# Copyright (c) 2025 NVIDIA CORPORATION. # Licensed under the MIT license. # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license. # LICENSE is in incl_licenses directory. # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch LLaMA model.""" import math import os import time import warnings from typing import List, Optional, Tuple, Union import torch import torch.nn.functional as F import torch.utils.checkpoint from flash_attn import flash_attn_func, flash_attn_varlen_func from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from transformers import AutoConfig, AutoModel, AutoModelForCausalLM from transformers.activations import ACT2FN from transformers.modeling_flash_attention_utils import _flash_attention_forward from transformers.modeling_outputs import ( BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast, ) from transformers.modeling_utils import PreTrainedModel from transformers.models.llama.configuration_llama import LlamaConfig from transformers.models.llama.modeling_llama import ( LlamaAttention, LlamaDecoderLayer, LlamaDynamicNTKScalingRotaryEmbedding, LlamaFlashAttention2, LlamaForCausalLM, LlamaForSequenceClassification, LlamaLinearScalingRotaryEmbedding, LlamaMLP, LlamaModel, LlamaPreTrainedModel, LlamaRMSNorm, LlamaRotaryEmbedding, LlamaSdpaAttention, apply_rotary_pos_emb, repeat_kv, rotate_half, ) from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS from transformers.utils import ( add_start_docstrings, add_start_docstrings_to_model_forward, is_flash_attn_greater_or_equal_2_10, logging, replace_return_docstrings, ) from ..qlinear_te import QLinearTE try: import transformer_engine.pytorch as te except: pass from ..qfunction import * logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "QLlamaConfig" class QLlamaConfig(LlamaConfig): model_type = "qllama" class QLlamaMLP(LlamaMLP): def __init__(self, config, layer_idx): super().__init__(config) self.layer_idx = layer_idx # self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) # self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) # self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) self.gate_proj = QLinearTE( self.hidden_size, self.intermediate_size, bias=False, args=config, layer_idx=layer_idx ) self.up_proj = QLinearTE(self.hidden_size, self.intermediate_size, bias=False, args=config, layer_idx=layer_idx) self.down_proj = QLinearTE( self.intermediate_size, self.hidden_size, bias=False, args=config, layer_idx=layer_idx ) class QLlamaAttention(LlamaAttention): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: QLlamaConfig, layer_idx): super().__init__(config) self.layer_idx = layer_idx # self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias) # self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) # self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) # self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=config.attention_bias) self.q_proj = QLinearTE( self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias, args=config, layer_idx=layer_idx, ) self.k_proj = QLinearTE( self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias, args=config, layer_idx=layer_idx, ) self.v_proj = QLinearTE( self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias, args=config, layer_idx=layer_idx, ) self.o_proj = QLinearTE( self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias, args=config, layer_idx=layer_idx, ) class QLlamaFlashAttention2(QLlamaAttention): """ Llama flash attention module. This module inherits from `LlamaAttention` as the weights of the module stays untouched. The only required change would be on the forward pass where it needs to correctly call the public API of flash attention and deal with padding tokens in case the input contains any of them. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() forward = LlamaFlashAttention2.forward class QLlamaSdpaAttention(QLlamaAttention): """ Llama attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from `LlamaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to SDPA API. """ forward = LlamaSdpaAttention.forward QLLAMA_ATTENTION_CLASSES = { "eager": QLlamaAttention, "flash_attention_2": QLlamaFlashAttention2, "sdpa": QLlamaSdpaAttention, } class QLlamaDecoderLayer(LlamaDecoderLayer): def __init__(self, config: QLlamaConfig, layer_idx): super().__init__(config, layer_idx=layer_idx) self.hidden_size = config.hidden_size self.self_attn = QLLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx) self.mlp = QLlamaMLP(config, layer_idx) self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.layer_idx = layer_idx forward = LlamaDecoderLayer.forward class QLlamaPreTrainedModel(LlamaPreTrainedModel): config_class = QLlamaConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["QLlamaDecoderLayer"] _skip_keys_device_placement = "past_key_values" _supports_flash_attn_2 = True def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, nn.Linear) or isinstance(module, QLinearTE): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() class QLlamaModel(QLlamaPreTrainedModel): """ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`] Args: config: QLlamaConfig """ def __init__(self, config: QLlamaConfig): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.layers = nn.ModuleList( [QLlamaDecoderLayer(config, layer_idx=layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.rotary_emb = LlamaRotaryEmbedding(config=config) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value _update_causal_mask = LlamaModel._update_causal_mask forward = LlamaModel.forward class QLlamaForCausalLM(QLlamaPreTrainedModel): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config): super().__init__(config) self.model = QLlamaModel(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.forward_step_id = 0 # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model forward = LlamaForCausalLM.forward prepare_inputs_for_generation = LlamaForCausalLM.prepare_inputs_for_generation class QLlamaForSequenceClassification(QLlamaPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.model = QLlamaModel(config) self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value forward = LlamaForSequenceClassification.forward AutoConfig.register("qllama", QLlamaConfig) AutoModel.register(QLlamaConfig, QLlamaModel) AutoModelForCausalLM.register(QLlamaConfig, QLlamaForCausalLM)