# Copyright (c) 2025 NVIDIA CORPORATION. # Licensed under the MIT license. # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license. # LICENSE is in incl_licenses directory. # Copyright 2024 NVIDIA CORPORATION & AFFILIATES # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # SPDX-License-Identifier: Apache-2.0 import datetime import logging import logging.handlers import os import sys import time import warnings import requests import torch import transformers from transformers.trainer_callback import TrainerCallback, TrainerControl, TrainerState, TrainingArguments from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR, get_last_checkpoint def get_rank(): if not torch.distributed.is_initialized(): return 0 return torch.distributed.get_rank() def get_local_rank(): if not torch.distributed.is_initialized(): return 0 num_gpus = torch.cuda.device_count() return get_rank() % num_gpus def get_world_size(): if not torch.distributed.is_initialized(): return 1 return torch.distributed.get_world_size() class Timer: def __init__(self): self.start_time = None self.elapsed_time = 0 def start(self): self.start_time = time.time() def reset(self): self.start_time = None self.elapsed_time = 0 def get_elapsed_time(self): if self.start_time is not None: return self.elapsed_time + (time.time() - self.start_time) timer = Timer() def set_timer(): timer.start() def rank_print(*s): if not torch.distributed.is_initialized(): rank = 0 else: rank = torch.distributed.get_rank() current_time = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") print(f"[{current_time}] Rank {rank}:", *s) class TimeoutTerminateCallback(transformers.TrainerCallback): def __init__(self, total_time_limit=240, pre_terminate_time=10): self.total_time_limit = total_time_limit self.pre_terminate_time = pre_terminate_time elapsed_time = timer.get_elapsed_time() rank_print( f"Timer for terminate callback has been set.\nTotal limit: {total_time_limit}min\nPre terminate time: {pre_terminate_time}min elapsed_time: {elapsed_time}s" ) self.time_to_kill = (total_time_limit - pre_terminate_time) * 60 def on_step_end(self, args, state, control, model, **kwargs): elapsed_time = timer.get_elapsed_time() if elapsed_time is None: # no timer has been set return control if elapsed_time > self.time_to_kill: rank_print("Timeout, start to save checkpoint....") control.should_save = True control.should_training_stop = True return control def on_train_end(self, args, state, control, **kwargs): if state.global_step < state.max_steps: exit(124)