Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -12,3 +12,164 @@ model = AutoModel.from_pretrained(hf_repo, trust_remote_code=True)
|
|
| 12 |
model.eval().cuda()
|
| 13 |
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
model.eval().cuda()
|
| 13 |
|
| 14 |
|
| 15 |
+
title = """RADIO: Reduce All Domains Into One"""
|
| 16 |
+
description = """
|
| 17 |
+
# RADIO
|
| 18 |
+
|
| 19 |
+
AM-RADIO is a framework to distill Large Vision Foundation models into a single one.
|
| 20 |
+
RADIO, a new vision foundation model, excels across visual domains, serving as a superior replacement for vision backbones.
|
| 21 |
+
Integrating CLIP variants, DINOv2, and SAM through distillation, it preserves unique features like text grounding and segmentation correspondence.
|
| 22 |
+
Outperforming teachers in ImageNet zero-shot (+6.8%), kNN (+2.39%), and linear probing segmentation (+3.8%) and vision-language models (LLaVa 1.5 up to 1.5%), it scales to any resolution, supports non-square images.
|
| 23 |
+
|
| 24 |
+
# Instructions
|
| 25 |
+
|
| 26 |
+
Simply paste an image or pick one from the gallery of examples and then click the "Submit" button.
|
| 27 |
+
"""
|
| 28 |
+
|
| 29 |
+
inputs = [
|
| 30 |
+
gr.Image(type="pil")
|
| 31 |
+
]
|
| 32 |
+
|
| 33 |
+
examples = [
|
| 34 |
+
"IMG_0996.jpeg",
|
| 35 |
+
"IMG_1061.jpeg",
|
| 36 |
+
"IMG_1338.jpeg",
|
| 37 |
+
"IMG_4319.jpeg",
|
| 38 |
+
"IMG_5104.jpeg",
|
| 39 |
+
"IMG_5139.jpeg",
|
| 40 |
+
"IMG_6225.jpeg",
|
| 41 |
+
"IMG_6814.jpeg",
|
| 42 |
+
"IMG_7459.jpeg",
|
| 43 |
+
"IMG_7577.jpeg",
|
| 44 |
+
"IMG_7687.jpeg",
|
| 45 |
+
"IMG_9862.jpeg",
|
| 46 |
+
]
|
| 47 |
+
|
| 48 |
+
outputs = [
|
| 49 |
+
gr.Textbox(label="Feature Shape"),
|
| 50 |
+
gr.Image(),
|
| 51 |
+
]
|
| 52 |
+
|
| 53 |
+
def get_robust_pca(features: torch.Tensor, m: float = 2, remove_first_component=False):
|
| 54 |
+
# features: (N, C)
|
| 55 |
+
# m: a hyperparam controlling how many std dev outside for outliers
|
| 56 |
+
assert len(features.shape) == 2, "features should be (N, C)"
|
| 57 |
+
reduction_mat = torch.pca_lowrank(features, q=3, niter=20)[2]
|
| 58 |
+
colors = features @ reduction_mat
|
| 59 |
+
if remove_first_component:
|
| 60 |
+
colors_min = colors.min(dim=0).values
|
| 61 |
+
colors_max = colors.max(dim=0).values
|
| 62 |
+
tmp_colors = (colors - colors_min) / (colors_max - colors_min)
|
| 63 |
+
fg_mask = tmp_colors[..., 0] < 0.2
|
| 64 |
+
reduction_mat = torch.pca_lowrank(features[fg_mask], q=3, niter=20)[2]
|
| 65 |
+
colors = features @ reduction_mat
|
| 66 |
+
else:
|
| 67 |
+
fg_mask = torch.ones_like(colors[:, 0]).bool()
|
| 68 |
+
d = torch.abs(colors[fg_mask] - torch.median(colors[fg_mask], dim=0).values)
|
| 69 |
+
mdev = torch.median(d, dim=0).values
|
| 70 |
+
s = d / mdev
|
| 71 |
+
try:
|
| 72 |
+
rins = colors[fg_mask][s[:, 0] < m, 0]
|
| 73 |
+
gins = colors[fg_mask][s[:, 1] < m, 1]
|
| 74 |
+
bins = colors[fg_mask][s[:, 2] < m, 2]
|
| 75 |
+
rgb_min = torch.tensor([rins.min(), gins.min(), bins.min()])
|
| 76 |
+
rgb_max = torch.tensor([rins.max(), gins.max(), bins.max()])
|
| 77 |
+
except:
|
| 78 |
+
rins = colors
|
| 79 |
+
gins = colors
|
| 80 |
+
bins = colors
|
| 81 |
+
rgb_min = torch.tensor([rins.min(), gins.min(), bins.min()])
|
| 82 |
+
rgb_max = torch.tensor([rins.max(), gins.max(), bins.max()])
|
| 83 |
+
|
| 84 |
+
return reduction_mat, rgb_min.to(reduction_mat), rgb_max.to(reduction_mat)
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def get_pca_map(
|
| 88 |
+
feature_map: torch.Tensor,
|
| 89 |
+
img_size,
|
| 90 |
+
interpolation="bicubic",
|
| 91 |
+
return_pca_stats=False,
|
| 92 |
+
pca_stats=None,
|
| 93 |
+
):
|
| 94 |
+
"""
|
| 95 |
+
feature_map: (1, h, w, C) is the feature map of a single image.
|
| 96 |
+
"""
|
| 97 |
+
if feature_map.shape[0] != 1:
|
| 98 |
+
# make it (1, h, w, C)
|
| 99 |
+
feature_map = feature_map[None]
|
| 100 |
+
if pca_stats is None:
|
| 101 |
+
reduct_mat, color_min, color_max = get_robust_pca(
|
| 102 |
+
feature_map.reshape(-1, feature_map.shape[-1])
|
| 103 |
+
)
|
| 104 |
+
else:
|
| 105 |
+
reduct_mat, color_min, color_max = pca_stats
|
| 106 |
+
pca_color = feature_map @ reduct_mat
|
| 107 |
+
pca_color = (pca_color - color_min) / (color_max - color_min)
|
| 108 |
+
pca_color = pca_color.clamp(0, 1)
|
| 109 |
+
pca_color = F.interpolate(
|
| 110 |
+
pca_color.permute(0, 3, 1, 2),
|
| 111 |
+
size=img_size,
|
| 112 |
+
mode=interpolation,
|
| 113 |
+
).permute(0, 2, 3, 1)
|
| 114 |
+
pca_color = pca_color.cpu().numpy().squeeze(0)
|
| 115 |
+
if return_pca_stats:
|
| 116 |
+
return pca_color, (reduct_mat, color_min, color_max)
|
| 117 |
+
return pca_color
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
def pad_image_to_multiple_of_16(image):
|
| 121 |
+
# Calculate the new dimensions to make them multiples of 16
|
| 122 |
+
width, height = image.size
|
| 123 |
+
new_width = (width + 15) // 16 * 16
|
| 124 |
+
new_height = (height + 15) // 16 * 16
|
| 125 |
+
|
| 126 |
+
# Calculate the padding needed on each side
|
| 127 |
+
pad_width = new_width - width
|
| 128 |
+
pad_height = new_height - height
|
| 129 |
+
|
| 130 |
+
left = pad_width // 2
|
| 131 |
+
right = pad_width - left
|
| 132 |
+
top = pad_height // 2
|
| 133 |
+
bottom = pad_height - top
|
| 134 |
+
|
| 135 |
+
# Apply the padding
|
| 136 |
+
padded_image = ImageOps.expand(image, (left, top, right, bottom), fill='black')
|
| 137 |
+
|
| 138 |
+
return padded_image
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
@spaces.GPU
|
| 142 |
+
def infer_radio(image):
|
| 143 |
+
"""Define the function to generate the output."""
|
| 144 |
+
image=pad_image_to_multiple_of_16(image)
|
| 145 |
+
width, height = image.size
|
| 146 |
+
pixel_values = image_processor(images=image, return_tensors='pt').pixel_values
|
| 147 |
+
pixel_values = pixel_values.to(torch.bfloat16).cuda()
|
| 148 |
+
|
| 149 |
+
_, features = model(pixel_values)
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
num_rows = height // model.patch_size
|
| 153 |
+
num_cols = width // model.patch_size
|
| 154 |
+
|
| 155 |
+
features = features.detach()
|
| 156 |
+
features = rearrange(features, 'b (h w) c -> b h w c', h=num_rows, w=num_cols).float()
|
| 157 |
+
|
| 158 |
+
pca_viz = get_pca_map(features, (height, width), interpolation='bilinear')
|
| 159 |
+
|
| 160 |
+
return f"{features.shape}", pca_viz
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
# Create the Gradio interface
|
| 164 |
+
demo = gr.Interface(
|
| 165 |
+
fn=infer_radio,
|
| 166 |
+
inputs=inputs,
|
| 167 |
+
examples=examples,
|
| 168 |
+
outputs=outputs,
|
| 169 |
+
title=title,
|
| 170 |
+
description=description
|
| 171 |
+
)
|
| 172 |
+
|
| 173 |
+
if __name__ == "__main__":
|
| 174 |
+
demo.launch()
|
| 175 |
+
|