File size: 15,000 Bytes
033cb94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
686c6f1
033cb94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48d3fca
 
686c6f1
 
 
 
 
 
48d3fca
033cb94
 
 
 
 
 
 
 
 
 
 
 
 
b70c559
033cb94
 
 
 
b70c559
 
eeb4edc
033cb94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
import numpy as np
import cv2
import onnxruntime as ort
from typing import List, Tuple, Union, Literal, Dict
from pydantic import BaseModel

# Configuration for YOLOX model, set path to model / class - name mappings here!
class ObjectDetectionConfig(BaseModel):
	"""Configuration for trained YOLOX object detection model."""
	
	# Model path & hyperparameters
	object_detection_model_path: str = "./models/yolox_custom-plates-2cls-0.1.onnx"
	confidence_threshold: float = 0.50
	nms_threshold: float = 0.65
	input_shape: Tuple[int] = (640, 640)
	
	# Class specific inputs
	class_map: Dict = {0: 'license-plates', 1: 'License_Plate'}
	display_map: Dict = {0: 'license-plate', 1: 'license-plate'}
	color_map: Dict = {0: (186, 223, 255), 1: (100, 255, 255)}

class Detection:
	def __init__(
		self,
		points: np.ndarray,
		class_id: Union[int, None] = None,
		score: Union[float, None] = 0.0,
		color: Tuple[int, int, int] = (100, 255, 255),
		display_name: str = "Box",
		centroid_radius: int = 5,
		centroid_thickness: int = -1
	):
		"""
		Represents an object detection in the scene.
		Stores bounding box, class_id, and other attributes for tracking and visualization.
		"""
		self.points_xyxy = points
		self.class_id = class_id
		self.score = score
		self.color_bbox = color
		self.color_centroid = color
		self.radius_centroid = centroid_radius
		self.thickness_centroid = centroid_thickness
		self.centroid_location: str = "center"
		self.display_name: str = display_name
		self.track_id: int = None
		self.id: int = None
		self.active: bool = False
		self.status: str = ""

	def __repr__(self) -> str:
		return f"Detection({str(self.display_name)})"

	@property
	def bbox_xyxy(self) -> np.ndarray:
		return self.points_xyxy

	@property
	def size(self) -> float:
		"""Return the bounding box area in pixels."""
		x1, y1, x2, y2 = self.points_xyxy
		return (x2 - x1) * (y2 - y1)

	def bbox_image(self, image: np.ndarray, buffer: int = 0) -> np.ndarray:
		"""Extract the image patch corresponding to this detection"s bounding box."""
		x1, y1, x2, y2 = self.points_xyxy
		height, width = image.shape[:2]
		x1 = max(0, int(x1 - buffer))
		y1 = max(0, int(y1 - buffer))
		x2 = min(width, int(x2 + buffer))
		y2 = min(height, int(y2 + buffer))
		return image[y1:y2, x1:x2]

	def centroid(self, location: str = None) -> np.ndarray:
		"""Get the centroid of the bounding box based on the chosen centroid location."""
		if location is None:
			location = self.centroid_location
		x1, y1, x2, y2 = self.points_xyxy
		if location == "center":
			centroid_loc = [(x1 + x2) / 2, (y1 + y2) / 2]
		elif location == "top":
			centroid_loc = [(x1 + x2) / 2, y1]
		elif location == "bottom":
			centroid_loc = [(x1 + x2) / 2, y2]
		elif location == "left":
			centroid_loc = [x1, (y1 + y2) / 2]
		elif location == "right":
			centroid_loc = [x2, (y1 + y2) / 2]
		elif location == "upper-left":
			centroid_loc = [x1, y1]
		elif location == "upper-right":
			centroid_loc = [x2, y1]
		elif location == "bottom-left":
			centroid_loc = [x1, y2]
		elif location == "bottom-right":
			centroid_loc = [x2, y2]
		else:
			raise ValueError("Unsupported location type.")
		return np.array([centroid_loc], dtype=np.float32)

	def draw(
		self,
		image: np.ndarray,
		draw_boxes: bool = True,
		draw_centroids: bool = True,
		draw_text: bool = True,
		draw_projections: bool = False,
		fill_text_background: bool = False,
		box_display_type: Literal["minimal", "standard"] = "standard",
		box_line_thickness: int = 2,
		box_corner_length: int = 20,
		obfuscate_classes: List[int] = [],
		centroid_color: Union[Tuple[int, int, int], None] = None,
		centroid_radius: Union[int, None] = None,
		centroid_thickness: Union[int, None] = None,
		text_position_xy: Tuple[int] = (25, 25),
		text_scale: float = 0.8,
		text_thickness: int = 2,
	) -> np.ndarray:
		"""Draw bounding boxes and centroids for the detection.

		If fill_text_background is True, the text placed near the centroid is drawn over a blurred 
		background extracted from the image. Extra padding is added so the background box is taller.
		"""
		image_processed = image.copy()

		if draw_boxes:
			object_bbox: np.ndarray = self.bbox_xyxy
			bbox_color: Tuple[int, int, int] = self.color_bbox if self.color_bbox is not None else (100, 255, 255)
			if object_bbox is not None:
				
				x0 = int(object_bbox[0])
				y0 = int(object_bbox[1])
				x1 = int(object_bbox[2])
				y1 = int(object_bbox[3])

				if self.class_id in obfuscate_classes:
					roi = image_processed[y0:y1, x0:x1]
					if roi.size > 0:
						image_processed[y0:y1, x0:x1] = cv2.GaussianBlur(roi, (61, 61), 0)
	
				if box_display_type.strip().lower() == "minimal":
					box_corner_length = int(
						min(box_corner_length, (x1 - x0) / 2, (y1 - y0) / 2)
					)
					cv2.line(image_processed, (x0, y0), (x0 + box_corner_length, y0), color=bbox_color, thickness=box_line_thickness)
					cv2.line(image_processed, (x0, y0), (x0, y0 + box_corner_length), color=bbox_color, thickness=box_line_thickness)
					cv2.line(image_processed, (x1, y0), (x1 - box_corner_length, y0), color=bbox_color, thickness=box_line_thickness)
					cv2.line(image_processed, (x1, y0), (x1, y0 + box_corner_length), color=bbox_color, thickness=box_line_thickness)
					cv2.line(image_processed, (x0, y1), (x0 + box_corner_length, y1), color=bbox_color, thickness=box_line_thickness)
					cv2.line(image_processed, (x0, y1), (x0, y1 - box_corner_length), color=bbox_color, thickness=box_line_thickness)
					cv2.line(image_processed, (x1, y1), (x1 - box_corner_length, y1), color=bbox_color, thickness=box_line_thickness)
					cv2.line(image_processed, (x1, y1), (x1, y1 - box_corner_length), color=bbox_color, thickness=box_line_thickness)
	
				elif box_display_type.strip().lower() == "standard":
					cv2.rectangle(
						image_processed,
						(x0, y0),
						(x1, y1),
						color=bbox_color,
						thickness=box_line_thickness
					)

		if draw_projections:
	
			projection_start_centroid: np.ndarray = self.centroid(location="bottom")[0]
			if self.velocity is not None:
				projection_end_centroid: np.array = np.array([self.centroid(location="bottom")[0] + self.velocity])[0]
			else:
				projection_end_centroid = projection_start_centroid
			projection_start_coords: Tuple[int, int] = (int(projection_start_centroid[0]), int(projection_start_centroid[1]))
			projection_end_coords: Tuple[int, int] = (int(projection_end_centroid[0]), int(projection_end_centroid[1]))
		
			cv2.arrowedLine(
				image_processed, 
				projection_start_coords, 
				projection_end_coords, 
				color=(100, 255, 255),
				thickness=3,
				tipLength=0.2
			)

		centroid: np.ndarray = self.centroid()[0]
		centroid_coords: Tuple[int, int] = (int(centroid[0]), int(centroid[1]))
		if centroid_color is None:
			centroid_color = self.color_centroid
		if centroid_radius is None:
			centroid_radius = self.radius_centroid
		if centroid_thickness is None:
			centroid_thickness = self.thickness_centroid

		if draw_centroids:
	
			cv2.circle(
				image_processed,
				centroid_coords,
				centroid_radius,
				centroid_color,
				centroid_thickness,
				lineType=cv2.LINE_AA
			)

		if draw_text:
	
			display_text: str = str(self.display_name)
			text_position: Tuple[int, int] = (
				centroid_coords[0] + text_position_xy[0], 
				centroid_coords[1] + text_position_xy[1]
			)

			if hasattr(self, "score") and self.score:
				display_text += f" ({round(self.score, 2)})"
		
			if hasattr(self, "status") and self.status:
				display_text += f" ({self.status})"
				if self.status == "Waiting":
					display_text += f" ({int(self.queue_time_duration)}s)"
	
			if fill_text_background:
				font = cv2.FONT_HERSHEY_SIMPLEX
				(text_width, text_height), baseline = cv2.getTextSize(display_text, font, text_scale, text_thickness)
				pad_x = 0
				pad_y = 10
				# Calculate rectangle coordinates
				rect_x1 = text_position[0] - pad_x
				rect_y1 = text_position[1] - text_height - pad_y
				rect_x2 = text_position[0] + text_width + pad_x
				rect_y2 = text_position[1] + baseline + pad_y
				# Ensure coordinates are within image boundaries
				rect_x1 = max(0, rect_x1)
				rect_y1 = max(0, rect_y1)
				rect_x2 = min(image_processed.shape[1], rect_x2)
				rect_y2 = min(image_processed.shape[0], rect_y2)
				# Extract the region of interest and apply a Gaussian blur
				roi = image_processed[rect_y1:rect_y2, rect_x1:rect_x2]
				if roi.size > 0:
					image_processed[rect_y1:rect_y2, rect_x1:rect_x2] = cv2.GaussianBlur(roi, (31, 31), 0)
	
			cv2.putText(
				image_processed,
				display_text,
				text_position,
				fontFace=cv2.FONT_HERSHEY_SIMPLEX,
				fontScale=text_scale,
				color=centroid_color,
				thickness=text_thickness,
				lineType=cv2.LINE_AA
			)

		return image_processed

class YOLOXDetector:
	def __init__(
		self,
		model_path: str,
		input_shape: Tuple[int] = (640, 640),
		confidence_threshold: float = 0.6,
		nms_threshold: float = 0.65,
		providers: List[str] = ["CoreMLExecutionProvider", "CUDAExecutionProvider", "CPUExecutionProvider"],
		sess_options=ort.SessionOptions(),
	):
		self.model_path: str = model_path
		self.dims: Tuple[int] = input_shape
		self.ratio: float = 1.0
		self.confidence_threshold: float = confidence_threshold
		self.nms_threshold: float = nms_threshold
		self.classes: List[str] = ["license-plates", "License_Plate"]
		self.categories: List[str] = ["DEFAULT" for _ in range(len(self.classes))]
		self.providers: List[str] = providers
		self.session = ort.InferenceSession(
				self.model_path,
				providers=self.providers,
				sess_options=sess_options,
		)

	def nms(self, boxes, scores, nms_thr):
		"""Single class NMS implemented in Numpy."""
		x1 = boxes[:, 0]
		y1 = boxes[:, 1]
		x2 = boxes[:, 2]
		y2 = boxes[:, 3]

		areas = (x2 - x1 + 1) * (y2 - y1 + 1)
		order = scores.argsort()[::-1]

		keep = []
		while order.size > 0:
			i = order[0]
			keep.append(i)
			xx1 = np.maximum(x1[i], x1[order[1:]])
			yy1 = np.maximum(y1[i], y1[order[1:]])
			xx2 = np.minimum(x2[i], x2[order[1:]])
			yy2 = np.minimum(y2[i], y2[order[1:]])

			w = np.maximum(0.0, xx2 - xx1 + 1)
			h = np.maximum(0.0, yy2 - yy1 + 1)
			inter = w * h
			ovr = inter / (areas[i] + areas[order[1:]] - inter)

			inds = np.where(ovr <= nms_thr)[0]
			order = order[inds + 1]

		return keep

	def multiclass_nms_class_aware(self, boxes, scores, nms_thr, score_thr):
		"""Multiclass NMS implemented in Numpy. Class-aware version."""
		final_dets = []
		num_classes = scores.shape[1]
		for cls_ind in range(num_classes):
			cls_scores = scores[:, cls_ind]
			valid_score_mask = cls_scores > score_thr
			if valid_score_mask.sum() == 0:
				continue
			else:
				valid_scores = cls_scores[valid_score_mask]
				valid_boxes = boxes[valid_score_mask]
				keep = self.nms(valid_boxes, valid_scores, nms_thr)
				if len(keep) > 0:
					cls_inds = np.ones((len(keep), 1)) * cls_ind
					dets = np.concatenate(
							[valid_boxes[keep], valid_scores[keep, None], cls_inds], 1
					)
					final_dets.append(dets)
		if len(final_dets) == 0:
			return None
		return np.concatenate(final_dets, 0)


	def multiclass_nms_class_agnostic(self, boxes, scores, nms_thr, score_thr):
		"""Multiclass NMS implemented in Numpy. Class-agnostic version."""
		cls_inds = scores.argmax(1)
		cls_scores = scores[np.arange(len(cls_inds)), cls_inds]

		valid_score_mask = cls_scores > score_thr
		if valid_score_mask.sum() == 0:
			return None
		valid_scores = cls_scores[valid_score_mask]
		valid_boxes = boxes[valid_score_mask]
		valid_cls_inds = cls_inds[valid_score_mask]
		keep = self.nms(valid_boxes, valid_scores, nms_thr)
		if keep:
			dets = np.concatenate(
					[valid_boxes[keep], valid_scores[keep, None], valid_cls_inds[keep, None]], 1
			)
		return dets

	def multiclass_nms(self, boxes, scores, nms_thr, score_thr, class_agnostic=False):
		"""Multiclass NMS implemented in Numpy"""
		if class_agnostic:
			return self.multiclass_nms_class_agnostic(boxes, scores, nms_thr, score_thr)
		else:
			return self.multiclass_nms_class_aware(boxes, scores, nms_thr, score_thr)

	def preprocess(self, image: np.ndarray, bgr2rgb: bool = False):
		"""Preprocess image for YOLOX model."""
		if len(image.shape) == 3:
				padded_image = np.ones((self.dims[0], self.dims[1], 3), dtype=np.uint8) * 114
		else:
				padded_image = np.ones(self.dims, dtype=np.uint8) * 114

		if bgr2rgb:
				padded_image = cv2.cvtColor(padded_image, cv2.COLOR_BGR2RGB)

		self.ratio = min(self.dims[0] / image.shape[0], self.dims[1] / image.shape[1])
		resized_image = cv2.resize(
				image,
				(int(image.shape[1] * self.ratio), int(image.shape[0] * self.ratio)),
				interpolation=cv2.INTER_LINEAR,
		).astype(np.uint8)
		padded_image[: int(image.shape[0] * self.ratio), : int(image.shape[1] * self.ratio)] = resized_image

		padded_image = padded_image.transpose((2, 0, 1))
		padded_image = np.ascontiguousarray(padded_image, dtype=np.float32)
		return padded_image

	def postprocess(self, outputs, p64=False):
		"""Post-process YOLOX model outputs into usable bounding boxes and scores."""
		grids = []
		expanded_strides = []
		strides = [8, 16, 32] if not p64 else [8, 16, 32, 64]

		hsizes = [self.dims[0] // stride for stride in strides]
		wsizes = [self.dims[1] // stride for stride in strides]

		for hsize, wsize, stride in zip(hsizes, wsizes, strides):
			xv, yv = np.meshgrid(np.arange(wsize), np.arange(hsize))
			grid = np.stack((xv, yv), 2).reshape(1, -1, 2)
			grids.append(grid)
			shape = grid.shape[:2]
			expanded_strides.append(np.full((*shape, 1), stride))

		grids = np.concatenate(grids, 1)
		expanded_strides = np.concatenate(expanded_strides, 1)
		outputs[..., :2] = (outputs[..., :2] + grids) * expanded_strides
		outputs[..., 2:4] = np.exp(outputs[..., 2:4]) * expanded_strides

		outputs = outputs[0]

		boxes = outputs[:, :4]
		scores = outputs[:, 4:5] * outputs[:, 5:]

		boxes_xyxy = np.ones_like(boxes)
		boxes_xyxy[:, 0] = boxes[:, 0] - boxes[:, 2] / 2.0
		boxes_xyxy[:, 1] = boxes[:, 1] - boxes[:, 3] / 2.0
		boxes_xyxy[:, 2] = boxes[:, 0] + boxes[:, 2] / 2.0
		boxes_xyxy[:, 3] = boxes[:, 1] + boxes[:, 3] / 2.0
		boxes_xyxy /= self.ratio
		return boxes_xyxy, scores

	def predict(self, image: np.ndarray):
		"""Run YOLOX detector on an image and return detected bounding boxes and scores."""
		image = self.preprocess(image=image)
		onnx_pred = self.session.run(None, {self.session.get_inputs()[0].name: np.expand_dims(image, axis=0)})[0]
		boxes_xyxy, scores = self.postprocess(onnx_pred)
		detections = self.multiclass_nms(
			boxes=boxes_xyxy,
			scores=scores,
			nms_thr=self.nms_threshold,
			score_thr=self.confidence_threshold,
			class_agnostic=False if len(self.classes) > 1 else True
		)
		if detections is not None and len(detections) > 0:
			final_boxes, final_scores, final_cls_inds = detections[:, :4], detections[:, 4], detections[:, 5]
		else:
			final_boxes, final_scores, final_cls_inds = np.empty((0, 4)), np.empty((0,)), np.empty((0,))
		return final_boxes, final_scores, final_cls_inds