# Copyright (c) 2025 NVIDIA CORPORATION. # Licensed under the MIT license. # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license. # LICENSE is in incl_licenses directory. import torch import triton import triton.language as tl from triton.language.extra.cuda import libdevice try: from .common import FP8_MAX_VALUE, SCALE_MIN_THRES, convert_fp8_to_embit, convert_str_to_fp8 from .division import _stochastic_rounding except: from common import SCALE_MIN_THRES, FP8_MAX_VALUE, convert_str_to_fp8, convert_fp8_to_embit from division import _stochastic_rounding import os import time """Linear Layer Forward + Backward""" """Input uses per-tensor quantization""" """Output is full-precision/BF16 (for FlashAttention) or 1 * 16 quantization (for the rest)""" """The input can be 2D or 3D, but the calculation is performed in 2D""" def get_configs_io_block(): configs = [] for nstages in [3]: for block_m in [128, 256]: for block_n in [128, 256]: for block_k in [128, 256]: for nwarps in [8]: configs.append( triton.Config( {"BLOCK_M": block_m, "BLOCK_N": block_n, "BLOCK_K": block_k}, num_stages=nstages, num_warps=nwarps, ) ) return configs @triton.autotune( configs=get_configs_io_block(), key=["N"], ) @triton.jit def _fp8matmul_kernel( A, B, C, noise_ptr, # noise for stochastic M, N, K, # stride_am, stride_ak, # stride_bk, stride_bn, # stride_cm, stride_cn, ## Scale_A, Scale_B, Scale_C, stride_scm, stride_scn, output_quantize: tl.constexpr, QB: tl.constexpr, # default to use 1 * 16 quantization BIAS, fp8_max, e_bit, m_bit, SCALE_MIN_THRES: tl.constexpr, STOCHASTIC: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, BLOCK_K: tl.constexpr, GROUP_M: tl.constexpr, ): # matrix multiplication pid = tl.program_id(0) grid_m = tl.cdiv(M, BLOCK_M) grid_n = tl.cdiv(N, BLOCK_N) # re-order program ID for better L2 performance width = GROUP_M * grid_n group_id = pid // width group_size = min(grid_m - group_id * GROUP_M, GROUP_M) pid_m = group_id * GROUP_M + (pid % group_size) pid_n = (pid % width) // (group_size) # do matrix multiplication rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M) rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N) ram = tl.max_contiguous(tl.multiple_of(rm % M, BLOCK_M), BLOCK_M) rbn = tl.max_contiguous(tl.multiple_of(rn % N, BLOCK_N), BLOCK_N) rk = tl.arange(0, BLOCK_K) # pointers A = A + (ram[:, None] * stride_am + rk[None, :] * stride_ak) B = B + (rk[:, None] * stride_bk + rbn[None, :] * stride_bn) acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=tl.float32) for k in range(0, tl.cdiv(K, BLOCK_K)): # a = tl.load(A) # b = tl.load(B) k_remaining = K - k * BLOCK_K _0 = tl.zeros((1, 1), dtype=C.dtype.element_ty) a = tl.load(A, mask=rk[None, :] < k_remaining, other=_0) b = tl.load(B, mask=rk[:, None] < k_remaining, other=_0) acc = tl.dot(a, b, acc) A += BLOCK_K * stride_ak B += BLOCK_K * stride_bk scale_a = tl.load(Scale_A) scale_b = tl.load(Scale_B) scale_ab = scale_a.to(tl.float32) * scale_b.to(tl.float32) # fp8 dequantize acc = acc * scale_ab if BIAS: bias = tl.load(BIAS + rbn) acc = acc + bias # rematerialize rm and rn to save registers rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M) rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N) C = C + (rm[:, None] * stride_cm + rn[None, :] * stride_cn) mask = (rm < M)[:, None] & (rn < N)[None, :] if output_quantize: acc = tl.reshape(acc, (BLOCK_M, BLOCK_N // QB, QB)) abs_acc = tl.abs(acc) acc_max = tl.max(abs_acc, axis=2) + SCALE_MIN_THRES # tl.device_print("acc_max", acc_max) acc_scale = acc_max / fp8_max # tl.device_print("acc_scale", acc_scale) acc_scale = tl.reshape(acc_scale, (BLOCK_M, BLOCK_N // QB, 1)) acc = tl.div_rn(acc, acc_scale) acc = tl.reshape(acc, (BLOCK_M, BLOCK_N)) if STOCHASTIC: noise_block_ptr = noise_ptr + (rm[:, None] * stride_cm + rn[None, :] * stride_cn) noise = tl.load(noise_block_ptr, boundary_check=(0, 1)) acc = _stochastic_rounding(acc, noise, e_bit, m_bit) acc_scale = tl.reshape(acc_scale, (BLOCK_M, BLOCK_N // QB)) acc = acc.to(C.dtype.element_ty) rsm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M) rsn = pid_n * BLOCK_N // QB + tl.arange(0, BLOCK_N // QB) Scale_C = Scale_C + (rsm[:, None] * stride_scm + rsn[None, :] * stride_scn) tl.store(C, acc, mask=mask, boundary_check=(0, 1)) tl.store(Scale_C, acc_scale) else: # handles write-back with reduction-splitting acc = acc.to(C.dtype.element_ty) tl.store(C, acc, mask=mask) def fp8matmul(a, b, output_quantize, scale_a, scale_b, QB, bias=None, stochastic=False): # Deal with batched input if len(a.shape) == 3: BS, batched = a.shape[0], True a = a.reshape(-1, a.shape[2]) else: batched = False # Check constraints. assert a.shape[1] == b.shape[0], "Incompatible dimensions" assert a.is_contiguous(), "Matrix A must be contiguous" M, K = a.shape K, N = b.shape fp8MaxValue = FP8_MAX_VALUE[a.dtype] # E4M3 and E5M2 have different max value e_bit, m_bit = convert_fp8_to_embit[a.dtype] # Allocates output. if output_quantize: c = torch.empty((M, N), device=a.device, dtype=a.dtype) # c = torch.empty((M, N), device=a.device, dtype=torch.float32) scale_c = torch.empty((M, N // QB), device=a.device, dtype=torch.float32) else: c = torch.empty((M, N), device=a.device, dtype=torch.bfloat16) scale_c = torch.empty( (1, 1), device=a.device, dtype=torch.bfloat16 ) # This line is useless, equivalent to scale_c = None if stochastic: noise = torch.empty_like(c, dtype=torch.float32).uniform_(-0.5, 0.5) else: noise = None # 1D launch kernel where each block gets its own program. grid = lambda META: (triton.cdiv(M, META["BLOCK_M"]) * triton.cdiv(N, META["BLOCK_N"]),) _fp8matmul_kernel[grid]( a, b, c, noise, # M, N, K, # a.stride(0), a.stride(1), # b.stride(0), b.stride(1), # c.stride(0), c.stride(1), # scale_a, scale_b, scale_c, scale_c.stride(0), scale_c.stride(1), output_quantize=output_quantize, QB=QB, BIAS=bias, fp8_max=fp8MaxValue, e_bit=e_bit, m_bit=m_bit, SCALE_MIN_THRES=SCALE_MIN_THRES, STOCHASTIC=stochastic, # BLOCK_M=128, # BLOCK_N=256, # BLOCK_K=128, GROUP_M=8, # num_stages=3, # num_warps=8, ) # Reshape output to batch if batched: c = c.reshape(BS, -1, N) if output_quantize: scale_c = scale_c.reshape(BS, -1, N // QB) return c, scale_c else: if output_quantize: scale_c = scale_c.reshape(M, N // QB) return c, scale_c return c def fp8_linear_forward(x, s, w, s_w, output_quantize, QB, bias=None): w_t = w.t() return fp8matmul(x, w_t, output_quantize, s, s_w, QB, bias) # def fp8_linear_forward(x, s, w, s_w, output_quantize, QB): # print("you are using the wrong linear function. ") # w_t = w.t() # if output_quantize: # return fp8matmul(x, w_t, True, s, s_w, QB) # else: # y = fp8matmul(x, w_t, False, s, s_w, QB) # return y def fp8_linear_backward( x_t, s, g, s_g, g_t, w_t, s_w, QB, bias=None, stochastic=False, dgrad_quantize=True ): # dgrad_quantize=True for backward before flashattention batched = False if len(g.shape) == 3: # others must be of 2D! batched = True BS = g.shape[0] g = g.reshape(-1, g.shape[-1]) w_t_t = w_t.t() x_t_t = x_t.t() if dgrad_quantize: y, s_y = fp8matmul(g, w_t_t, True, s_g, s_w, QB, stochastic=stochastic) else: y = fp8matmul(g, w_t_t, False, s_g, s_w, QB) w_g = fp8matmul(g_t, x_t_t, False, s_g, s, QB) if batched: y = y.reshape(BS, -1, y.shape[-1]) if dgrad_quantize: if s_y.numel() > 1: s_y = s_y.reshape(BS, -1, s_y.shape[-1]) if dgrad_quantize: return y, s_y, w_g else: return y, w_g if __name__ == "__main__": # Input = torch.load("/home/hxi/lustre_hxi/workdir/FP8_OLMo/debug_linear.pt") # mul_x_t, mul_s, out_g, out_gs, out_g_t, weight2_t, weight2_s, qgroup_size = Input # fc2_g, fc2_gs, weight2_grad = fp8_linear_backward(mul_x_t, mul_s, out_g, out_gs, out_g_t, weight2_t, weight2_s, qgroup_size, stochastic=True) # # fc2_x = fp8_linear_forward(flash_x, flash_s, weight2, weight2_s, False, 16) # import IPython # IPython.embed() def validity_check(M, N, K): a = torch.randn((M, K), device="cuda", dtype=torch.float32) b = torch.randn((N, K), device="cuda", dtype=torch.bfloat16) scale_a, scale_b = torch.randn((1), device="cuda", dtype=torch.bfloat16), torch.randn( (1), device="cuda", dtype=torch.bfloat16 ) a = a.to(torch.float8_e4m3fn) b = b.T b = b.to(torch.float8_e4m3fn) output_fp8_y, output_fp8_s = fp8matmul(a, b, True, scale_a, scale_b, 16) a_32, b_32 = a.to(torch.float32), b.to(torch.float32) output_torch = torch.matmul(a_32, b_32) * scale_a * scale_b import IPython IPython.embed() def time_check(M, N, K): a = torch.randn((M, K), device="cuda", dtype=torch.float32) b = torch.randn((N, K), device="cuda", dtype=torch.bfloat16) scale_a, scale_b = torch.randn((1), device="cuda", dtype=torch.bfloat16), torch.randn( (1), device="cuda", dtype=torch.bfloat16 ) a = a.to(torch.float8_e4m3fn) b = b.T b = b.to(torch.float8_e4m3fn) for _ in range(10): torch.cuda.synchronize() start = time.time() output_fp8_y = fp8matmul(a, b, False, scale_a, scale_b, 16) torch.cuda.synchronize() end = time.time() print(end - start) # import IPython # IPython.embed() configs = [] for fp8_inputs in [True]: configs.append( triton.testing.Benchmark( x_names=["M", "N", "K"], # Argument names to use as an x-axis for the plot x_vals=[512 * i for i in range(2, 17)], # Different possible values for `x_name` line_arg="provider", # Argument name whose value corresponds to a different line in the plot # Possible values for `line_arg` # Don't compare to cublas for fp8 cases as torch.matmul doesn't support fp8 at the moment. line_vals=["triton"] if fp8_inputs else ["cublas", "triton"], # Label name for the lines line_names=["Triton"] if fp8_inputs else ["cuBLAS", "Triton"], # Line styles styles=[("green", "-"), ("blue", "-")], ylabel="TFLOPS", # Label name for the y-axis plot_name="matmul-performance-" + ( "fp16" if not fp8_inputs else "fp8" ), # Name for the plot, used also as a file name for saving the plot. args={"fp8_inputs": fp8_inputs}, ) ) @triton.testing.perf_report(configs) def benchmark(M, N, K, provider, fp8_inputs): a = torch.randn((M, K), device="cuda", dtype=torch.bfloat16) b = torch.randn((N, K), device="cuda", dtype=torch.bfloat16) if fp8_inputs: a = a.to(torch.float8_e4m3fn) b = b.T b = b.to(torch.float8_e4m3fn) scale_a, scale_b = torch.randn((1), device="cuda", dtype=torch.bfloat16), torch.randn( (1), device="cuda", dtype=torch.bfloat16 ) quantiles = [0.5, 0.2, 0.8] if provider == "cublas": import IPython IPython.embed() ms, min_ms, max_ms = triton.testing.do_bench(lambda: torch.matmul(a, b), quantiles=quantiles) if provider == "triton": ms, min_ms, max_ms = triton.testing.do_bench( lambda: fp8matmul(a, b, False, scale_a, scale_b, 16), quantiles=quantiles ) perf = lambda ms: 2 * M * N * K * 1e-12 / (ms * 1e-3) return perf(ms), perf(max_ms), perf(min_ms) torch.set_printoptions(sci_mode=False, linewidth=200, precision=6) # time_check(4096, 11008, 5380) # validity_check(2048, 1024, 4096) benchmark.run(show_plots=True, print_data=True)