# Copyright (c) 2025 NVIDIA CORPORATION. # Licensed under the MIT license. # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license. # LICENSE is in incl_licenses directory. # Copyright (c) Microsoft Corporation. # SPDX-License-Identifier: Apache-2.0 # DeepSpeed Team # This file is modified from https://github.com/feifeibear/long-context-attention # Implementation refers to USP Paper: https://arxiv.org/abs/2405.07719 from typing import Any, Tuple import torch import torch.distributed as dist from torch import Tensor from torch.nn import Module from llava.train.sequence_parallel.globals import ( get_ulysses_seq_len, get_ulysses_sp_pg, get_ulysses_sp_rank, get_ulysses_sp_size, set_ulysses_seq_len, ) def all_to_all_4D(input: torch.tensor, scatter_idx: int = 2, gather_idx: int = 1, group=None) -> torch.tensor: """ all-to-all for QKV Args: input (torch.tensor): a tensor sharded along dim scatter dim scatter_idx (int): default 1 gather_idx (int): default 2 group : torch process group Returns: torch.tensor: resharded tensor (bs, seqlen/P, hc, hs) """ assert input.dim() == 4, f"input must be 4D tensor, got {input.dim()} and shape {input.shape}" # seq_world_size = dist.get_world_size(group) # (DL): Change to ulysses size to handle hybrid parallelism. seq_world_size = get_ulysses_sp_size() if scatter_idx == 2 and gather_idx == 1: # input (torch.tensor): a tensor sharded along dim 1 (bs, seqlen/P, hc, hs) output: (bs, seqlen, hc/P, hs) bs, shard_seqlen, hc, hs = input.shape # (Dacheng): For multi-modality use case, sequence length is different, causing unknown behavior for a2a. # Pad it first. # (Dacheng): This will trigger for each attention to make sure the second a2a is correct. # (TODO) Maybe can optimize to per forward call. ulysses_seq_len = [torch.zeros(1, dtype=torch.int64, device=input.device) for _ in range(get_ulysses_sp_size())] dist.barrier(group=get_ulysses_sp_pg()) dist.all_gather(ulysses_seq_len, torch.tensor(shard_seqlen, device=input.device), group=get_ulysses_sp_pg()) set_ulysses_seq_len(ulysses_seq_len) max_global_length = max(ulysses_seq_len) # pad to the second dimension to the longest input = torch.nn.functional.pad(input, (0, 0, 0, 0, 0, max_global_length - shard_seqlen)) seqlen = max_global_length * seq_world_size # shard_seqlen * seq_world_size shard_hc = hc // seq_world_size # transpose groups of heads with the seq-len parallel dimension, so that we can scatter them! # (bs, seqlen/P, hc, hs) -reshape-> (bs, seq_len/P, P, hc/P, hs) -transpose(0,2)-> (P, seq_len/P, bs, hc/P, hs) input_t = ( # input.reshape(bs, shard_seqlen, seq_world_size, shard_hc, hs) input.reshape(bs, max_global_length, seq_world_size, shard_hc, hs) .transpose(0, 2) .contiguous() ) output = torch.empty_like(input_t) # https://pytorch.org/docs/stable/distributed.html#torch.distributed.all_to_all_single dist.barrier(group=group) dist.all_to_all_single(output, input_t, group=group) # if scattering the seq-dim, transpose the heads back to the original dimension output = output.reshape(seqlen, bs, shard_hc, hs) # then we will unpad it back output_list = torch.split(output, max_global_length, dim=0) assert len(output_list) == get_ulysses_sp_size() unpadded_output_list = [_output[: _seqlen.item()] for _output, _seqlen in zip(output_list, ulysses_seq_len)] # Concatenate the unpadded tensors back together output = torch.cat(unpadded_output_list) # (seq_len, bs, hc/P, hs) -reshape-> (bs, seq_len, hc/P, hs) output = output.transpose(0, 1).contiguous().reshape(bs, sum(ulysses_seq_len), shard_hc, hs) # assert False return output elif scatter_idx == 1 and gather_idx == 2: ulysses_seq_len = get_ulysses_seq_len() assert ulysses_seq_len is not None, "the second a2a (scatter 1, gather 2) is called at first." # input (torch.tensor): a tensor sharded along dim 1 (bs, seqlen, hc/P, hs) output: (bs, seqlen/P, hc, hs) bs, _, shard_hc, hs = input.shape hc = shard_hc * seq_world_size # First we need to recover how to pad max_global_length = max(ulysses_seq_len) unpadded_input_list = torch.split(input, ulysses_seq_len, dim=1) padded_input_list = [ torch.nn.functional.pad(_unpadded_input, (0, 0, 0, 0, 0, max_global_length - _unpadded_input.shape[1])) for _unpadded_input in unpadded_input_list ] input = torch.cat(padded_input_list, dim=1) # transpose groups of heads with the seq-len parallel dimension, so that we can scatter them! # (bs, seqlen, hc/P, hs) -reshape-> (bs, P, seq_len/P, hc/P, hs) -transpose(0, 3)-> (hc/P, P, seqlen/P, bs, hs) -transpose(0, 1) -> (P, hc/P, seqlen/P, bs, hs) input_t = ( input.reshape(bs, seq_world_size, max_global_length, shard_hc, hs) .transpose(0, 3) .transpose(0, 1) .contiguous() .reshape(seq_world_size, shard_hc, max_global_length, bs, hs) ) output = torch.empty_like(input_t) # https://pytorch.org/docs/stable/distributed.html#torch.distributed.all_to_all_single # (P, bs x hc/P, seqlen/P, hs) scatter seqlen -all2all-> (P, bs x seq_len/P, hc/P, hs) scatter head dist.barrier(group=group) dist.all_to_all_single(output, input_t, group=group) # if scattering the seq-dim, transpose the heads back to the original dimension output = output.reshape(hc, max_global_length, bs, hs) # unpad the output self_length = ulysses_seq_len[get_ulysses_sp_rank()] # print(f"Self length {self_length}") output = output[:, :self_length, :, :] # (hc, seqlen/N, bs, hs) -tranpose(0,2)-> (bs, seqlen/N, hc, hs) output = output.transpose(0, 2).contiguous().reshape(bs, self_length, hc, hs) return output else: raise RuntimeError("scatter_idx must be 1 or 2 and gather_idx must be 1 or 2") class SeqAllToAll4D(torch.autograd.Function): @staticmethod def forward( ctx: Any, group: dist.ProcessGroup, input: Tensor, scatter_idx: int, gather_idx: int, ) -> Tensor: ctx.group = group ctx.scatter_idx = scatter_idx ctx.gather_idx = gather_idx return all_to_all_4D(input, scatter_idx, gather_idx, group=group) @staticmethod def backward(ctx: Any, *grad_output: Tensor) -> Tuple[None, Tensor, None, None]: return ( None, SeqAllToAll4D.apply(ctx.group, *grad_output, ctx.gather_idx, ctx.scatter_idx), None, None, ) def all_to_all_5D(input: torch.tensor, scatter_idx: int = 3, gather_idx: int = 1, group=None) -> torch.tensor: """ all-to-all for QKV forward (bs, seqlen/N, 3, hc, hs) -> (bs, seqlen, 3, hc/N, hs) Args: input (torch.tensor): a tensor sharded along dim scatter dim scatter_idx (int): default 1 gather_idx (int): default 2 group : torch process group Returns: torch.tensor: resharded tensor (bs, seqlen/P, 3, hc, hs) """ assert input.dim() == 5, f"input must be 5D tensor, got {input.dim()} and shape {input.shape}" seq_world_size = dist.get_world_size(group) if scatter_idx == 3 and gather_idx == 1: # input (torch.tensor): a tensor sharded along dim 1 (bs, seqlen/P, 3, hc, hs) output: (bs, seqlen, 3, hc/P, hs) bs, shard_seqlen, t_cnt, hc, hs = input.shape assert t_cnt == 3 seqlen = shard_seqlen * seq_world_size shard_hc = hc // seq_world_size # transpose groups of heads with the seq-len parallel dimension, so that we can scatter them! # (bs, seqlen/P, 3, hc, hs) -reshape-> (bs, seq_len/P, 3, P, hc/P, hs) -transpose(0,3)-> (P, seq_len/P, 3, bs, hc/P, hs) input_t = input.reshape(bs, shard_seqlen, 3, seq_world_size, shard_hc, hs).transpose(0, 3).contiguous() output = torch.empty_like(input_t) # https://pytorch.org/docs/stable/distributed.html#torch.distributed.all_to_all_single # (P, seq_len/P, 3, bs, hc/P, hs) scatter seqlen -all2all-> (P, seq_len/P, 3, bs, hc/P, hs) scatter head dist.barrier(group=group) dist.all_to_all_single(output, input_t, group=group) # if scattering the seq-dim, transpose the heads back to the original dimension output = output.reshape(seqlen, 3, bs, shard_hc, hs) # (seq_len, 3, bs, hc/P, hs) -trans-> (bs, seq_len, 3, hc/P, hs) output = output.transpose(0, 2).transpose(1, 2).contiguous() return output.reshape(bs, seqlen, 3, shard_hc, hs).contiguous() elif scatter_idx == 1 and gather_idx == 3: # input (torch.tensor): a tensor sharded along dim 1 (bs, seqlen, hc/P, hs) output: (bs, seqlen/P, hc, hs) bs, seqlen, _, shard_hc, hs = input.shape hc = shard_hc * seq_world_size shard_seqlen = seqlen // seq_world_size seq_world_size = dist.get_world_size(group) # transpose groups of heads with the seq-len parallel dimension, so that we can scatter them! # (bs, seqlen, 3, hc/P, hs) -reshape-> (bs, P, seq_len/P, 3, hc/P, hs) -transpose(0, 4)-> (hc/P, P, seqlen/P, 3, bs, hs) -transpose(0, 1) -> (P, hc/P, seqlen/P, 3, bs, hs) input_t = ( input.reshape(bs, seq_world_size, shard_seqlen, 3, shard_hc, hs) .transpose(0, 4) .transpose(0, 1) .contiguous() .reshape(seq_world_size, shard_hc, shard_seqlen, 3, bs, hs) ) output = torch.empty_like(input_t) # https://pytorch.org/docs/stable/distributed.html#torch.distributed.all_to_all_single # (P, bs x hc/P, seqlen/P, hs) scatter seqlen -all2all-> (P, bs x seq_len/P, hc/P, hs) scatter head dist.barrier(group=group) dist.all_to_all_single(output, input_t, group=group) # if scattering the seq-dim, transpose the heads back to the original dimension output = output.reshape(hc, shard_seqlen, 3, bs, hs) # (hc, seqlen/N, bs, hs) -tranpose(0,2)-> (bs, seqlen/N, hc, hs) output = output.transpose(0, 3).contiguous() return output.reshape(bs, shard_seqlen, 3, hc, hs).contiguous() else: raise RuntimeError("scatter_idx must be 1 or 3 and gather_idx must be 1 or 3") class SeqAllToAll5D(torch.autograd.Function): @staticmethod def forward( ctx: Any, group: dist.ProcessGroup, input: Tensor, scatter_idx: int = 3, gather_idx: int = 1, ) -> Tensor: ctx.group = group ctx.scatter_idx = scatter_idx ctx.gather_idx = gather_idx return all_to_all_5D(input, scatter_idx, gather_idx, group=group) @staticmethod def backward(ctx: Any, *grad_output: Tensor) -> Tuple[None, Tensor, None, None]: return ( None, SeqAllToAll5D.apply(ctx.group, *grad_output, ctx.gather_idx, ctx.scatter_idx), None, None, ) class SeqAllGather(torch.autograd.Function): @staticmethod def forward(ctx: Any, group: dist.ProcessGroup, input: Any) -> Tensor: # ctx.group = group ctx.save_for_backward(input[0]) all_gather_list = input[0] all_gather_tensor = input[1] dist.all_gather(all_gather_list, all_gather_tensor, group=group) # torch.concat return torch.stack(all_gather_list, dim=0) @staticmethod def backward(ctx: Any, grad_output: Tensor) -> Tuple[None, Tensor]: (tensor,) = ctx.saved_tensors return None, (None, tensor)