# Copyright (c) 2025 NVIDIA CORPORATION. # Licensed under the MIT license. # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license. # LICENSE is in incl_licenses directory. # This file is modified from https://github.com/haotian-liu/LLaVA/ # Copyright 2023 Haotian Liu # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import warnings import torch from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, PretrainedConfig from llava.model import LlavaLlamaModel from llava.model.utils import is_mm_model def load_pretrained_model( model_path, model_name, model_base=None, load_8bit=False, load_4bit=False, device_map="auto", device="cuda", **kwargs, ): kwargs = {"device_map": device_map, **kwargs} if device != "cuda": kwargs["device_map"] = {"": device} if load_8bit: kwargs["load_in_8bit"] = True elif load_4bit: kwargs["load_in_4bit"] = True kwargs["quantization_config"] = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", ) else: kwargs["torch_dtype"] = torch.float16 # kwargs["torch_dtype"] = torch.bfloat16 if is_mm_model(model_path): # Load LLaVA model ## TODO @yunhao: mind fixing lora if "lora" in model_name.lower() and model_base is None: warnings.warn( "There is `lora` in model name but no `model_base` is provided. If you are loading a LoRA model, please provide the `model_base` argument. Detailed instruction: https://github.com/haotian-liu/LLaVA#launch-a-model-worker-lora-weights-unmerged." ) if ("lora" in model_name.lower() or "dora" in model_name.lower()) and model_base is not None: lora_cfg_pretrained = AutoConfig.from_pretrained(model_path) print(lora_cfg_pretrained) print("Loading LLaVA from base model...") config = AutoConfig.from_pretrained(model_base) prepare_config_for_eval(config, kwargs) model = LlavaLlamaModel.from_pretrained(model_base, low_cpu_mem_usage=True, config=config, **kwargs) tokenizer = model.tokenizer token_num, tokem_dim = model.llm.lm_head.out_features, model.llm.lm_head.in_features if model.llm.lm_head.weight.shape[0] != token_num: model.llm.lm_head.weight = torch.nn.Parameter( torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype) ) model.llm.embed_tokens.weight = torch.nn.Parameter( torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype) ) print("Loading additional LLaVA weights...") if os.path.exists(os.path.join(model_path, "non_lora_trainables.bin")): non_lora_trainables = torch.load( os.path.join(model_path, "non_lora_trainables.bin"), map_location="cpu", ) else: # this is probably from HF Hub from huggingface_hub import hf_hub_download def load_from_hf(repo_id, filename, subfolder=None): cache_file = hf_hub_download(repo_id=repo_id, filename=filename, subfolder=subfolder) return torch.load(cache_file, map_location="cpu") non_lora_trainables = load_from_hf(model_path, "non_lora_trainables.bin") non_lora_trainables = { (k[11:] if k.startswith("base_model.") else k): v for k, v in non_lora_trainables.items() } if any(k.startswith("model.model.") for k in non_lora_trainables): non_lora_trainables = { (k[6:] if k.startswith("model.") else k): v for k, v in non_lora_trainables.items() } model.load_state_dict(non_lora_trainables, strict=False) from peft import PeftModel print("Loading LoRA weights...") model = PeftModel.from_pretrained(model, model_path) print("Merging LoRA weights...") model = model.merge_and_unload() print("Model is loaded...") else: config = AutoConfig.from_pretrained(model_path) config.resume_path = model_path prepare_config_for_eval(config, kwargs) model = LlavaLlamaModel(config=config, low_cpu_mem_usage=True, **kwargs) tokenizer = model.tokenizer else: # Load language model if model_base is not None: # PEFT model from peft import PeftModel tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) model = AutoModelForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, **kwargs) print(f"Loading LoRA weights from {model_path}") model = PeftModel.from_pretrained(model, model_path) print(f"Merging weights") model = model.merge_and_unload() print("Convert to FP16...") model.to(torch.float16) else: tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False, legacy=False) model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs) model.eval() image_processor = None if is_mm_model(model_path): model.resize_token_embeddings(len(tokenizer)) if hasattr(model.llm.config, "max_sequence_length"): context_len = model.config.max_sequence_length else: context_len = 2048 return tokenizer, model, image_processor, context_len def prepare_config_for_eval(config: PretrainedConfig, kwargs: dict): try: # compatible with deprecated config convention if getattr(config, "vision_tower_cfg", None) is None: config.vision_tower_cfg = config.mm_vision_tower except AttributeError: raise ValueError(f"Invalid configuration! Cannot find vision_tower in config:\n{config}") config.model_dtype = kwargs.pop("torch_dtype").__str__()