# Copyright (c) 2025 NVIDIA CORPORATION. # Licensed under the MIT license. # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license. # LICENSE is in incl_licenses directory. # Copyright 2024 NVIDIA CORPORATION & AFFILIATES # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # SPDX-License-Identifier: Apache-2.0 import os import typing from typing import List, Optional if typing.TYPE_CHECKING: from transformers import PreTrainedModel else: PreTrainedModel = None __all__ = ["load"] def load( model_path: str, model_base: Optional[str] = None, devices: Optional[List[int]] = None, **kwargs, ) -> PreTrainedModel: import torch from llava.conversation import auto_set_conversation_mode from llava.mm_utils import get_model_name_from_path from llava.model.builder import load_pretrained_model auto_set_conversation_mode(model_path) model_name = get_model_name_from_path(model_path) model_path = os.path.expanduser(model_path) if os.path.exists(os.path.join(model_path, "model")): model_path = os.path.join(model_path, "model") # Set `max_memory` to constrain which GPUs to use if devices is not None: assert "max_memory" not in kwargs, "`max_memory` should not be set when `devices` is set" kwargs.update(max_memory={device: torch.cuda.get_device_properties(device).total_memory for device in devices}) model = load_pretrained_model(model_path, model_name, model_base, **kwargs)[1] return model