# Copyright (c) 2025 NVIDIA CORPORATION. # Licensed under the MIT license. # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license. # LICENSE is in incl_licenses directory. import os import time from copy import deepcopy import matplotlib.pyplot as plt import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd.function import Function, InplaceFunction from torch.cuda import amp from .language_model.configuration_quantize import QuantizationConfig from .qfunction import block_cut, block_quant, block_reshape from .qutils import quant_get_local_rank from .realquantize.division_transpose import fp8_division_transpose from .realquantize.linear import fp8_linear_backward, fp8_linear_forward from .realquantize.quantize_and_transpose import fp8_quantize_and_transpose class QLinearTE(nn.Linear): def __init__(self, in_features, out_features, bias=True, device=None, args=None, layer_idx=0): super().__init__(in_features, out_features, bias, device) try: # TODO: remove this try except (llama & qwen2) self.args = QuantizationConfig(**deepcopy(args)) except: self.args = deepcopy(args) self.apply_quantize = min(self.weight.shape[0], self.weight.shape[1]) >= 3584 if quant_get_local_rank() == 0: if self.apply_quantize: print(f"[qlinear debug] Apply QLinear, {layer_idx}") else: print(f"[qlinear debug] Don't QLinear, {layer_idx} since the weight is too small: {self.weight.shape}") self.layer_idx = layer_idx self.layer_name = None def forward(self, Input): # if torch.randn(1) < 0.01: # print(Input.shape, self.weight.shape) if self.training and self.apply_quantize: # if False: output = QuantLinearTE.apply(Input, self.weight, self.bias, self.args, self.layer_name) else: output = F.linear(Input, self.weight, self.bias) return output # if int(os.environ.get("LOCAL_RANK")) == 0: # import IPython # IPython.embed() # else: # import time # time.sleep(1000) # class QuantLinearTE(Function): # @staticmethod # def forward(ctx, input, weight, bias, args, layer_type): # ctx.saved = input, weight, bias, args, layer_type # return F.linear(input, weight, bias) # @staticmethod # def backward(ctx, grad_output): # input, weight, bias, args, layer_type = ctx.saved # C_in = input.shape[-1] # C_out = grad_output.shape[-1] # grad_output_flatten = grad_output.reshape(-1, C_out) # input_flatten = input.reshape(-1, C_in) # if grad_output_flatten.dtype == input_flatten.dtype: # grad_weight = grad_output_flatten.t().mm(input_flatten) # else: # grad_weight = grad_output_flatten.float().t().mm(input_flatten) # if grad_output_flatten.dtype == weight.dtype: # grad_input = grad_output_flatten.mm(weight) # else: # grad_input = grad_output_flatten.float().mm(weight) # if bias is not None: # grad_bias = grad_output_flatten.sum(0) # else: # grad_bias = None # grad_input_transform = grad_input.reshape(input.size()) # return grad_input_transform, grad_weight, grad_bias, None, None class QuantLinearTE(Function): @staticmethod @amp.custom_fwd(cast_inputs=torch.bfloat16) def forward(ctx, input, weight, bias, args, layer_name): time_bench = os.getenv("TIME_BENCH") if time_bench: start_1 = torch.cuda.Event(enable_timing=True) start_1.record() # Qinput, Iscale, Qinput_t = fp8_division_transpose(input, 16, args.fabit) Qinput, Iscale, Qinput_t = fp8_quantize_and_transpose(input, 16, args.fabit, transpose_output_2d=True) if time_bench: end_1 = torch.cuda.Event(enable_timing=True) end_1.record() start_2 = torch.cuda.Event(enable_timing=True) start_2.record() # Qweight, Wscale, Qweight_t = fp8_division_transpose(weight, 16, args.fwbit) Qweight, Wscale, Qweight_t = fp8_quantize_and_transpose(weight, 16, args.fwbit, transpose_output_2d=True) if time_bench: end_2 = torch.cuda.Event(enable_timing=True) end_2.record() start_3 = torch.cuda.Event(enable_timing=True) start_3.record() ctx.saved = Qinput_t, Iscale, Qweight_t, Wscale, bias, args, layer_name fc_output = fp8_linear_forward(Qinput, Iscale, Qweight, Wscale, False, 0, bias) if time_bench: end_3 = torch.cuda.Event(enable_timing=True) end_3.record() start_4 = torch.cuda.Event(enable_timing=True) start_4.record() output = F.linear(input, weight, bias) end_4 = torch.cuda.Event(enable_timing=True) end_4.record() torch.cuda.synchronize() if quant_get_local_rank() == 0: print( f"[Forward] Part 1: {start_1.elapsed_time(end_1):.6f} ms | Part 2: {start_2.elapsed_time(end_2):.6f} ms | Part 3: {start_3.elapsed_time(end_3):.6f} ms | " f"FP8: {start_1.elapsed_time(end_3):.6f} | BF16: {start_4.elapsed_time(end_4):.6f} | Input shape: {input.shape} | Weight shape: {weight.shape}" ) return fc_output @staticmethod @amp.custom_bwd def backward(ctx, grad_output): Qinput_t, Iscale, Qweight_t, Wscale, bias, args, layer_name = ctx.saved time_bench = os.getenv("TIME_BENCH") if time_bench: start_1 = torch.cuda.Event(enable_timing=True) start_1.record() # Qgrad_output, Gscale, Qgrad_output_t = fp8_division_transpose(grad_output, 16, args.bobit, stochastic=False) Qgrad_output, Gscale, Qgrad_output_t = fp8_quantize_and_transpose( grad_output, 16, args.bobit, stochastic=False, transpose_output_2d=True ) if time_bench: end_1 = torch.cuda.Event(enable_timing=True) end_1.record() start_2 = torch.cuda.Event(enable_timing=True) start_2.record() grad_input, grad_weight = fp8_linear_backward( Qinput_t, Iscale, Qgrad_output, Gscale, Qgrad_output_t, Qweight_t, Wscale, 16, bias, stochastic=False, dgrad_quantize=False, ) if time_bench: end_2 = torch.cuda.Event(enable_timing=True) end_2.record() start_3 = torch.cuda.Event(enable_timing=True) start_3.record() if bias is not None: grad_bias = grad_output.reshape(-1, grad_output.shape[-1]).sum(0) else: grad_bias = None if time_bench: end_3 = torch.cuda.Event(enable_timing=True) end_3.record() # ========== BF16 ========== C_in = Qinput_t.shape[0] C_out = grad_output.shape[-1] grad_output_flatten = grad_output.reshape(-1, C_out) input_flatten = Qinput_t.t().reshape(-1, C_in).to(torch.bfloat16) weight = Qweight_t.t().to(torch.bfloat16) start_4 = torch.cuda.Event(enable_timing=True) start_4.record() if grad_output_flatten.dtype == input_flatten.dtype: _grad_weight = grad_output_flatten.t().mm(input_flatten) else: _grad_weight = grad_output_flatten.float().t().mm(input_flatten) if grad_output_flatten.dtype == weight.dtype: _grad_input = grad_output_flatten.mm(weight) else: _grad_input = grad_output_flatten.float().mm(weight) end_4 = torch.cuda.Event(enable_timing=True) end_4.record() torch.cuda.synchronize() if quant_get_local_rank() == 0: print( f"[Backward] Part 1: {start_1.elapsed_time(end_1):.6f} ms | Part 2: {start_2.elapsed_time(end_2):.6f} ms | Part 3: {start_3.elapsed_time(end_3):.6f} ms | " f"FP8: {start_1.elapsed_time(end_3):.6f} | BF16: {start_4.elapsed_time(end_4):.6f} | Input shape: {Qinput_t.shape} | Weight shape: {weight.shape}" ) return grad_input, grad_weight, grad_bias, None, None