# Copyright (c) 2025 NVIDIA CORPORATION. # Licensed under the MIT license. # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license. # LICENSE is in incl_licenses directory. # Copyright 2024 NVIDIA CORPORATION & AFFILIATES # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # SPDX-License-Identifier: Apache-2.0 # Adopted from https://github.com/zhuzilin/ring-flash-attention. # Implementation refers to Ring Attention Paper: https://arxiv.org/abs/2310.01889 from typing import Optional, Tuple import torch import torch.distributed as dist import torch.nn.functional as F __all__ = ["update_out_and_lse", "RingComm"] @torch.jit.script def _update_out_and_lse( out: torch.Tensor, lse: torch.Tensor, block_out: torch.Tensor, block_lse: torch.Tensor, ) -> Tuple[torch.Tensor, torch.Tensor]: block_out = block_out.to(torch.float32) block_lse = block_lse.transpose(-2, -1).unsqueeze(dim=-1) out = out - F.sigmoid(block_lse - lse) * (out - block_out) lse = lse - F.logsigmoid(lse - block_lse) return out, lse def update_out_and_lse( out: Optional[torch.Tensor], lse: Optional[torch.Tensor], block_out: torch.Tensor, block_lse: torch.Tensor, slice_=None, ) -> Tuple[torch.Tensor, torch.Tensor]: if out is None: if slice_ is not None: raise RuntimeError("first update_out_and_lse should not pass slice_ args") out = block_out.to(torch.float32) lse = block_lse.transpose(-2, -1).unsqueeze(dim=-1) elif slice_ is not None: slice_out, slice_lse = out[slice_], lse[slice_] slice_out, slice_lse = _update_out_and_lse(slice_out, slice_lse, block_out, block_lse) out[slice_], lse[slice_] = slice_out, slice_lse else: out, lse = _update_out_and_lse(out, lse, block_out, block_lse) return out, lse @torch.jit.script def flatten_varlen_lse(lse, cu_seqlens): new_lse = [] for i in range(len(cu_seqlens) - 1): start, end = cu_seqlens[i], cu_seqlens[i + 1] new_lse.append(lse[i, :, : end - start]) return torch.cat(new_lse, dim=1) @torch.jit.script def unflatten_varlen_lse(lse, cu_seqlens, max_seqlen: int): num_seq = len(cu_seqlens) - 1 num_head = lse.shape[-2] new_lse = torch.empty((num_seq, max_seqlen, num_head, 1), dtype=torch.float32, device=lse.device) for i in range(num_seq): start, end = cu_seqlens[i], cu_seqlens[i + 1] new_lse[i, : end - start] = lse[start:end] return new_lse.squeeze(dim=-1).transpose(1, 2).contiguous() class RingComm: def __init__(self, process_group: dist.ProcessGroup): self._process_group = process_group self._ops = [] self.rank = dist.get_rank(self._process_group) self.world_size = dist.get_world_size(self._process_group) self._reqs = None self.send_rank = (self.rank + 1) % self.world_size self.recv_rank = (self.rank - 1) % self.world_size if process_group is not None: self.send_rank = dist.get_global_rank(self._process_group, self.send_rank) self.recv_rank = dist.get_global_rank(self._process_group, self.recv_rank) def send_recv(self, to_send: torch.Tensor, recv_tensor: Optional[torch.Tensor] = None) -> torch.Tensor: if recv_tensor is None: res = torch.empty_like(to_send) else: res = recv_tensor send_op = dist.P2POp(dist.isend, to_send, self.send_rank, group=self._process_group) recv_op = dist.P2POp(dist.irecv, res, self.recv_rank, group=self._process_group) self._ops.append(send_op) self._ops.append(recv_op) return res def commit(self): if self._reqs is not None: raise RuntimeError("commit called twice") self._reqs = dist.batch_isend_irecv(self._ops) def wait(self): if self._reqs is None: raise RuntimeError("wait called before commit") for req in self._reqs: req.wait() self._reqs = None self._ops = []