# Copyright (c) 2025 NVIDIA CORPORATION. # Licensed under the MIT license. # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license. # LICENSE is in incl_licenses directory. # Copyright 2024 NVIDIA CORPORATION & AFFILIATES # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # SPDX-License-Identifier: Apache-2.0 import re import torch import torch.nn as nn from transformers import AutoConfig, AutoModel, PretrainedConfig, PreTrainedModel class SpeechMultimodalProjectorConfig(PretrainedConfig): model_type = "speech_mm_projector" def __init__(self, speech_mm_projector_type: str = None, **kwargs): super().__init__() self.speech_mm_projector_type = speech_mm_projector_type class SpeechMultimodalProjector(PreTrainedModel): config_class = SpeechMultimodalProjectorConfig def __init__(self, speech_mm_projector_cfg: SpeechMultimodalProjectorConfig, config: PretrainedConfig): super().__init__(speech_mm_projector_cfg) # speech_mm_projector_type = speech_mm_projector_cfg.speech_mm_projector_type speech_mm_projector_type = "mlp" if speech_mm_projector_type == "mlp": self.conv = nn.Conv1d(config.speech_hidden_size, config.speech_hidden_size, kernel_size=2, stride=2) self.layers = nn.Sequential( nn.Linear(config.speech_hidden_size, config.hidden_size), nn.GELU(), nn.Linear(config.hidden_size, config.hidden_size), ) else: raise ValueError(f"Unknown projector type: {speech_mm_projector_type}") def forward(self, x, *args, **kwargs): x = self.conv(x.transpose(1,2)).transpose(1,2) return self.layers(x) AutoConfig.register("speech_mm_projector", SpeechMultimodalProjectorConfig) AutoModel.register(SpeechMultimodalProjectorConfig, SpeechMultimodalProjector)