# Copyright (c) 2025 NVIDIA CORPORATION. # Licensed under the MIT license. # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license. # LICENSE is in incl_licenses directory. # Copyright 2024 NVIDIA CORPORATION & AFFILIATES # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # SPDX-License-Identifier: Apache-2.0 # Adopted from https://github.com/zhuzilin/ring-flash-attention. # Implementation refers to Ring Attention Paper: https://arxiv.org/abs/2310.01889 import torch from flash_attn.flash_attn_interface import _flash_attn_backward, _flash_attn_forward from .utils import RingComm, update_out_and_lse def zigzag_ring_flash_attn_forward( process_group, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, softmax_scale, dropout_p=0, causal=True, window_size=(-1, -1), alibi_slopes=None, deterministic=False, ): assert causal == True, "zigzag ring is meaningless for causal=False" comm = RingComm(process_group) block_seq_len = q.shape[1] // 2 q1 = q[:, block_seq_len:] out = None lse = None next_k, next_v = None, None def forward(q, k, v, causal): block_out, _, _, _, _, block_lse, _, _ = _flash_attn_forward( q, k, v, dropout_p, softmax_scale, causal=causal, window_size=window_size, alibi_slopes=alibi_slopes, return_softmax=True and dropout_p > 0, ) return block_out, block_lse for step in range(comm.world_size): if step + 1 != comm.world_size: next_k: torch.Tensor = comm.send_recv(k) next_v: torch.Tensor = comm.send_recv(v) comm.commit() if step == 0: block_out, block_lse = forward(q, k, v, causal=True) out, lse = update_out_and_lse(out, lse, block_out, block_lse) elif step <= comm.rank: k0 = k[:, :block_seq_len] v0 = v[:, :block_seq_len] block_out, block_lse = forward(q, k0, v0, causal=False) out, lse = update_out_and_lse(out, lse, block_out, block_lse) else: block_out, block_lse = forward(q1, k, v, causal=False) out, lse = update_out_and_lse( out, lse, block_out, block_lse, slice_=(slice(None), slice(block_seq_len, None)), ) if step + 1 != comm.world_size: comm.wait() k = next_k v = next_v out = out.to(q.dtype) lse = lse.squeeze(dim=-1).transpose(1, 2) return out, lse def zigzag_ring_flash_attn_backward( process_group, dout, q, k, v, out, softmax_lse, softmax_scale, dropout_p=0, causal=True, window_size=(-1, -1), alibi_slopes=None, deterministic=False, ): assert causal == True, "zigzag ring is meaningless for causal=False" kv_comm = RingComm(process_group) d_kv_comm = RingComm(process_group) dq, dk, dv = None, None, None next_dk, next_dv = None, None next_k, next_v = None, None dk_comm_buffer, dv_comm_buffer = None, None dout1 = dout.chunk(2, dim=1)[1] q1 = q.chunk(2, dim=1)[1] out1 = out.chunk(2, dim=1)[1] softmax_lse1 = softmax_lse.chunk(2, dim=2)[1].contiguous() block_seq_len = q.shape[1] // 2 # repeatly allocating buffer may be slow... dq_buffer = torch.empty(q.shape, dtype=q.dtype, device=q.device) dk_buffer = torch.empty(k.shape, dtype=k.dtype, device=k.device) dv_buffer = torch.empty(v.shape, dtype=v.dtype, device=v.device) def backward(dout, q, k, v, out, softmax_lse, causal): seqlen_q = q.shape[1] seqlen_kv = k.shape[1] _flash_attn_backward( dout, q, k, v, out, softmax_lse, dq_buffer[:, :seqlen_q], dk_buffer[:, :seqlen_kv], dv_buffer[:, :seqlen_kv], dropout_p, softmax_scale, causal, window_size, alibi_slopes, deterministic, rng_state=None, ) for step in range(kv_comm.world_size): if step + 1 != kv_comm.world_size: next_k = kv_comm.send_recv(k) next_v = kv_comm.send_recv(v) kv_comm.commit() if step == 0: backward(dout, q, k, v, out, softmax_lse, causal=True) dq = dq_buffer.to(torch.float32) dk = dk_buffer.to(torch.float32) dv = dv_buffer.to(torch.float32) else: if step <= kv_comm.rank: k0 = k[:, :block_seq_len] v0 = v[:, :block_seq_len] backward(dout, q, k0, v0, out, softmax_lse, causal=False) dq += dq_buffer else: backward(dout1, q1, k, v, out1, softmax_lse1, causal=False) # always use the first half in dq_buffer. dq[:, block_seq_len:] += dq_buffer[:, :block_seq_len] d_kv_comm.wait() dk_comm_buffer, dv_comm_buffer = dk, dv dk, dv = next_dk, next_dv if step <= kv_comm.rank: dk[:, :block_seq_len] += dk_buffer[:, :block_seq_len] dv[:, :block_seq_len] += dv_buffer[:, :block_seq_len] else: dk += dk_buffer dv += dv_buffer if step + 1 != kv_comm.world_size: kv_comm.wait() k = next_k v = next_v next_dk = d_kv_comm.send_recv(dk, dk_comm_buffer) next_dv = d_kv_comm.send_recv(dv, dv_comm_buffer) d_kv_comm.commit() d_kv_comm.wait() return dq.to(q.dtype), next_dk.to(q.dtype), next_dv.to(q.dtype) class ZigZagRingFlashAttnFunc(torch.autograd.Function): @staticmethod def forward( ctx, q, k, v, dropout_p, softmax_scale, causal, window_size, alibi_slopes, deterministic, return_softmax, group, ): if softmax_scale is None: softmax_scale = q.shape[-1] ** (-0.5) assert alibi_slopes is None k = k.contiguous() v = v.contiguous() out, softmax_lse = zigzag_ring_flash_attn_forward( group, q, k, v, softmax_scale=softmax_scale, dropout_p=dropout_p, causal=causal, window_size=window_size, alibi_slopes=alibi_slopes, deterministic=False, ) # this should be out_padded ctx.save_for_backward(q, k, v, out, softmax_lse) ctx.dropout_p = dropout_p ctx.softmax_scale = softmax_scale ctx.causal = causal ctx.window_size = window_size ctx.alibi_slopes = alibi_slopes ctx.deterministic = deterministic ctx.group = group return out if not return_softmax else (out, softmax_lse, None) @staticmethod def backward(ctx, dout, *args): q, k, v, out, softmax_lse = ctx.saved_tensors dq, dk, dv = zigzag_ring_flash_attn_backward( ctx.group, dout, q, k, v, out, softmax_lse, softmax_scale=ctx.softmax_scale, dropout_p=ctx.dropout_p, causal=ctx.causal, window_size=ctx.window_size, alibi_slopes=ctx.alibi_slopes, deterministic=ctx.deterministic, ) return dq, dk, dv, None, None, None, None, None, None, None, None def zigzag_ring_flash_attn_qkvpacked_func( qkv, dropout_p=0.0, softmax_scale=None, causal=False, window_size=(-1, -1), alibi_slopes=None, deterministic=False, return_attn_probs=False, group=None, ): return ZigZagRingFlashAttnFunc.apply( qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], dropout_p, softmax_scale, causal, window_size, alibi_slopes, deterministic, return_attn_probs, group, ) def zigzag_ring_flash_attn_kvpacked_func( q, kv, dropout_p=0.0, softmax_scale=None, causal=False, window_size=(-1, -1), alibi_slopes=None, deterministic=False, return_attn_probs=False, group=None, ): return ZigZagRingFlashAttnFunc.apply( q, kv[:, :, 0], kv[:, :, 1], dropout_p, softmax_scale, causal, window_size, alibi_slopes, deterministic, return_attn_probs, group, ) def zigzag_ring_flash_attn_func( q, k, v, dropout_p=0.0, softmax_scale=None, causal=False, window_size=(-1, -1), alibi_slopes=None, deterministic=False, return_attn_probs=False, group=None, ): return ZigZagRingFlashAttnFunc.apply( q, k, v, dropout_p, softmax_scale, causal, window_size, alibi_slopes, deterministic, return_attn_probs, group, )