# Copyright (c) 2025 NVIDIA CORPORATION. # Licensed under the MIT license. # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license. # LICENSE is in incl_licenses directory. # Copyright 2024 NVIDIA CORPORATION & AFFILIATES # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # SPDX-License-Identifier: Apache-2.0 import inspect import os from typing import List, Optional, Tuple, Union import torch from flash_attn import flash_attn_func, flash_attn_varlen_func from flash_attn.bert_padding import pad_input from transformers.cache_utils import Cache from transformers.modeling_flash_attention_utils import _upad_input from transformers.utils import is_flash_attn_greater_or_equal from llava.model.utils.packing import _get_unpad_data from llava.train.sequence_parallel.globals import get_ring_sp_pg, get_ring_type, get_ulysses_sp_pg from llava.train.sequence_parallel.hybrid_attn import HybridAttention from llava.train.sequence_parallel.ring import ring_flash_attn_varlen_func, zigzag_ring_flash_attn_varlen_func from llava.train.sequence_parallel.ulysses_attn import UlyssesAttention def _ulysses_attn_varlen_func( query_states, key_states, value_states, query_length, attention_mask=None, dropout_p=0.0, softmax_scale=None, seqlens_in_batch=None, causal=None, ): batch_size = query_states.shape[0] # overwrite query_length with the actual length of the sequence after SP communciation query_length = attention_mask.shape[1] query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = _upad_input( query_states, key_states, value_states, attention_mask, query_length ) cu_seqlens_q, cu_seqlens_k = cu_seq_lens max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens attn_output_unpad = flash_attn_varlen_func( query_states, key_states, value_states, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=max_seqlen_in_batch_q, max_seqlen_k=max_seqlen_in_batch_k, dropout_p=dropout_p, softmax_scale=softmax_scale, causal=True, ) attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) return attn_output def _hybrid_attn_varlen_func( query_states, key_states, value_states, query_length, attention_mask=None, dropout_p=0.0, softmax_scale=None, seqlens_in_batch=None, causal=None, group=None, ): batch_size = query_states.shape[0] # overwrite query_length with the actual length of the sequence after SP communciation query_length = attention_mask.shape[1] _get_unpad_data.seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = _upad_input( query_states, key_states, value_states, attention_mask, query_length ) cu_seq_lens = cu_seq_lens[0] ring_type = get_ring_type() if ring_type == "ring_varlen": attn_output_unpad = ring_flash_attn_varlen_func( query_states, key_states, value_states, cu_seq_lens, max_seq_lens[0], dropout_p=dropout_p, softmax_scale=softmax_scale, causal=True, group=group, ) elif ring_type == "zigzag_ring_varlen": attn_output_unpad = zigzag_ring_flash_attn_varlen_func( query_states, key_states, value_states, cu_seq_lens, max_seq_lens[0], dropout_p=dropout_p, softmax_scale=softmax_scale, causal=True, group=group, ) else: raise ValueError(f"Invalid ring_type: {ring_type}") attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) return attn_output def _flash_attention_forward( query_states: torch.Tensor, key_states: torch.Tensor, value_states: torch.Tensor, attention_mask: torch.Tensor, query_length: int, is_causal: bool, dropout: float = 0.0, position_ids: Optional[torch.Tensor] = None, softmax_scale: Optional[float] = None, sliding_window: Optional[int] = None, use_top_left_mask: bool = False, softcap: Optional[float] = None, deterministic: bool = None, ): """ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token first unpad the input, then computes the attention scores and pad the final attention scores. Args: query_states (`torch.Tensor`): Input query states to be passed to Flash Attention API key_states (`torch.Tensor`): Input key states to be passed to Flash Attention API value_states (`torch.Tensor`): Input value states to be passed to Flash Attention API attention_mask (`torch.Tensor`): The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the position of padding tokens and 1 for the position of non-padding tokens. dropout (`float`): Attention dropout softmax_scale (`float`, *optional*): The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) use_top_left_mask (`bool`, defaults to `False`): flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. softcap (`float`, *optional*): Softcap for the attention logits, used e.g. in gemma2. deterministic (`bool`, *optional*): Determines if the deterministic option introduced in flash_attn>=2.4.1 is enabled. """ if not use_top_left_mask: causal = is_causal else: # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__. causal = is_causal and query_length != 1 # Assuming 4D tensors, key_states.shape[1] is the key/value sequence length (source length). use_sliding_windows = ( "window_size" in list(inspect.signature(flash_attn_func).parameters) and sliding_window is not None and key_states.shape[1] > sliding_window ) flash_kwargs = {"window_size": (sliding_window, sliding_window)} if use_sliding_windows else {} if is_flash_attn_greater_or_equal("2.4.1"): if deterministic is None: deterministic = os.environ.get("FLASH_ATTENTION_DETERMINISTIC", "0") == "1" flash_kwargs["deterministic"] = deterministic if softcap is not None: flash_kwargs["softcap"] = softcap ring_enabled = get_ring_sp_pg() is not None if attention_mask is not None: if ring_enabled: attn_output = HybridAttention(attention_warper=_hybrid_attn_varlen_func)( query_states, key_states, value_states, query_length, attention_mask=attention_mask, dropout_p=dropout, softmax_scale=softmax_scale, seqlens_in_batch=_get_unpad_data.seqlens_in_batch, ) else: attn_output = UlyssesAttention(_ulysses_attn_varlen_func, get_ulysses_sp_pg())( query_states, key_states, value_states, query_length, attention_mask=attention_mask, dropout_p=dropout, softmax_scale=softmax_scale, seqlens_in_batch=_get_unpad_data.seqlens_in_batch, ) else: if ring_enabled: attn_output = HybridAttention()( query_states, key_states, value_states, dropout_p=dropout, softmax_scale=softmax_scale, causal=is_causal, ) else: attn_output = UlyssesAttention(flash_attn_func, get_ulysses_sp_pg())( query_states, key_states, value_states, query_length, dropout_p=dropout, softmax_scale=softmax_scale, ) return attn_output def _update_causal_mask( self, attention_mask: torch.Tensor, input_tensor: torch.Tensor, cache_position: torch.Tensor, past_key_values: Cache, output_attentions: bool, ): return attention_mask