# Copyright (c) 2025 NVIDIA CORPORATION. # Licensed under the MIT license. # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license. # LICENSE is in incl_licenses directory. # Copyright 2024 NVIDIA CORPORATION & AFFILIATES # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # SPDX-License-Identifier: Apache-2.0 import math import os import os.path as osp import warnings from dataclasses import asdict from typing import Tuple import torch from huggingface_hub import file_exists, repo_exists from huggingface_hub.utils import HFValidationError from transformers import ( AutoConfig, AutoModelForCausalLM, AutoModelForVision2Seq, AutoTokenizer, PretrainedConfig, PreTrainedModel, PreTrainedTokenizer, ) from llava.constants import MEDIA_TOKENS from llava.model.utils import packing from llava.utils.logging import logger from llava.utils.tokenizer import infer_stop_tokens def has_tokenizer(repo_id_or_path: str) -> bool: # Check if the tokenizer is in a local directory if osp.exists(osp.join(repo_id_or_path, "tokenizer_config.json")): return True # Check if the tokenizer is in a Hugging Face Hub repo try: return repo_exists(repo_id_or_path) and file_exists(repo_id_or_path, "tokenizer_config.json") except HFValidationError: return False def context_length_extension(config): orig_ctx_len = getattr(config, "max_position_embeddings", None) model_max_length = getattr(config, "model_max_length", None) if orig_ctx_len and model_max_length > orig_ctx_len: print(f"Scaling RoPE from {orig_ctx_len} to {model_max_length}") scaling_factor = float(math.ceil(model_max_length / orig_ctx_len)) config.rope_scaling = {"type": "linear", "factor": scaling_factor} return config def build_llm_and_tokenizer( model_name_or_path: str, config: PretrainedConfig, attn_implementation=None, model_max_length=None, *args, **kwargs, ) -> Tuple[PreTrainedModel, PreTrainedTokenizer]: # print(model_name_or_path) llm_cfg = AutoConfig.from_pretrained(model_name_or_path) llm_cfg._attn_implementation = attn_implementation llm_cfg.model_max_length = model_max_length if model_max_length is not None: context_length_extension(llm_cfg) # Quantization related quantization_restore_from_checkpoint = False if kwargs.get("quantize_model_class") is not None: assert kwargs.get("model_args") is not None quantize_model_class = kwargs.pop("quantize_model_class", None) model_args = kwargs.pop("model_args", None) if quantize_model_class == "QLlamaForCausalLM": # TODO: Also change the name of this class from .qllama import QLlamaConfig llm_cfg.architectures = "QLlamaForCausalLM" _attn_implementation = llm_cfg._attn_implementation llm_cfg = QLlamaConfig(**llm_cfg.to_dict()) llm_cfg._attn_implementation = _attn_implementation elif quantize_model_class == "QMemLlamaForCausalLM": # TODO: Also change the name of this class from .qmemllama import QMemLlamaConfig llm_cfg.architectures = "QMemLlamaForCausalLM" llm_cfg = QMemLlamaConfig(**llm_cfg.to_dict()) elif quantize_model_class == "FP8LinearQwen2ForCausalLM": from .configuration_quantize import QuantizationConfig from .fp8linearqwen2 import FP8LinearQwen2Config llm_cfg.architectures = "FP8LinearQwen2ForCausalLM" coat_fp8_args = QuantizationConfig(**asdict(model_args)) # Remove the quantization args from llm_cfg and make it a independent config model_args_dict = asdict(model_args) for key in asdict(coat_fp8_args).keys(): model_args_dict.pop(key, None) llm_cfg.coat_fp8_args = asdict(coat_fp8_args) _attn_implementation = llm_cfg._attn_implementation llm_cfg = FP8LinearQwen2Config(**llm_cfg.to_dict()) llm_cfg._attn_implementation = _attn_implementation elif quantize_model_class == "FP8ActivationQwen2ForCausalLM": from ..coat.activation.models._fp8_quantization_config import QuantizationConfig from .fp8activationqwen2 import FP8ActivationQwen2Config quantization_restore_from_checkpoint = True llm_cfg.architectures = "FP8ActivationQwen2ForCausalLM" coat_fp8_args = QuantizationConfig(**asdict(model_args)) # Remove the quantization args from llm_cfg and make it a independent config model_args_dict = asdict(model_args) for key in asdict(coat_fp8_args).keys(): model_args_dict.pop(key, None) llm_cfg.coat_fp8_args = asdict(coat_fp8_args) _attn_implementation = llm_cfg._attn_implementation llm_cfg = FP8ActivationQwen2Config(**llm_cfg.to_dict()) llm_cfg._attn_implementation = _attn_implementation elif quantize_model_class == "FP8ActivationResidualQwen2ForCausalLM": from ..coat.activation.models._fp8_quantization_config import QuantizationConfig from .fp8activationresidualqwen2 import FP8ActivationResidualQwen2Config quantization_restore_from_checkpoint = True llm_cfg.architectures = "FP8ActivationResidualQwen2ForCausalLM" coat_fp8_args = QuantizationConfig(**asdict(model_args)) # Remove the quantization args from llm_cfg and make it a independent config model_args_dict = asdict(model_args) for key in asdict(coat_fp8_args).keys(): model_args_dict.pop(key, None) llm_cfg.coat_fp8_args = asdict(coat_fp8_args) _attn_implementation = llm_cfg._attn_implementation llm_cfg = FP8ActivationResidualQwen2Config(**llm_cfg.to_dict()) llm_cfg._attn_implementation = _attn_implementation else: raise ValueError(f"{quantize_model_class} is not supported quantize_model_class.") kwargs.pop("quantize_model_class", None) if quantize_model_class in [ "FP8LinearQwen2ForCausalLM", "FP8ActivationQwen2ForCausalLM", "FP8ActivationResidualQwen2ForCausalLM", ]: # Remove the quantization args from llm_cfg and make it a independent config llm_cfg.update(model_args_dict) else: llm_cfg.update(asdict(model_args)) # print(model_args) if quantization_restore_from_checkpoint: fp8_model_name_or_path = kwargs.pop("fp8_llm_cfg", None) llm = AutoModelForCausalLM.from_pretrained( model_name_or_path, config=llm_cfg, torch_dtype=eval(config.model_dtype), *args, **kwargs ) else: llm = AutoModelForCausalLM.from_pretrained( model_name_or_path, config=llm_cfg, torch_dtype=eval(config.model_dtype), *args, **kwargs ) packing.patch(llm) # Locate the tokenizer. llm_path = model_name_or_path if not has_tokenizer(llm_path): llm_path = osp.join(llm_path, "llm") if not has_tokenizer(llm_path): raise ValueError(f"Cannot find tokenizer in {llm_path}.") tokenizer = AutoTokenizer.from_pretrained(llm_path, padding_side="right", use_fast=True, legacy=False) if model_max_length is not None: tokenizer.model_max_length = model_max_length # Load chat template if specified. if getattr(config, "chat_template", None) is not None: logger.info(f"Using chat template: {config.chat_template}") fpath = os.path.join(os.path.dirname(__file__), "chat_templates", f"{config.chat_template}.jinja") with open(fpath) as fd: chat_template = fd.read() tokenizer.chat_template = chat_template.replace(" ", "").replace("\n", "") # Set stop tokens for the tokenizer tokenizer.stop_tokens = infer_stop_tokens(tokenizer) tokenizer.stop_token_ids = tokenizer.convert_tokens_to_ids(tokenizer.stop_tokens) # Add media tokens to the tokenizer tokenizer.media_tokens = MEDIA_TOKENS tokenizer.media_token_ids = {} for name, token in MEDIA_TOKENS.items(): tokenizer.add_tokens([token], special_tokens=True) tokenizer.media_token_ids[name] = tokenizer.convert_tokens_to_ids(token) # TODO(ligeng): is this necessary for llava? config.hidden_size = llm.config.hidden_size return llm, tokenizer