# Copyright (c) 2025 NVIDIA CORPORATION. # Licensed under the MIT license. # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license. # LICENSE is in incl_licenses directory. # Copyright 2024 NVIDIA CORPORATION & AFFILIATES # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # SPDX-License-Identifier: Apache-2.0 # This file is modified from https://github.com/haotian-liu/LLaVA/ from abc import abstractmethod import torch import torch.nn as nn import torch.nn.functional as F class SoundTower(nn.Module): def __init__(self, sound_tower, args, delay_load=False): super().__init__() self.is_loaded = False self.sound_tower_name = sound_tower self.cfg_only = None def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor): """ Computes the output length of the convolutional layers and the output length of the audio encoder """ input_lengths = (input_lengths - 1) // 2 + 1 output_lengths = (input_lengths - 2) // 2 + 1 return input_lengths, output_lengths def forward(self, sounds, mask=None): if type(sounds) is list: sound_features = [] for sound in sounds: # Calculate attention mask audio_feat_lengths, audio_output_lengths = self._get_feat_extract_output_lengths(mask.sum(-1)) # for cases where only one window is there for the audio_clip batch_size, _, max_mel_seq_len = sound.shape max_seq_len = (max_mel_seq_len - 2) // 2 + 1 seq_range = ( torch.arange(0, max_seq_len, dtype=audio_feat_lengths.dtype, device=audio_feat_lengths.device) .unsqueeze(0) .expand(batch_size, max_seq_len) ) lengths_expand = audio_feat_lengths.unsqueeze(1).expand(batch_size, max_seq_len) padding_mask = seq_range >= lengths_expand audio_attention_mask_ = padding_mask.view(batch_size, 1, 1, max_seq_len).expand( batch_size, 1, max_seq_len, max_seq_len ) audio_attention_mask = audio_attention_mask_.to( dtype=self.sound_tower.conv1.weight.dtype, device=self.sound_tower.conv1.weight.device ) audio_attention_mask[audio_attention_mask_] = float("-inf") # Calculate features sound_feature = self.sound_tower(sound, attention_mask=audio_attention_mask) sound_feature = sound_feature.to(sound.dtype) sound_feature = sound_feature.last_hidden_state sound_features.append(sound_feature) else: # Calculate attention mask if len(sounds.shape) == 5: sounds = sounds.squeeze(0).squeeze(1) mask = mask.squeeze(0) audio_feat_lengths, audio_output_lengths = self._get_feat_extract_output_lengths(mask.sum(-1)) # for cases where only one window is there for the audio_clip batch_size, _, max_mel_seq_len = sounds.shape max_seq_len = (max_mel_seq_len - 2) // 2 + 1 seq_range = ( torch.arange(0, max_seq_len, dtype=audio_feat_lengths.dtype, device=audio_feat_lengths.device) .unsqueeze(0) .expand(batch_size, max_seq_len) ) lengths_expand = audio_feat_lengths.expand(batch_size, max_seq_len) padding_mask = seq_range >= lengths_expand audio_attention_mask_ = padding_mask.view(batch_size, 1, 1, max_seq_len).expand( batch_size, 1, max_seq_len, max_seq_len ) audio_attention_mask = audio_attention_mask_.to( dtype=self.sound_tower.conv1.weight.dtype, device=self.sound_tower.conv1.weight.device ) audio_attention_mask[audio_attention_mask_] = float("-inf") # Calculate features sound_features = self.sound_tower(sounds, attention_mask=audio_attention_mask) sound_features = sound_features.last_hidden_state sound_features = sound_features.to(sounds.dtype) return sound_features @property def dummy_feature(self): return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) @property def dtype(self): return self.sound_tower.dtype @property def config(self): if self.is_loaded: return self.sound_tower.config else: return self.cfg_only @property def device(self): return self.sound_tower.device @property def hidden_size(self): return self.config.hidden_size