Spaces:
Runtime error
Runtime error
fix: minor fix
Browse files
app.py
CHANGED
|
@@ -35,8 +35,8 @@ alt_models = [
|
|
| 35 |
("Stable Diffusion V1.5", "runwayml/stable-diffusion-v1-5", 1),
|
| 36 |
("Anything V3.0", "Linaqruf/anything-v3.0", 2),
|
| 37 |
("Open Journey", "prompthero/openjourney", 1),
|
| 38 |
-
("Eimis AnimeDiffusion", "eimiss/EimisAnimeDiffusion_1.0v", 2)
|
| 39 |
-
("Dreamlike Photoreal 2.0", "dreamlike-art/dreamlike-photoreal-2.0", 1)
|
| 40 |
("Redshift Diffusion", "nitrosocke/redshift-diffusion", 1)
|
| 41 |
]
|
| 42 |
|
|
@@ -115,13 +115,14 @@ lora_cache = {
|
|
| 115 |
}
|
| 116 |
|
| 117 |
def get_model(name):
|
| 118 |
-
|
|
|
|
| 119 |
if name not in unet_cache:
|
| 120 |
if name not in keys:
|
| 121 |
raise ValueError(name)
|
| 122 |
else:
|
| 123 |
unet = UNet2DConditionModel.from_pretrained(
|
| 124 |
-
|
| 125 |
subfolder="unet",
|
| 126 |
torch_dtype=torch.float16,
|
| 127 |
)
|
|
@@ -133,10 +134,11 @@ def get_model(name):
|
|
| 133 |
g_lora = lora_cache[name]
|
| 134 |
g_unet.set_attn_processor(CrossAttnProcessor())
|
| 135 |
g_lora.reset()
|
|
|
|
| 136 |
if torch.cuda.is_available():
|
| 137 |
g_unet.to("cuda")
|
| 138 |
g_lora.to("cuda")
|
| 139 |
-
return g_unet, g_lora,
|
| 140 |
|
| 141 |
# precache on huggingface
|
| 142 |
for model in models:
|
|
|
|
| 35 |
("Stable Diffusion V1.5", "runwayml/stable-diffusion-v1-5", 1),
|
| 36 |
("Anything V3.0", "Linaqruf/anything-v3.0", 2),
|
| 37 |
("Open Journey", "prompthero/openjourney", 1),
|
| 38 |
+
("Eimis AnimeDiffusion", "eimiss/EimisAnimeDiffusion_1.0v", 2),
|
| 39 |
+
("Dreamlike Photoreal 2.0", "dreamlike-art/dreamlike-photoreal-2.0", 1),
|
| 40 |
("Redshift Diffusion", "nitrosocke/redshift-diffusion", 1)
|
| 41 |
]
|
| 42 |
|
|
|
|
| 115 |
}
|
| 116 |
|
| 117 |
def get_model(name):
|
| 118 |
+
local_models = models + alt_models
|
| 119 |
+
keys = [k[0] for k in local_models]
|
| 120 |
if name not in unet_cache:
|
| 121 |
if name not in keys:
|
| 122 |
raise ValueError(name)
|
| 123 |
else:
|
| 124 |
unet = UNet2DConditionModel.from_pretrained(
|
| 125 |
+
local_models[keys.index(name)][1],
|
| 126 |
subfolder="unet",
|
| 127 |
torch_dtype=torch.float16,
|
| 128 |
)
|
|
|
|
| 134 |
g_lora = lora_cache[name]
|
| 135 |
g_unet.set_attn_processor(CrossAttnProcessor())
|
| 136 |
g_lora.reset()
|
| 137 |
+
clip_skip = local_models[keys.index(name)][2]
|
| 138 |
if torch.cuda.is_available():
|
| 139 |
g_unet.to("cuda")
|
| 140 |
g_lora.to("cuda")
|
| 141 |
+
return g_unet, g_lora, clip_skip
|
| 142 |
|
| 143 |
# precache on huggingface
|
| 144 |
for model in models:
|