# Copyright (c) 2025 NVIDIA CORPORATION. # Licensed under the MIT license. # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license. # LICENSE is in incl_licenses directory. # Copyright 2024 NVIDIA CORPORATION & AFFILIATES # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # SPDX-License-Identifier: Apache-2.0 # This file is modified from https://github.com/haotian-liu/LLaVA/ import torch from transformers import CLIPImageProcessor, CLIPVisionModel, PretrainedConfig from llava.model.multimodal_encoder.vision_encoder import VisionTower, VisionTowerS2 class CLIPVisionTower(VisionTower): def __init__(self, model_name_or_path: str, config: PretrainedConfig): super().__init__(model_name_or_path, config) self.image_processor = CLIPImageProcessor.from_pretrained(model_name_or_path) self.vision_tower = CLIPVisionModel.from_pretrained(model_name_or_path, torch_dtype=eval(config.model_dtype)) self.is_loaded = True class CLIPVisionTowerS2(VisionTowerS2): def __init__(self, model_name_or_path: str, config: PretrainedConfig): super().__init__(model_name_or_path, config) self.image_processor = CLIPImageProcessor.from_pretrained(model_name_or_path) self.vision_tower = CLIPVisionModel.from_pretrained(model_name_or_path, torch_dtype=eval(config.model_dtype)) # Make sure it crops/resizes the image to the largest scale in self.scales to maintain high-res information self.image_processor.size["shortest_edge"] = self.scales[-1] self.image_processor.crop_size["height"] = self.image_processor.crop_size["width"] = self.scales[-1] self.is_loaded = True