# Copyright (c) 2025 NVIDIA CORPORATION. # Licensed under the MIT license. # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license. # LICENSE is in incl_licenses directory. import torch import torch.nn as nn from torch.autograd.function import Function, InplaceFunction try: from .QAct import QAct_FPin, QAct_FPout from .Qconfig import qconfig from .QFunction import * from .utils import * except: from Qconfig import qconfig from utils import * from QFunction import * from .QAct import QAct_FPin, QAct_FPout import os from copy import deepcopy import matplotlib.pyplot as plt class QLayerNorm(nn.Module): def __init__(self, normalized_shape, eps=1e-5, args=None, layer_type=""): super().__init__() self.args = deepcopy(args) self.layer_type = layer_type assert layer_type != "", "layer_type is not defined" assert layer_type in qconfig.qlayernorm_config, f"{layer_type} not in qlayernorm_config" self.apply_quantize = list_has_common_element(args.qchoice, qconfig.qlayernorm_config[layer_type]) self.fbit = self.args.fabit if self.args.fabit else self.Ubit self.bbit = self.args.babit if self.args.babit else self.Ubit quantize_flag = format_string_with_condition( layer_type, {"apply": self.apply_quantize}, self.args.symm, self.fbit, self.bbit, {"row": self.args.row_blocksize, "col": self.args.col_blocksize}, ) print(quantize_flag) self.ln_in = QAct_FPout(args, layer_type=layer_type + "_in") self.layer_norm = nn.LayerNorm(normalized_shape, eps=eps) self.ln_out = QAct_FPin(args, layer_type=layer_type + "_out") def forward(self, Qinput, Iscale): # input shape is (Batch Size, Sequence Length, Hidden Size) input = self.ln_in(Qinput, Iscale) output_fp = self.layer_norm(input) # import IPython # IPython.embed() output, scale = self.ln_out(output_fp) return output, scale if __name__ == "__main__": Sum = torch.load("tensor/QAct_nan_epoch16.pt")