# Copyright (c) 2025 NVIDIA CORPORATION. # Licensed under the MIT license. # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license. # LICENSE is in incl_licenses directory. # Copyright 2023 Haotian Liu # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This file is modified from https://github.com/haotian-liu/LLaVA/ import os from collections import defaultdict from typing import Dict, List, Optional, Tuple, Union import torch from transformers import AutoConfig, AutoModel, PretrainedConfig, PreTrainedModel from transformers.modeling_outputs import CausalLMOutputWithPast from llava.model.loss import soft_cross_entropy from llava.model.utils.packing import set_seqlens_in_batch from llava.train.sequence_parallel.globals import get_pg_manager from llava.utils.logging import logger from ...train.utils import calculate_loss_weight from ..configuration_llava import LlavaConfig from ..llava_arch import LlavaMetaForCausalLM, LlavaMetaModel class LlavaLlamaConfig(LlavaConfig): model_type = "llava_llama" # FIXME we will follow the convention to add a new class for CausalLM in the future class LlavaLlamaModel(LlavaMetaModel, LlavaMetaForCausalLM, PreTrainedModel): config_class = LlavaLlamaConfig main_input_name = "input_embeds" supports_gradient_checkpointing = True _supports_flash_attn_2 = True def __init__(self, config: LlavaLlamaConfig = None, *args, **kwargs) -> None: super().__init__(config) self.init_vlm(config=config, *args, **kwargs) @classmethod def from_pretrained( cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None, cache_dir: Optional[Union[str, os.PathLike]] = None, ignore_mismatched_sizes: bool = False, force_download: bool = False, local_files_only: bool = False, token: Optional[Union[str, bool]] = None, revision: str = "main", use_safetensors: bool = None, **kwargs, ): if hasattr(cls, "load_pretrained"): return cls.load_pretrained( pretrained_model_name_or_path, *model_args, config=config, cache_dir=cache_dir, ignore_mismatched_sizes=ignore_mismatched_sizes, force_download=force_download, local_files_only=local_files_only, token=token, revision=revision, use_safetensors=use_safetensors, **kwargs, ) return super(LlavaLlamaModel).from_pretrained( pretrained_model_name_or_path, *model_args, config=config, cache_dir=cache_dir, ignore_mismatched_sizes=ignore_mismatched_sizes, force_download=force_download, local_files_only=local_files_only, token=token, revision=revision, use_safetensors=use_safetensors, **kwargs, ) def forward( self, input_ids: torch.LongTensor = None, media: Optional[Dict[str, List[torch.Tensor]]] = None, images: Optional[torch.FloatTensor] = None, media_config: Optional[List] = None, attention_mask: Optional[torch.Tensor] = None, media_meta: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, packing: bool = True, force_packing: bool = False, seqlens_in_batch: Optional[torch.LongTensor] = None, dpo_forward: bool = False, **kwargs, ) -> Union[Tuple, CausalLMOutputWithPast]: self.freezed_module_patch() if images is not None: if media is not None: raise ValueError("Both 'media' and 'images' are provided. Please provide only one.") logger.warning("The 'images' argument is deprecated. Please use 'media' instead.") media = {"image": images} if media_config is None: media_config = defaultdict(dict) if inputs_embeds is None: inputs_embeds, labels, attention_mask = self._embed(input_ids, media, media_config, labels, attention_mask,media_meta) if force_packing or (packing and self.training and not dpo_forward): if seqlens_in_batch is None: seqlens_in_batch = torch.sum(attention_mask, dim=1) set_seqlens_in_batch(seqlens_in_batch) (inputs_embeds, attention_mask, position_ids, labels) = self.repack_multimodal_data( inputs_embeds, attention_mask, position_ids, labels ) outputs = self.llm( inputs_embeds=inputs_embeds, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, labels=labels, **kwargs, ) if self.training and getattr(self.config, "time_token_ids", []): outputs.loss = soft_cross_entropy( outputs.logits, labels, soft_tokens=self.config.time_token_ids, std=self.config.soft_ce_std, ) # Loss rescale for SP if get_pg_manager() is not None: loss_weight = calculate_loss_weight(labels) outputs.loss = outputs.loss * loss_weight if dpo_forward: return outputs.logits, labels return outputs AutoConfig.register("llava_llama", LlavaLlamaConfig) AutoModel.register(LlavaLlamaConfig, LlavaLlamaModel)