license-plate-detection / data_objects.py
Noah Vriese
Update visualization formatting
b70c559
raw
history blame
15 kB
import numpy as np
import cv2
import onnxruntime as ort
from typing import List, Tuple, Union, Literal, Dict
from pydantic import BaseModel
# Configuration for YOLOX model, set path to model / class - name mappings here!
class ObjectDetectionConfig(BaseModel):
"""Configuration for trained YOLOX object detection model."""
# Model path & hyperparameters
object_detection_model_path: str = "./models/yolox_custom-plates-2cls-0.1.onnx"
confidence_threshold: float = 0.50
nms_threshold: float = 0.65
input_shape: Tuple[int] = (640, 640)
# Class specific inputs
class_map: Dict = {0: 'license-plates', 1: 'License_Plate'}
display_map: Dict = {0: 'license-plate', 1: 'license-plate'}
color_map: Dict = {0: (186, 223, 255), 1: (100, 255, 255)}
class Detection:
def __init__(
self,
points: np.ndarray,
class_id: Union[int, None] = None,
score: Union[float, None] = 0.0,
color: Tuple[int, int, int] = (100, 255, 255),
display_name: str = "Box",
centroid_radius: int = 5,
centroid_thickness: int = -1
):
"""
Represents an object detection in the scene.
Stores bounding box, class_id, and other attributes for tracking and visualization.
"""
self.points_xyxy = points
self.class_id = class_id
self.score = score
self.color_bbox = color
self.color_centroid = color
self.radius_centroid = centroid_radius
self.thickness_centroid = centroid_thickness
self.centroid_location: str = "center"
self.display_name: str = display_name
self.track_id: int = None
self.id: int = None
self.active: bool = False
self.status: str = ""
def __repr__(self) -> str:
return f"Detection({str(self.display_name)})"
@property
def bbox_xyxy(self) -> np.ndarray:
return self.points_xyxy
@property
def size(self) -> float:
"""Return the bounding box area in pixels."""
x1, y1, x2, y2 = self.points_xyxy
return (x2 - x1) * (y2 - y1)
def bbox_image(self, image: np.ndarray, buffer: int = 0) -> np.ndarray:
"""Extract the image patch corresponding to this detection"s bounding box."""
x1, y1, x2, y2 = self.points_xyxy
height, width = image.shape[:2]
x1 = max(0, int(x1 - buffer))
y1 = max(0, int(y1 - buffer))
x2 = min(width, int(x2 + buffer))
y2 = min(height, int(y2 + buffer))
return image[y1:y2, x1:x2]
def centroid(self, location: str = None) -> np.ndarray:
"""Get the centroid of the bounding box based on the chosen centroid location."""
if location is None:
location = self.centroid_location
x1, y1, x2, y2 = self.points_xyxy
if location == "center":
centroid_loc = [(x1 + x2) / 2, (y1 + y2) / 2]
elif location == "top":
centroid_loc = [(x1 + x2) / 2, y1]
elif location == "bottom":
centroid_loc = [(x1 + x2) / 2, y2]
elif location == "left":
centroid_loc = [x1, (y1 + y2) / 2]
elif location == "right":
centroid_loc = [x2, (y1 + y2) / 2]
elif location == "upper-left":
centroid_loc = [x1, y1]
elif location == "upper-right":
centroid_loc = [x2, y1]
elif location == "bottom-left":
centroid_loc = [x1, y2]
elif location == "bottom-right":
centroid_loc = [x2, y2]
else:
raise ValueError("Unsupported location type.")
return np.array([centroid_loc], dtype=np.float32)
def draw(
self,
image: np.ndarray,
draw_boxes: bool = True,
draw_centroids: bool = True,
draw_text: bool = True,
draw_projections: bool = False,
fill_text_background: bool = False,
box_display_type: Literal["minimal", "standard"] = "standard",
box_line_thickness: int = 2,
box_corner_length: int = 20,
obfuscate_classes: List[int] = [],
centroid_color: Union[Tuple[int, int, int], None] = None,
centroid_radius: Union[int, None] = None,
centroid_thickness: Union[int, None] = None,
text_position_xy: Tuple[int] = (25, 25),
text_scale: float = 0.8,
text_thickness: int = 2,
) -> np.ndarray:
"""Draw bounding boxes and centroids for the detection.
If fill_text_background is True, the text placed near the centroid is drawn over a blurred
background extracted from the image. Extra padding is added so the background box is taller.
"""
image_processed = image.copy()
if draw_boxes:
object_bbox: np.ndarray = self.bbox_xyxy
bbox_color: Tuple[int, int, int] = self.color_bbox if self.color_bbox is not None else (100, 255, 255)
if object_bbox is not None:
x0 = int(object_bbox[0])
y0 = int(object_bbox[1])
x1 = int(object_bbox[2])
y1 = int(object_bbox[3])
if self.class_id in obfuscate_classes:
roi = image_processed[y0:y1, x0:x1]
if roi.size > 0:
image_processed[y0:y1, x0:x1] = cv2.GaussianBlur(roi, (61, 61), 0)
if box_display_type.strip().lower() == "minimal":
box_corner_length = int(
min(box_corner_length, (x1 - x0) / 2, (y1 - y0) / 2)
)
cv2.line(image_processed, (x0, y0), (x0 + box_corner_length, y0), color=bbox_color, thickness=box_line_thickness)
cv2.line(image_processed, (x0, y0), (x0, y0 + box_corner_length), color=bbox_color, thickness=box_line_thickness)
cv2.line(image_processed, (x1, y0), (x1 - box_corner_length, y0), color=bbox_color, thickness=box_line_thickness)
cv2.line(image_processed, (x1, y0), (x1, y0 + box_corner_length), color=bbox_color, thickness=box_line_thickness)
cv2.line(image_processed, (x0, y1), (x0 + box_corner_length, y1), color=bbox_color, thickness=box_line_thickness)
cv2.line(image_processed, (x0, y1), (x0, y1 - box_corner_length), color=bbox_color, thickness=box_line_thickness)
cv2.line(image_processed, (x1, y1), (x1 - box_corner_length, y1), color=bbox_color, thickness=box_line_thickness)
cv2.line(image_processed, (x1, y1), (x1, y1 - box_corner_length), color=bbox_color, thickness=box_line_thickness)
elif box_display_type.strip().lower() == "standard":
cv2.rectangle(
image_processed,
(x0, y0),
(x1, y1),
color=bbox_color,
thickness=box_line_thickness
)
if draw_projections:
projection_start_centroid: np.ndarray = self.centroid(location="bottom")[0]
if self.velocity is not None:
projection_end_centroid: np.array = np.array([self.centroid(location="bottom")[0] + self.velocity])[0]
else:
projection_end_centroid = projection_start_centroid
projection_start_coords: Tuple[int, int] = (int(projection_start_centroid[0]), int(projection_start_centroid[1]))
projection_end_coords: Tuple[int, int] = (int(projection_end_centroid[0]), int(projection_end_centroid[1]))
cv2.arrowedLine(
image_processed,
projection_start_coords,
projection_end_coords,
color=(100, 255, 255),
thickness=3,
tipLength=0.2
)
centroid: np.ndarray = self.centroid()[0]
centroid_coords: Tuple[int, int] = (int(centroid[0]), int(centroid[1]))
if centroid_color is None:
centroid_color = self.color_centroid
if centroid_radius is None:
centroid_radius = self.radius_centroid
if centroid_thickness is None:
centroid_thickness = self.thickness_centroid
if draw_centroids:
cv2.circle(
image_processed,
centroid_coords,
centroid_radius,
centroid_color,
centroid_thickness,
lineType=cv2.LINE_AA
)
if draw_text:
display_text: str = str(self.display_name)
text_position: Tuple[int, int] = (
centroid_coords[0] + text_position_xy[0],
centroid_coords[1] + text_position_xy[1]
)
if hasattr(self, "score") and self.score:
display_text += f" ({self.score})"
if hasattr(self, "status") and self.status:
display_text += f" ({self.status})"
if self.status == "Waiting":
display_text += f" ({int(self.queue_time_duration)}s)"
if fill_text_background:
font = cv2.FONT_HERSHEY_SIMPLEX
(text_width, text_height), baseline = cv2.getTextSize(display_text, font, text_scale, text_thickness)
pad_x = 0
pad_y = 10
# Calculate rectangle coordinates
rect_x1 = text_position[0] - pad_x
rect_y1 = text_position[1] - text_height - pad_y
rect_x2 = text_position[0] + text_width + pad_x
rect_y2 = text_position[1] + baseline + pad_y
# Ensure coordinates are within image boundaries
rect_x1 = max(0, rect_x1)
rect_y1 = max(0, rect_y1)
rect_x2 = min(image_processed.shape[1], rect_x2)
rect_y2 = min(image_processed.shape[0], rect_y2)
# Extract the region of interest and apply a Gaussian blur
roi = image_processed[rect_y1:rect_y2, rect_x1:rect_x2]
if roi.size > 0:
image_processed[rect_y1:rect_y2, rect_x1:rect_x2] = cv2.GaussianBlur(roi, (31, 31), 0)
cv2.putText(
image_processed,
display_text,
text_position,
fontFace=cv2.FONT_HERSHEY_SIMPLEX,
fontScale=text_scale,
color=centroid_color,
thickness=text_thickness,
lineType=cv2.LINE_AA
)
return image_processed
class YOLOXDetector:
def __init__(
self,
model_path: str,
input_shape: Tuple[int] = (640, 640),
confidence_threshold: float = 0.6,
nms_threshold: float = 0.65,
providers: List[str] = ["CoreMLExecutionProvider", "CUDAExecutionProvider", "CPUExecutionProvider"],
sess_options=ort.SessionOptions(),
):
self.model_path: str = model_path
self.dims: Tuple[int] = input_shape
self.ratio: float = 1.0
self.confidence_threshold: float = confidence_threshold
self.nms_threshold: float = nms_threshold
self.classes: List[str] = ["license-plates", "License_Plate"]
self.categories: List[str] = ["DEFAULT" for _ in range(len(self.classes))]
self.providers: List[str] = providers
self.session = ort.InferenceSession(
self.model_path,
providers=self.providers,
sess_options=sess_options,
)
def nms(self, boxes, scores, nms_thr):
"""Single class NMS implemented in Numpy."""
x1 = boxes[:, 0]
y1 = boxes[:, 1]
x2 = boxes[:, 2]
y2 = boxes[:, 3]
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
ovr = inter / (areas[i] + areas[order[1:]] - inter)
inds = np.where(ovr <= nms_thr)[0]
order = order[inds + 1]
return keep
def multiclass_nms_class_aware(self, boxes, scores, nms_thr, score_thr):
"""Multiclass NMS implemented in Numpy. Class-aware version."""
final_dets = []
num_classes = scores.shape[1]
for cls_ind in range(num_classes):
cls_scores = scores[:, cls_ind]
valid_score_mask = cls_scores > score_thr
if valid_score_mask.sum() == 0:
continue
else:
valid_scores = cls_scores[valid_score_mask]
valid_boxes = boxes[valid_score_mask]
keep = self.nms(valid_boxes, valid_scores, nms_thr)
if len(keep) > 0:
cls_inds = np.ones((len(keep), 1)) * cls_ind
dets = np.concatenate(
[valid_boxes[keep], valid_scores[keep, None], cls_inds], 1
)
final_dets.append(dets)
if len(final_dets) == 0:
return None
return np.concatenate(final_dets, 0)
def multiclass_nms_class_agnostic(self, boxes, scores, nms_thr, score_thr):
"""Multiclass NMS implemented in Numpy. Class-agnostic version."""
cls_inds = scores.argmax(1)
cls_scores = scores[np.arange(len(cls_inds)), cls_inds]
valid_score_mask = cls_scores > score_thr
if valid_score_mask.sum() == 0:
return None
valid_scores = cls_scores[valid_score_mask]
valid_boxes = boxes[valid_score_mask]
valid_cls_inds = cls_inds[valid_score_mask]
keep = self.nms(valid_boxes, valid_scores, nms_thr)
if keep:
dets = np.concatenate(
[valid_boxes[keep], valid_scores[keep, None], valid_cls_inds[keep, None]], 1
)
return dets
def multiclass_nms(self, boxes, scores, nms_thr, score_thr, class_agnostic=False):
"""Multiclass NMS implemented in Numpy"""
if class_agnostic:
return self.multiclass_nms_class_agnostic(boxes, scores, nms_thr, score_thr)
else:
return self.multiclass_nms_class_aware(boxes, scores, nms_thr, score_thr)
def preprocess(self, image: np.ndarray, bgr2rgb: bool = False):
"""Preprocess image for YOLOX model."""
if len(image.shape) == 3:
padded_image = np.ones((self.dims[0], self.dims[1], 3), dtype=np.uint8) * 114
else:
padded_image = np.ones(self.dims, dtype=np.uint8) * 114
if bgr2rgb:
padded_image = cv2.cvtColor(padded_image, cv2.COLOR_BGR2RGB)
self.ratio = min(self.dims[0] / image.shape[0], self.dims[1] / image.shape[1])
resized_image = cv2.resize(
image,
(int(image.shape[1] * self.ratio), int(image.shape[0] * self.ratio)),
interpolation=cv2.INTER_LINEAR,
).astype(np.uint8)
padded_image[: int(image.shape[0] * self.ratio), : int(image.shape[1] * self.ratio)] = resized_image
padded_image = padded_image.transpose((2, 0, 1))
padded_image = np.ascontiguousarray(padded_image, dtype=np.float32)
return padded_image
def postprocess(self, outputs, p64=False):
"""Post-process YOLOX model outputs into usable bounding boxes and scores."""
grids = []
expanded_strides = []
strides = [8, 16, 32] if not p64 else [8, 16, 32, 64]
hsizes = [self.dims[0] // stride for stride in strides]
wsizes = [self.dims[1] // stride for stride in strides]
for hsize, wsize, stride in zip(hsizes, wsizes, strides):
xv, yv = np.meshgrid(np.arange(wsize), np.arange(hsize))
grid = np.stack((xv, yv), 2).reshape(1, -1, 2)
grids.append(grid)
shape = grid.shape[:2]
expanded_strides.append(np.full((*shape, 1), stride))
grids = np.concatenate(grids, 1)
expanded_strides = np.concatenate(expanded_strides, 1)
outputs[..., :2] = (outputs[..., :2] + grids) * expanded_strides
outputs[..., 2:4] = np.exp(outputs[..., 2:4]) * expanded_strides
outputs = outputs[0]
boxes = outputs[:, :4]
scores = outputs[:, 4:5] * outputs[:, 5:]
boxes_xyxy = np.ones_like(boxes)
boxes_xyxy[:, 0] = boxes[:, 0] - boxes[:, 2] / 2.0
boxes_xyxy[:, 1] = boxes[:, 1] - boxes[:, 3] / 2.0
boxes_xyxy[:, 2] = boxes[:, 0] + boxes[:, 2] / 2.0
boxes_xyxy[:, 3] = boxes[:, 1] + boxes[:, 3] / 2.0
boxes_xyxy /= self.ratio
return boxes_xyxy, scores
def predict(self, image: np.ndarray):
"""Run YOLOX detector on an image and return detected bounding boxes and scores."""
image = self.preprocess(image=image)
onnx_pred = self.session.run(None, {self.session.get_inputs()[0].name: np.expand_dims(image, axis=0)})[0]
boxes_xyxy, scores = self.postprocess(onnx_pred)
detections = self.multiclass_nms(
boxes=boxes_xyxy,
scores=scores,
nms_thr=self.nms_threshold,
score_thr=self.confidence_threshold,
class_agnostic=False if len(self.classes) > 1 else True
)
if detections is not None and len(detections) > 0:
final_boxes, final_scores, final_cls_inds = detections[:, :4], detections[:, 4], detections[:, 5]
else:
final_boxes, final_scores, final_cls_inds = np.empty((0, 4)), np.empty((0,)), np.empty((0,))
return final_boxes, final_scores, final_cls_inds