Apache-2.0
|
22 |
+
|
23 |
+
import torch
|
24 |
+
|
25 |
+
# 4 block
|
26 |
+
import triton
|
27 |
+
import triton.language as tl
|
28 |
+
from triton.language.extra.cuda import libdevice
|
29 |
+
|
30 |
+
from ._division import fp8_division
|
31 |
+
from .common import FP8_MAX_VALUE, SCALE_MIN_THRES, convert_str_to_fp8, get_configs_io_block
|
32 |
+
|
33 |
+
"""Element-wise Add, useful for backward"""
|
34 |
+
"""Input1 (Residual) uses full-precision/BF16"""
|
35 |
+
"""Input2 (Backbone) uses full-precision/BF16"""
|
36 |
+
"""Output1 uses full-precision/BF16"""
|
37 |
+
"""Output2 uses per-tensor quantization"""
|
38 |
+
"""The input can be 2D or 3D, but the calculation is performed in 2D"""
|
39 |
+
|
40 |
+
|
41 |
+
@triton.autotune(
|
42 |
+
configs=[] + get_configs_io_block(),
|
43 |
+
key=[
|
44 |
+
"N",
|
45 |
+
],
|
46 |
+
)
|
47 |
+
@triton.heuristics(
|
48 |
+
{
|
49 |
+
"BLOCK_SN": lambda args: args["BLOCK_N"] // args["QB"],
|
50 |
+
}
|
51 |
+
)
|
52 |
+
@triton.jit
|
53 |
+
def _fp8_add_Ifp_Ifp_Ofp_Opt_kernel(
|
54 |
+
output1_ptr, # output
|
55 |
+
output2_scale_ptr,
|
56 |
+
input1_ptr, # input
|
57 |
+
input2_ptr, # input
|
58 |
+
M,
|
59 |
+
N,
|
60 |
+
SN,
|
61 |
+
QB: tl.constexpr,
|
62 |
+
fp8_max, # shape
|
63 |
+
input1_stride_0,
|
64 |
+
input1_stride_1, # input1 stride
|
65 |
+
input2_stride_0,
|
66 |
+
input2_stride_1, # input2 stride
|
67 |
+
output1_stride_0,
|
68 |
+
output1_stride_1, # output stride
|
69 |
+
s_output2_stride_0,
|
70 |
+
s_output2_stride_1, # scale of output stride
|
71 |
+
SCALE_MIN_THRES: tl.constexpr,
|
72 |
+
BLOCK_M: tl.constexpr,
|
73 |
+
BLOCK_N: tl.constexpr,
|
74 |
+
BLOCK_SN: tl.constexpr,
|
75 |
+
): # CUDA block size
|
76 |
+
|
77 |
+
# Block PID
|
78 |
+
pid = tl.program_id(0)
|
79 |
+
NUM_BLOCK_N = tl.cdiv(N, BLOCK_N)
|
80 |
+
pid_dim0 = pid // NUM_BLOCK_N
|
81 |
+
pid_dim1 = pid % NUM_BLOCK_N
|
82 |
+
|
83 |
+
# --- The first input ---
|
84 |
+
input1_block_ptr = tl.make_block_ptr(
|
85 |
+
base=input1_ptr,
|
86 |
+
shape=(M, N),
|
87 |
+
strides=(input1_stride_0, input1_stride_1),
|
88 |
+
offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
|
89 |
+
block_shape=(BLOCK_M, BLOCK_N),
|
90 |
+
order=(1, 0),
|
91 |
+
)
|
92 |
+
|
93 |
+
input1 = tl.load(input1_block_ptr)
|
94 |
+
input1 = input1.to(tl.float32)
|
95 |
+
input1 = tl.reshape(input1, (BLOCK_M, BLOCK_SN, QB))
|
96 |
+
|
97 |
+
# --- The second input ---
|
98 |
+
input2_block_ptr = tl.make_block_ptr(
|
99 |
+
base=input2_ptr,
|
100 |
+
shape=(M, N),
|
101 |
+
strides=(input2_stride_0, input2_stride_1),
|
102 |
+
offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
|
103 |
+
block_shape=(BLOCK_M, BLOCK_N),
|
104 |
+
order=(1, 0),
|
105 |
+
)
|
106 |
+
|
107 |
+
input2 = tl.load(input2_block_ptr)
|
108 |
+
input2 = input2.to(tl.float32)
|
109 |
+
input2 = tl.reshape(input2, (BLOCK_M, BLOCK_SN, QB))
|
110 |
+
|
111 |
+
# Actual Calculation of Add
|
112 |
+
add_output = input1 + input2
|
113 |
+
|
114 |
+
# Quantize the grad 1 - Scale calculation
|
115 |
+
abs_add_output = tl.abs(add_output)
|
116 |
+
max_val = tl.max(abs_add_output, axis=2) + SCALE_MIN_THRES
|
117 |
+
scale_output2 = max_val / fp8_max
|
118 |
+
scale_output2 = tl.reshape(scale_output2, (BLOCK_M, BLOCK_SN, 1))
|
119 |
+
|
120 |
+
# save the fp add output
|
121 |
+
fp_add_output = add_output.to(output1_ptr.type.element_ty)
|
122 |
+
fp_add_output = tl.reshape(fp_add_output, (BLOCK_M, BLOCK_N))
|
123 |
+
|
124 |
+
# pointers
|
125 |
+
output1_block_ptr = tl.make_block_ptr(
|
126 |
+
base=output1_ptr,
|
127 |
+
shape=(M, N),
|
128 |
+
strides=(output1_stride_0, output1_stride_1),
|
129 |
+
offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
|
130 |
+
block_shape=(BLOCK_M, BLOCK_N),
|
131 |
+
order=(1, 0),
|
132 |
+
)
|
133 |
+
|
134 |
+
tl.store(output1_block_ptr, fp_add_output, boundary_check=(0, 1))
|
135 |
+
|
136 |
+
# Quantize
|
137 |
+
scale_output2 = scale_output2.to(output2_scale_ptr.type.element_ty)
|
138 |
+
scale_output2 = tl.reshape(scale_output2, (BLOCK_M, BLOCK_SN))
|
139 |
+
|
140 |
+
# pointers
|
141 |
+
scale_output2_ptr = tl.make_block_ptr(
|
142 |
+
base=output2_scale_ptr,
|
143 |
+
shape=(M, SN),
|
144 |
+
strides=(s_output2_stride_0, s_output2_stride_1),
|
145 |
+
offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_SN),
|
146 |
+
block_shape=(BLOCK_M, BLOCK_SN),
|
147 |
+
order=(1, 0),
|
148 |
+
)
|
149 |
+
tl.store(scale_output2_ptr, scale_output2, boundary_check=(0, 1))
|
150 |
+
|
151 |
+
|
152 |
+
def fp8_add_Ifp_Ifp_Ofp_Opt(x1, x2, QB, fp8type, stochastic=False): # suppose x1 is full precision or BF16
|
153 |
+
# Change batched 3D input to 2D
|
154 |
+
batched = False
|
155 |
+
if len(x1.shape) == 3:
|
156 |
+
assert len(x2.shape) == 3
|
157 |
+
batched = True
|
158 |
+
BS = x1.shape[0]
|
159 |
+
x1 = x1.reshape(-1, x1.shape[-1])
|
160 |
+
x2 = x2.reshape(-1, x2.shape[-1])
|
161 |
+
|
162 |
+
# defining the input and output tensor
|
163 |
+
M, N = x1.shape
|
164 |
+
SN = N // QB
|
165 |
+
assert x1.shape == x2.shape
|
166 |
+
|
167 |
+
if isinstance(fp8type, str):
|
168 |
+
fp8type = convert_str_to_fp8[fp8type]
|
169 |
+
y1 = torch.empty_like(x1, dtype=torch.bfloat16)
|
170 |
+
s_y2 = torch.empty((M, SN), dtype=torch.bfloat16, device=x2.device)
|
171 |
+
fp8MaxValue = FP8_MAX_VALUE[fp8type] # E4M3 and E5M2 have different max value
|
172 |
+
|
173 |
+
grid = lambda META: (triton.cdiv(M, META["BLOCK_M"]) * triton.cdiv(N, META["BLOCK_N"]),)
|
174 |
+
|
175 |
+
_fp8_add_Ifp_Ifp_Ofp_Opt_kernel[grid](
|
176 |
+
y1,
|
177 |
+
s_y2,
|
178 |
+
x1,
|
179 |
+
x2,
|
180 |
+
M,
|
181 |
+
N,
|
182 |
+
SN,
|
183 |
+
QB,
|
184 |
+
fp8MaxValue,
|
185 |
+
x1.stride(0),
|
186 |
+
x1.stride(1),
|
187 |
+
x2.stride(0),
|
188 |
+
x2.stride(1),
|
189 |
+
y1.stride(0),
|
190 |
+
y1.stride(1),
|
191 |
+
s_y2.stride(0),
|
192 |
+
s_y2.stride(1),
|
193 |
+
SCALE_MIN_THRES=SCALE_MIN_THRES,
|
194 |
+
)
|
195 |
+
|
196 |
+
s_y2_max = s_y2.max()
|
197 |
+
qy2, s_y2_max = fp8_division(y1, QB, fp8type, s_y2_max, stochastic=stochastic) # reuse the floating point output y1
|
198 |
+
|
199 |
+
# Recover 2D to 3D
|
200 |
+
if batched:
|
201 |
+
y1 = y1.reshape(BS, -1, y1.shape[-1])
|
202 |
+
qy2 = qy2.reshape(BS, -1, qy2.shape[-1])
|
203 |
+
s_y2 = s_y2.reshape(BS, -1, s_y2.shape[-1])
|
204 |
+
|
205 |
+
return y1, (qy2, s_y2_max, s_y2)
|
llava/model/coat/activation/real_quantization/add_fwd.py
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 NVIDIA CORPORATION.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
# Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license.
|
5 |
+
# LICENSE is in incl_licenses directory.
|
6 |
+
|
7 |
+
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
#
|
21 |
+
# SPDX-License-Identifier: Apache-2.0
|
22 |
+
|
23 |
+
import torch
|
24 |
+
|
25 |
+
# 4 block
|
26 |
+
import triton
|
27 |
+
import triton.language as tl
|
28 |
+
from triton.language.extra.cuda import libdevice
|
29 |
+
|
30 |
+
from .common import FP8_MAX_VALUE, SCALE_MIN_THRES, get_configs_io_block
|
31 |
+
|
32 |
+
"""Element-wise Add, used in forward pass"""
|
33 |
+
"""Input1 (Residual) uses full-precision/BF16"""
|
34 |
+
"""Input2 (Backbone) uses full-precision/BF16"""
|
35 |
+
"""Output1 uses full-precision/BF16"""
|
36 |
+
"""Output2 uses 1 * 16 group quantization"""
|
37 |
+
"""The input can be 2D or 3D, but the calculation is performed in 2D"""
|
38 |
+
|
39 |
+
|
40 |
+
@triton.autotune(
|
41 |
+
configs=[] + get_configs_io_block(),
|
42 |
+
key=[
|
43 |
+
"N",
|
44 |
+
],
|
45 |
+
)
|
46 |
+
@triton.heuristics(
|
47 |
+
{
|
48 |
+
"BLOCK_SN": lambda args: args["BLOCK_N"] // args["QB"],
|
49 |
+
}
|
50 |
+
)
|
51 |
+
@triton.jit
|
52 |
+
def _fp8_add_Ifp_Ifp_Ofp_Og16_kernel(
|
53 |
+
output1_ptr, # output
|
54 |
+
output2_ptr,
|
55 |
+
output2_scale_ptr,
|
56 |
+
input1_ptr, # input
|
57 |
+
input2_ptr, # input
|
58 |
+
M,
|
59 |
+
N,
|
60 |
+
SN,
|
61 |
+
QB: tl.constexpr,
|
62 |
+
fp8_max, # shape
|
63 |
+
input1_stride_0,
|
64 |
+
input1_stride_1, # input1 stride
|
65 |
+
input2_stride_0,
|
66 |
+
input2_stride_1, # input2 stride
|
67 |
+
output1_stride_0,
|
68 |
+
output1_stride_1, # output stride
|
69 |
+
output2_stride_0,
|
70 |
+
output2_stride_1, # output stride
|
71 |
+
s_output2_stride_0,
|
72 |
+
s_output2_stride_1, # scale of output stride
|
73 |
+
SCALE_MIN_THRES: tl.constexpr,
|
74 |
+
BLOCK_M: tl.constexpr,
|
75 |
+
BLOCK_N: tl.constexpr,
|
76 |
+
BLOCK_SN: tl.constexpr,
|
77 |
+
): # CUDA block size
|
78 |
+
|
79 |
+
# Block PID
|
80 |
+
pid = tl.program_id(0)
|
81 |
+
NUM_BLOCK_N = tl.cdiv(N, BLOCK_N)
|
82 |
+
pid_dim0 = pid // NUM_BLOCK_N
|
83 |
+
pid_dim1 = pid % NUM_BLOCK_N
|
84 |
+
|
85 |
+
# --- The first input ---
|
86 |
+
input1_block_ptr = tl.make_block_ptr(
|
87 |
+
base=input1_ptr,
|
88 |
+
shape=(M, N),
|
89 |
+
strides=(input1_stride_0, input1_stride_1),
|
90 |
+
offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
|
91 |
+
block_shape=(BLOCK_M, BLOCK_N),
|
92 |
+
order=(1, 0),
|
93 |
+
)
|
94 |
+
|
95 |
+
input1 = tl.load(input1_block_ptr)
|
96 |
+
input1 = input1.to(tl.float32)
|
97 |
+
input1 = tl.reshape(input1, (BLOCK_M, BLOCK_SN, QB))
|
98 |
+
|
99 |
+
# --- The second input ---
|
100 |
+
input2_block_ptr = tl.make_block_ptr(
|
101 |
+
base=input2_ptr,
|
102 |
+
shape=(M, N),
|
103 |
+
strides=(input2_stride_0, input2_stride_1),
|
104 |
+
offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
|
105 |
+
block_shape=(BLOCK_M, BLOCK_N),
|
106 |
+
order=(1, 0),
|
107 |
+
)
|
108 |
+
|
109 |
+
input2 = tl.load(input2_block_ptr)
|
110 |
+
input2 = input2.to(tl.float32)
|
111 |
+
input2 = tl.reshape(input2, (BLOCK_M, BLOCK_SN, QB))
|
112 |
+
|
113 |
+
# Actual Calculation of Add
|
114 |
+
add_output = input1 + input2
|
115 |
+
|
116 |
+
# Quantize the grad 1 - Scale calculation
|
117 |
+
abs_add_output = tl.abs(add_output)
|
118 |
+
max_val = tl.max(abs_add_output, axis=2) + SCALE_MIN_THRES
|
119 |
+
scale_output2 = max_val / fp8_max
|
120 |
+
scale_output2 = tl.reshape(scale_output2, (BLOCK_M, BLOCK_SN, 1))
|
121 |
+
|
122 |
+
# save the fp add output
|
123 |
+
fp_add_output = add_output.to(output1_ptr.type.element_ty)
|
124 |
+
fp_add_output = tl.reshape(fp_add_output, (BLOCK_M, BLOCK_N))
|
125 |
+
|
126 |
+
# pointers
|
127 |
+
output1_block_ptr = tl.make_block_ptr(
|
128 |
+
base=output1_ptr,
|
129 |
+
shape=(M, N),
|
130 |
+
strides=(output1_stride_0, output1_stride_1),
|
131 |
+
offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
|
132 |
+
block_shape=(BLOCK_M, BLOCK_N),
|
133 |
+
order=(1, 0),
|
134 |
+
)
|
135 |
+
|
136 |
+
tl.store(output1_block_ptr, fp_add_output)
|
137 |
+
|
138 |
+
# Quantize
|
139 |
+
add_output = tl.fdiv(add_output, scale_output2)
|
140 |
+
scale_output2 = scale_output2.to(output2_scale_ptr.type.element_ty)
|
141 |
+
scale_output2 = tl.reshape(scale_output2, (BLOCK_M, BLOCK_SN))
|
142 |
+
add_output = tl.reshape(add_output, (BLOCK_M, BLOCK_N))
|
143 |
+
|
144 |
+
add_output = add_output.to(output2_ptr.type.element_ty)
|
145 |
+
add_output = tl.reshape(add_output, (BLOCK_M, BLOCK_N))
|
146 |
+
|
147 |
+
# pointers
|
148 |
+
output2_block_ptr = tl.make_block_ptr(
|
149 |
+
base=output2_ptr,
|
150 |
+
shape=(M, N),
|
151 |
+
strides=(output2_stride_0, output2_stride_1),
|
152 |
+
offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_N),
|
153 |
+
block_shape=(BLOCK_M, BLOCK_N),
|
154 |
+
order=(1, 0),
|
155 |
+
)
|
156 |
+
scale_output2_ptr = tl.make_block_ptr(
|
157 |
+
base=output2_scale_ptr,
|
158 |
+
shape=(M, SN),
|
159 |
+
strides=(s_output2_stride_0, s_output2_stride_1),
|
160 |
+
offsets=(pid_dim0 * BLOCK_M, pid_dim1 * BLOCK_SN),
|
161 |
+
block_shape=(BLOCK_M, BLOCK_SN),
|
162 |
+
order=(1, 0),
|
163 |
+
)
|
164 |
+
tl.store(output2_block_ptr, add_output, boundary_check=(0, 1))
|
165 |
+
tl.store(scale_output2_ptr, scale_output2, boundary_check=(0, 1))
|
166 |
+
|
167 |
+
|
168 |
+
def fp8_add_Ifp_Ifp_Ofp_Og16(x1, x2, fp8type, QB): # suppose x1 is full precision or BF16
|
169 |
+
# Change batched 3D input to 2D
|
170 |
+
batched = False
|
171 |
+
if len(x1.shape) == 3:
|
172 |
+
batched = True
|
173 |
+
BS = x1.shape[0]
|
174 |
+
x1 = x1.reshape(-1, x1.shape[-1])
|
175 |
+
x2 = x2.reshape(-1, x2.shape[-1])
|
176 |
+
|
177 |
+
# defining the input and output tensor
|
178 |
+
M, N = x1.shape
|
179 |
+
SN = int(N / QB) # assume the shape of quantization block size is always 1 * G
|
180 |
+
assert x1.shape == x2.shape
|
181 |
+
|
182 |
+
y1 = torch.empty_like(x1, dtype=torch.bfloat16)
|
183 |
+
y2 = torch.empty_like(x2, dtype=fp8type)
|
184 |
+
s_y2 = torch.empty((M, SN), dtype=torch.bfloat16, device=x2.device)
|
185 |
+
fp8MaxValue = FP8_MAX_VALUE[fp8type] # E4M3 and E5M2 have different max value
|
186 |
+
|
187 |
+
grid = lambda META: (triton.cdiv(M, META["BLOCK_M"]) * triton.cdiv(N, META["BLOCK_N"]),)
|
188 |
+
|
189 |
+
_fp8_add_Ifp_Ifp_Ofp_Og16_kernel[grid](
|
190 |
+
y1,
|
191 |
+
y2,
|
192 |
+
s_y2,
|
193 |
+
x1,
|
194 |
+
x2,
|
195 |
+
M,
|
196 |
+
N,
|
197 |
+
SN,
|
198 |
+
QB,
|
199 |
+
fp8MaxValue,
|
200 |
+
x1.stride(0),
|
201 |
+
x1.stride(1),
|
202 |
+
x2.stride(0),
|
203 |
+
x2.stride(1),
|
204 |
+
y1.stride(0),
|
205 |
+
y1.stride(1),
|
206 |
+
y2.stride(0),
|
207 |
+
y2.stride(1),
|
208 |
+
s_y2.stride(0),
|
209 |
+
s_y2.stride(1),
|
210 |
+
SCALE_MIN_THRES=SCALE_MIN_THRES,
|
211 |
+
)
|
212 |
+
|
213 |
+
# Recover 2D to 3D
|
214 |
+
if batched:
|
215 |
+
y1 = y1.reshape(BS, -1, y1.shape[-1])
|
216 |
+
y2 = y2.reshape(BS, -1, y2.shape[-1])
|
217 |
+
s_y2 = s_y2.reshape(BS, -1, s_y2.shape[-1])
|
218 |
+
|
219 |
+
return y1, (y2, s_y2)
|