Spaces:
Running
on
Zero
Running
on
Zero
initial
Browse files- app.py +414 -0
- requirements.txt +20 -0
app.py
ADDED
@@ -0,0 +1,414 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math, json
|
2 |
+
import gradio as gr
|
3 |
+
import torch, pandas as pd
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import seaborn as sns
|
6 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
7 |
+
|
8 |
+
# ZeroGPU support
|
9 |
+
try:
|
10 |
+
import spaces
|
11 |
+
ZEROGPU_AVAILABLE = True
|
12 |
+
print("ZeroGPU support enabled")
|
13 |
+
except ImportError:
|
14 |
+
ZEROGPU_AVAILABLE = False
|
15 |
+
print("ZeroGPU not available, running in standard mode")
|
16 |
+
# Create dummy decorator for local development
|
17 |
+
def spaces_gpu_decorator(duration=60):
|
18 |
+
def decorator(func):
|
19 |
+
return func
|
20 |
+
return decorator
|
21 |
+
spaces = type('spaces', (), {'GPU': spaces_gpu_decorator})
|
22 |
+
|
23 |
+
# Model configuration - can be replaced with other models
|
24 |
+
MODEL_NAME = "fdtn-ai/Foundation-Sec-8B"
|
25 |
+
#MODEL_NAME = "sshleifer/tiny-gpt2"
|
26 |
+
|
27 |
+
# Initialize tokenizer and model
|
28 |
+
print(f"Loading model: {MODEL_NAME}")
|
29 |
+
tok = AutoTokenizer.from_pretrained(MODEL_NAME, use_fast=True)
|
30 |
+
model = AutoModelForCausalLM.from_pretrained(
|
31 |
+
MODEL_NAME, torch_dtype=torch.float16, device_map="auto"
|
32 |
+
).eval()
|
33 |
+
|
34 |
+
# Log device information
|
35 |
+
if hasattr(model, 'device'):
|
36 |
+
print(f"Model loaded on device: {model.device}")
|
37 |
+
else:
|
38 |
+
device_info = next(model.parameters()).device
|
39 |
+
print(f"Model parameters on device: {device_info}")
|
40 |
+
|
41 |
+
print(f"CUDA available: {torch.cuda.is_available()}")
|
42 |
+
if torch.cuda.is_available():
|
43 |
+
print(f"CUDA device count: {torch.cuda.device_count()}")
|
44 |
+
print(f"Current CUDA device: {torch.cuda.current_device()}")
|
45 |
+
print(f"CUDA device name: {torch.cuda.get_device_name()}")
|
46 |
+
|
47 |
+
# Configuration parameters
|
48 |
+
LEN_ALPHA = 0.7 # Length correction factor (0=no correction, 1=full average logP)
|
49 |
+
|
50 |
+
# Sample data for testing
|
51 |
+
CAMPAIGN_LIST = [
|
52 |
+
"Operation Aurora",
|
53 |
+
"Dust Storm",
|
54 |
+
"ShadowHammer",
|
55 |
+
"NotPetya",
|
56 |
+
"SolarWinds",
|
57 |
+
]
|
58 |
+
ACTOR_LIST = ["APT1", "APT28", "APT33", "APT38", "FIN8"]
|
59 |
+
|
60 |
+
# Sample ATT&CK technique IDs with names
|
61 |
+
TECHNIQUE_LIST = [
|
62 |
+
"T1059 Command and Scripting Interpreter",
|
63 |
+
"T1566 Phishing",
|
64 |
+
"T1027 Obfuscated/Stored Files",
|
65 |
+
"T1036 Masquerading",
|
66 |
+
"T1105 Ingress Tool Transfer",
|
67 |
+
"T1018 Remote System Discovery",
|
68 |
+
"T1568 Dynamic Resolution",
|
69 |
+
]
|
70 |
+
|
71 |
+
|
72 |
+
@spaces.GPU(duration=120)
|
73 |
+
@torch.no_grad()
|
74 |
+
def phrase_log_prob(prompt, phrase):
|
75 |
+
"""Calculate log probability of a phrase given a prompt using the language model."""
|
76 |
+
try:
|
77 |
+
# Log GPU usage information
|
78 |
+
device_info = next(model.parameters()).device
|
79 |
+
print(f"Running phrase_log_prob on device: {device_info}")
|
80 |
+
|
81 |
+
ids_prompt = tok(prompt, return_tensors="pt").to(model.device)["input_ids"][0]
|
82 |
+
ids_phrase = tok(phrase, add_special_tokens=False)["input_ids"]
|
83 |
+
lp = 0.0
|
84 |
+
cur = ids_prompt.unsqueeze(0)
|
85 |
+
for tid in ids_phrase:
|
86 |
+
logits = model(cur).logits[0, -1].float()
|
87 |
+
lp += torch.log_softmax(logits, -1)[tid].item()
|
88 |
+
cur = torch.cat([cur, torch.tensor([[tid]], device=model.device)], 1)
|
89 |
+
return lp
|
90 |
+
except Exception as e:
|
91 |
+
print(f"Error in phrase_log_prob: {e}")
|
92 |
+
raise e
|
93 |
+
|
94 |
+
|
95 |
+
def binary_assoc_score(prompt: str, phrase: str, neg="does NOT use", prompt_template="typically uses") -> float:
|
96 |
+
"""
|
97 |
+
Calculate binary association score: p ≈ P(use) / (P(use)+P(not use))
|
98 |
+
Applies length normalization to correct for longer phrases.
|
99 |
+
|
100 |
+
Args:
|
101 |
+
prompt: Base prompt string
|
102 |
+
phrase: Phrase to evaluate
|
103 |
+
neg: Negative template to replace positive template
|
104 |
+
prompt_template: Positive template to be replaced
|
105 |
+
|
106 |
+
Returns:
|
107 |
+
Length-normalized association score between 0 and 1
|
108 |
+
"""
|
109 |
+
lp_pos = phrase_log_prob(prompt, phrase)
|
110 |
+
lp_neg = phrase_log_prob(prompt.replace(prompt_template, neg), phrase)
|
111 |
+
|
112 |
+
# Logistic transformation
|
113 |
+
prob = 1 / (1 + math.exp(lp_neg - lp_pos))
|
114 |
+
|
115 |
+
# Length normalization
|
116 |
+
n_tok = len(tok(phrase, add_special_tokens=False)["input_ids"])
|
117 |
+
return prob / (n_tok ** LEN_ALPHA)
|
118 |
+
|
119 |
+
|
120 |
+
def campaign_actor_associations(campaigns, actors):
|
121 |
+
"""Campaign × Actor の関連度を計算し、各CampaignごとにTop Actorを返す"""
|
122 |
+
results = {}
|
123 |
+
for camp in campaigns:
|
124 |
+
prompt_base = CAMPAIGN_ACTOR_PROMPT.format(campaign=camp)
|
125 |
+
actor_scores = {}
|
126 |
+
for actor in actors:
|
127 |
+
score = binary_assoc_score(prompt_base, actor, neg="is NOT associated with")
|
128 |
+
actor_scores[actor] = score
|
129 |
+
|
130 |
+
# スコア順でソート
|
131 |
+
sorted_actors = sorted(actor_scores.items(), key=lambda x: x[1], reverse=True)
|
132 |
+
results[camp] = sorted_actors
|
133 |
+
|
134 |
+
return results
|
135 |
+
|
136 |
+
|
137 |
+
def campaign_technique_matrix(campaigns, techniques, prompt_template="typically uses", neg_template="typically does NOT use"):
|
138 |
+
"""
|
139 |
+
Generate Campaign × Technique association matrix using binary scoring.
|
140 |
+
|
141 |
+
Args:
|
142 |
+
campaigns: List of campaign names
|
143 |
+
techniques: List of technique names
|
144 |
+
prompt_template: Template for positive association
|
145 |
+
neg_template: Template for negative association
|
146 |
+
|
147 |
+
Returns:
|
148 |
+
DataFrame with campaigns as rows, techniques as columns, scores as values
|
149 |
+
"""
|
150 |
+
rows = {}
|
151 |
+
for camp in campaigns:
|
152 |
+
prompt_base = f"{camp} {prompt_template}"
|
153 |
+
rows[camp] = {
|
154 |
+
tech: binary_assoc_score(prompt_base, tech, neg=neg_template, prompt_template=prompt_template)
|
155 |
+
for tech in techniques
|
156 |
+
}
|
157 |
+
return pd.DataFrame.from_dict(rows, orient="index")
|
158 |
+
|
159 |
+
|
160 |
+
def campaign_actor_matrix(campaigns, actors):
|
161 |
+
"""Campaign × Actor 行列を生成"""
|
162 |
+
rows = {}
|
163 |
+
for camp in campaigns:
|
164 |
+
prompt_base = CAMPAIGN_ACTOR_PROMPT.format(campaign=camp)
|
165 |
+
rows[camp] = {
|
166 |
+
actor: binary_assoc_score(prompt_base, actor, neg="is NOT associated with")
|
167 |
+
for actor in actors
|
168 |
+
}
|
169 |
+
return pd.DataFrame.from_dict(rows, orient="index")
|
170 |
+
|
171 |
+
|
172 |
+
def campaign_actor_probs(campaigns, actors, prompt_template="is conducted by"):
|
173 |
+
"""
|
174 |
+
Generate Campaign × Actor probability matrix using softmax normalization.
|
175 |
+
|
176 |
+
Args:
|
177 |
+
campaigns: List of campaign names
|
178 |
+
actors: List of actor names
|
179 |
+
prompt_template: Template for actor association prompt
|
180 |
+
|
181 |
+
Returns:
|
182 |
+
DataFrame with campaigns as rows, actors as columns, probabilities as values
|
183 |
+
"""
|
184 |
+
rows = {}
|
185 |
+
for camp in campaigns:
|
186 |
+
prompt = f"{camp} {prompt_template}"
|
187 |
+
logps = [phrase_log_prob(prompt, a) for a in actors]
|
188 |
+
|
189 |
+
# Softmax normalization (with max-shift for numerical stability)
|
190 |
+
m = max(logps)
|
191 |
+
ps = [math.exp(lp - m) for lp in logps]
|
192 |
+
s = sum(ps)
|
193 |
+
rows[camp] = {a: p/s for a, p in zip(actors, ps)}
|
194 |
+
return pd.DataFrame.from_dict(rows, orient="index")
|
195 |
+
|
196 |
+
|
197 |
+
def generate_actor_heatmap(c_list, a_list, actor_prompt_template):
|
198 |
+
"""Generate Campaign-Actor association heatmap with probability visualization."""
|
199 |
+
try:
|
200 |
+
campaigns = [c.strip() for c in c_list.split(",") if c.strip()]
|
201 |
+
actors = [a.strip() for a in a_list.split(",") if a.strip()]
|
202 |
+
|
203 |
+
if not campaigns or not actors:
|
204 |
+
fig, ax = plt.subplots(figsize=(8, 6))
|
205 |
+
ax.text(0.5, 0.5, 'Please enter both Campaigns and Actors',
|
206 |
+
ha='center', va='center', fontsize=16)
|
207 |
+
ax.set_xlim(0, 1)
|
208 |
+
ax.set_ylim(0, 1)
|
209 |
+
ax.axis('off')
|
210 |
+
return fig
|
211 |
+
|
212 |
+
print(f"Processing {len(campaigns)} campaigns and {len(actors)} actors...")
|
213 |
+
print(f"Using prompt template: '{actor_prompt_template}'")
|
214 |
+
|
215 |
+
# Check GPU availability
|
216 |
+
if torch.cuda.is_available():
|
217 |
+
print(f"GPU computation enabled - Device: {torch.cuda.get_device_name()}")
|
218 |
+
else:
|
219 |
+
print("Running on CPU")
|
220 |
+
|
221 |
+
# Calculate probability matrix
|
222 |
+
df_ca = campaign_actor_probs(campaigns, actors, actor_prompt_template)
|
223 |
+
print(f"Actor probability matrix shape: {df_ca.shape}")
|
224 |
+
print("Actor probability matrix:")
|
225 |
+
print(df_ca.round(4))
|
226 |
+
|
227 |
+
# Create heatmap with matplotlib/seaborn
|
228 |
+
fig, ax = plt.subplots(figsize=(max(8, len(actors)*1.2), max(6, len(campaigns)*0.8)))
|
229 |
+
|
230 |
+
sns.heatmap(df_ca, annot=True, cmap='plasma', fmt='.3f',
|
231 |
+
cbar_kws={'label': 'P(actor)'}, ax=ax)
|
232 |
+
|
233 |
+
ax.set_title('Campaign-Actor Probabilities (softmax normalized)',
|
234 |
+
fontsize=14, pad=20)
|
235 |
+
ax.set_xlabel('Actor', fontsize=12)
|
236 |
+
ax.set_ylabel('Campaign', fontsize=12)
|
237 |
+
|
238 |
+
# Adjust label rotation
|
239 |
+
plt.setp(ax.get_xticklabels(), rotation=45, ha='right')
|
240 |
+
plt.setp(ax.get_yticklabels(), rotation=0)
|
241 |
+
|
242 |
+
plt.tight_layout()
|
243 |
+
|
244 |
+
print("Actor heatmap generated successfully!")
|
245 |
+
return fig
|
246 |
+
|
247 |
+
except Exception as e:
|
248 |
+
print(f"Error in generate_actor_heatmap: {e}")
|
249 |
+
import traceback
|
250 |
+
traceback.print_exc()
|
251 |
+
|
252 |
+
fig, ax = plt.subplots(figsize=(8, 6))
|
253 |
+
ax.text(0.5, 0.5, f'Error occurred: {str(e)}',
|
254 |
+
ha='center', va='center', fontsize=12, color='red')
|
255 |
+
ax.set_xlim(0, 1)
|
256 |
+
ax.set_ylim(0, 1)
|
257 |
+
ax.axis('off')
|
258 |
+
return fig
|
259 |
+
|
260 |
+
|
261 |
+
def generate_technique_heatmap(c_list, t_list, technique_prompt_template, technique_neg_template):
|
262 |
+
"""Generate Campaign-Technique association heatmap with binary scoring visualization."""
|
263 |
+
try:
|
264 |
+
campaigns = [c.strip() for c in c_list.split(",") if c.strip()]
|
265 |
+
techniques = [t.strip() for t in t_list.split(",") if t.strip()]
|
266 |
+
|
267 |
+
if not campaigns or not techniques:
|
268 |
+
fig, ax = plt.subplots(figsize=(8, 6))
|
269 |
+
ax.text(0.5, 0.5, 'Please enter both Campaigns and Techniques',
|
270 |
+
ha='center', va='center', fontsize=16)
|
271 |
+
ax.set_xlim(0, 1)
|
272 |
+
ax.set_ylim(0, 1)
|
273 |
+
ax.axis('off')
|
274 |
+
return fig
|
275 |
+
|
276 |
+
print(f"Processing {len(campaigns)} campaigns and {len(techniques)} techniques...")
|
277 |
+
print(f"Using prompt templates: '{technique_prompt_template}' / '{technique_neg_template}'")
|
278 |
+
|
279 |
+
# Check GPU availability
|
280 |
+
if torch.cuda.is_available():
|
281 |
+
print(f"GPU computation enabled - Device: {torch.cuda.get_device_name()}")
|
282 |
+
else:
|
283 |
+
print("Running on CPU")
|
284 |
+
|
285 |
+
# Calculate score matrix
|
286 |
+
df_ct = campaign_technique_matrix(campaigns, techniques, technique_prompt_template, technique_neg_template)
|
287 |
+
print(f"Score matrix shape: {df_ct.shape}")
|
288 |
+
print("Score matrix:")
|
289 |
+
print(df_ct.round(4))
|
290 |
+
|
291 |
+
# Create heatmap with matplotlib/seaborn
|
292 |
+
fig, ax = plt.subplots(figsize=(max(8, len(techniques)*1.2), max(6, len(campaigns)*0.8)))
|
293 |
+
|
294 |
+
sns.heatmap(df_ct, annot=True, cmap='viridis', fmt='.3f',
|
295 |
+
cbar_kws={'label': 'Association Score'}, ax=ax)
|
296 |
+
|
297 |
+
ax.set_title('Campaign-Technique Associations (len-norm, independent)',
|
298 |
+
fontsize=14, pad=20)
|
299 |
+
ax.set_xlabel('Technique', fontsize=12)
|
300 |
+
ax.set_ylabel('Campaign', fontsize=12)
|
301 |
+
|
302 |
+
# Adjust label rotation
|
303 |
+
plt.setp(ax.get_xticklabels(), rotation=45, ha='right')
|
304 |
+
plt.setp(ax.get_yticklabels(), rotation=0)
|
305 |
+
|
306 |
+
plt.tight_layout()
|
307 |
+
|
308 |
+
print("Technique heatmap generated successfully!")
|
309 |
+
return fig
|
310 |
+
|
311 |
+
except Exception as e:
|
312 |
+
print(f"Error in generate_technique_heatmap: {e}")
|
313 |
+
import traceback
|
314 |
+
traceback.print_exc()
|
315 |
+
|
316 |
+
fig, ax = plt.subplots(figsize=(8, 6))
|
317 |
+
ax.text(0.5, 0.5, f'Error occurred: {str(e)}',
|
318 |
+
ha='center', va='center', fontsize=12, color='red')
|
319 |
+
ax.set_xlim(0, 1)
|
320 |
+
ax.set_ylim(0, 1)
|
321 |
+
ax.axis('off')
|
322 |
+
return fig
|
323 |
+
|
324 |
+
|
325 |
+
with gr.Blocks(title="LLM Threat Graph Demo") as demo:
|
326 |
+
gr.Markdown("# 🕸️ LLM Threat Association Analysis\n*Visualizing Campaign-Actor-Technique relationships using Language Models*")
|
327 |
+
|
328 |
+
# Common inputs
|
329 |
+
with gr.Row():
|
330 |
+
campaigns = gr.Textbox(
|
331 |
+
"Operation Aurora, Dust Storm, ShadowHammer, NotPetya, SolarWinds",
|
332 |
+
label="Campaigns (comma-separated)",
|
333 |
+
placeholder="e.g., Operation Aurora, NotPetya, Stuxnet"
|
334 |
+
)
|
335 |
+
|
336 |
+
# Campaign-Actor section (probabilistic)
|
337 |
+
gr.Markdown("## 👤 Campaign-Actor Associations")
|
338 |
+
gr.Markdown("Visualizing Campaign-Actor relationships with probabilistic heatmaps")
|
339 |
+
|
340 |
+
gr.Markdown("""
|
341 |
+
**Calculation Method**: `P(actor | "{campaign} is conducted by") (softmax normalized)`
|
342 |
+
|
343 |
+
1. Calculate `phrase_log_prob("{campaign} is conducted by", actor)` for each Actor
|
344 |
+
2. Apply softmax normalization to create probability distribution (probabilities sum to 1.0 per Campaign)
|
345 |
+
3. Result: Shows relative likelihood of each Actor conducting each Campaign
|
346 |
+
""")
|
347 |
+
|
348 |
+
with gr.Row():
|
349 |
+
actor_prompt_template = gr.Textbox(
|
350 |
+
"is conducted by",
|
351 |
+
label="Actor Prompt Template",
|
352 |
+
placeholder="e.g., is conducted by, is attributed to"
|
353 |
+
)
|
354 |
+
|
355 |
+
actors = gr.Textbox(
|
356 |
+
"APT1, APT28, APT33, APT38, FIN8",
|
357 |
+
label="Actors (comma-separated)",
|
358 |
+
placeholder="e.g., APT1, Lazarus Group, Cozy Bear"
|
359 |
+
)
|
360 |
+
|
361 |
+
btn_actor = gr.Button("Generate Actor Heatmap", variant="primary")
|
362 |
+
plot_actor = gr.Plot(label="Campaign-Actor Heatmap")
|
363 |
+
|
364 |
+
btn_actor.click(
|
365 |
+
fn=generate_actor_heatmap,
|
366 |
+
inputs=[campaigns, actors, actor_prompt_template],
|
367 |
+
outputs=plot_actor,
|
368 |
+
show_progress=True
|
369 |
+
)
|
370 |
+
|
371 |
+
# Campaign-Technique section (independent scoring)
|
372 |
+
gr.Markdown("## 🛠️ Campaign-Technique Associations")
|
373 |
+
gr.Markdown("Visualizing Campaign-Technique relationships with independent association scores")
|
374 |
+
|
375 |
+
gr.Markdown("""
|
376 |
+
**Calculation Method**: `Binary Association Score (length-normalized, independent)`
|
377 |
+
|
378 |
+
1. For each Technique, calculate:
|
379 |
+
- `lp_pos = phrase_log_prob("{campaign} typically uses", technique)`
|
380 |
+
- `lp_neg = phrase_log_prob("{campaign} typically does NOT use", technique)`
|
381 |
+
2. Apply logistic transformation: `prob = 1 / (1 + exp(lp_neg - lp_pos))`
|
382 |
+
3. Length normalization: `score = prob / (n_tokens^0.7)` (penalty for longer phrases)
|
383 |
+
4. Result: Independent association scores (0-1) for each Campaign-Technique pair
|
384 |
+
""")
|
385 |
+
|
386 |
+
with gr.Row():
|
387 |
+
technique_prompt_template = gr.Textbox(
|
388 |
+
"typically uses",
|
389 |
+
label="Technique Prompt Template (positive)",
|
390 |
+
placeholder="e.g., typically uses, commonly employs"
|
391 |
+
)
|
392 |
+
technique_neg_template = gr.Textbox(
|
393 |
+
"typically does NOT use",
|
394 |
+
label="Technique Prompt Template (negative)",
|
395 |
+
placeholder="e.g., typically does NOT use, never employs"
|
396 |
+
)
|
397 |
+
|
398 |
+
techniques = gr.Textbox(
|
399 |
+
"T1059 Command and Scripting Interpreter, T1566 Phishing, T1027 Obfuscated/Stored Files, T1036 Masquerading, T1105 Ingress Tool Transfer, T1018 Remote System Discovery, T1568 Dynamic Resolution",
|
400 |
+
label="Techniques (comma-separated)",
|
401 |
+
placeholder="e.g., T1059 Command and Scripting Interpreter, T1566 Phishing"
|
402 |
+
)
|
403 |
+
|
404 |
+
btn_technique = gr.Button("Generate Technique Heatmap", variant="primary")
|
405 |
+
plot_technique = gr.Plot(label="Campaign-Technique Heatmap")
|
406 |
+
|
407 |
+
btn_technique.click(
|
408 |
+
fn=generate_technique_heatmap,
|
409 |
+
inputs=[campaigns, techniques, technique_prompt_template, technique_neg_template],
|
410 |
+
outputs=plot_technique,
|
411 |
+
show_progress=True
|
412 |
+
)
|
413 |
+
|
414 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Core dependencies for LLM Threat Association Analysis (ZeroGPU compatible)
|
2 |
+
gradio>=4.0.0
|
3 |
+
torch==2.4.0
|
4 |
+
transformers>=4.30.0
|
5 |
+
pandas>=2.0.0
|
6 |
+
accelerate>=0.26.0
|
7 |
+
|
8 |
+
# Visualization dependencies
|
9 |
+
matplotlib>=3.7.0
|
10 |
+
seaborn>=0.12.0
|
11 |
+
|
12 |
+
# Additional utilities
|
13 |
+
numpy>=1.24.0
|
14 |
+
|
15 |
+
# ZeroGPU support
|
16 |
+
spaces
|
17 |
+
|
18 |
+
# Optional: GPU acceleration (uncomment if using CUDA)
|
19 |
+
# torch-audio>=2.0.0
|
20 |
+
# torchvision>=0.15.0
|