# Copyright (c) 2025 NVIDIA CORPORATION. # Licensed under the MIT license. # Adapted from https://github.com/NVlabs/VILA/tree/main under the Apache 2.0 license. # LICENSE is in incl_licenses directory. # Copyright 2024 NVIDIA CORPORATION & AFFILIATES # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # SPDX-License-Identifier: Apache-2.0 # This file is modified from https://github.com/haotian-liu/LLaVA/ from unittest import mock from llava.train.slurm_utils import set_timer from llava.train.train import train from llava.train.transformer_normalize_monkey_patch import ( _save_checkpoint, compute_loss, patched_normalize, training_step, ) import os os.environ['TORCH_FORCE_NO_WEIGHTS_ONLY_LOAD'] = '1' def __len__(self): return len(self.batch_sampler) def __iter__(self): return self.batch_sampler.__iter__() if __name__ == "__main__": with ( mock.patch("transformers.image_processing_utils.normalize", new=patched_normalize), mock.patch("accelerate.data_loader.BatchSamplerShard.__len__", new=__len__), mock.patch("accelerate.data_loader.BatchSamplerShard.__iter__", new=__iter__), mock.patch("transformers.trainer.Trainer._save_checkpoint", new=_save_checkpoint), mock.patch("transformers.trainer.Trainer.compute_loss", new=compute_loss), mock.patch("transformers.trainer.Trainer.training_step", new=training_step), ): set_timer() train()