# Copyright (c) 2025 NVIDIA CORPORATION. # Licensed under the MIT license. # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license. # LICENSE is in incl_licenses directory. # Copyright 2024 NVIDIA CORPORATION & AFFILIATES # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # SPDX-License-Identifier: Apache-2.0 # This file is modified from https://github.com/haotian-liu/LLaVA/ import os import torch from transformers import PretrainedConfig, PreTrainedModel from .base_projector import MultimodalProjector, MultimodalProjectorConfig from .speech_base_projector import SpeechMultimodalProjector, SpeechMultimodalProjectorConfig from .sound_base_projector import SoundMultimodalProjector, SoundMultimodalProjectorConfig def build_speech_mm_projector(model_type_or_path: str, config: PretrainedConfig) -> PreTrainedModel: if model_type_or_path is None: return None ## load from pretrained model if config.resume_path: assert os.path.exists(model_type_or_path), f"Resume speech mm projector path {model_type_or_path} does not exist!" return SpeechMultimodalProjector.from_pretrained(model_type_or_path, config, torch_dtype=eval(config.model_dtype)) ## build from scratch else: print("WARNING: Building speech multimodal projector from scratch!") speech_mm_projector_cfg = SpeechMultimodalProjectorConfig(model_type_or_path) speech_mm_projector = SpeechMultimodalProjector(speech_mm_projector_cfg, config).to(eval(config.model_dtype)) return speech_mm_projector def build_sound_mm_projector(model_type_or_path: str, config: PretrainedConfig) -> PreTrainedModel: if model_type_or_path is None: return None ## load from pretrained model if config.resume_path: print(config.resume_path) assert os.path.exists(model_type_or_path), f"Resume sound mm projector path {model_type_or_path} does not exist!" return SoundMultimodalProjector.from_pretrained(model_type_or_path, config, torch_dtype=eval(config.model_dtype)) # build from scratch else: print("WARNING: Building sound multimodal projector from scratch!") sound_mm_projector_cfg = SoundMultimodalProjectorConfig(model_type_or_path) sound_mm_projector = SoundMultimodalProjector(sound_mm_projector_cfg, config).to(eval(config.model_dtype)) return sound_mm_projector